首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  国内免费   12篇
安全科学   4篇
环保管理   1篇
综合类   17篇
污染及防治   18篇
评价与监测   5篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2011年   7篇
  2010年   4篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2004年   3篇
  2003年   3篇
  1992年   1篇
排序方式: 共有45条查询结果,搜索用时 46 毫秒
1.
Hsu JF  Guo HR  Wang HW  Liao CK  Liao PC 《Chemosphere》2011,83(10):1353-1359
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are unintentional byproducts of combustion and industrial processes. Firefighters face the risk of occupational exposure to PCDD/Fs. Congener-specific analyses of 17 PCDD/Fs were performed on 20 serum samples collected from firefighters and fire scene investigators, and four soot samples that had deposited on the surfaces of the fire helmets and were collected after the firefighters had fought fires. The PCDD/F concentrations on the helmets that were contaminated by being worn at the fire scenes were 63-285 times higher than those on a clean helmet. The median serum PCDD/F concentration of the 16 firefighters (12 pg WHO2005-TEQ g−1 lipid) was not different from those of the males from the general Taiwanese population (9.4 pg WHO2005-TEQ g−1 lipid). However, the median PCDD/F level in the four fire scene investigators (15 pg WHO2005-TEQ g−1 lipid) was higher than those in the male from the general Taiwanese population (Mann-Whitney U test, p < 0.01). Furthermore, the serum samples from the firefighters and fire scene investigators, and the soot samples from the fire scenes presented similarly distinctive PCDD/F profiles that had elevated proportions for 10 PCDF congeners. Limited data indicated that the fire scene investigators were occupationally exposed to PCDD/Fs at the fire scenes. We suggested that the firefighters were not occupationally exposed to PCDD/Fs at the fire scenes due to appropriate protection. However, the fire scene investigators may have had more occupational exposure to PCDD/Fs due to poor protection, and further research must be performed to confirm this.  相似文献   
2.
Daily and seasonal variation in the total elemental, organic carbon (OC) and elemental carbon (EC) content and mass of PM2.5 were studied at industrial, urban, suburban and agricultural/rural areas. Continuous (optical Dustscan, standard tapered element oscillating micro-balance (TEOM), TEOM with filter dynamics measurement system), semi-continuous (Partisol filter-sampling) and non-continuous (Dekati-impactor sampling and gravimetry) methods of PM2.5 mass monitoring were critically evaluated. The average elemental fraction accounted for 2-6% of the PM2.5 mass measured by gravimetry. Metals, like K, Mn, Fe, Cu, Zn and Pb were strongly inter-correlated, also frequently with non-metallic elements (P, S, Cl and/or Br) and EC/OC. A high OC/EC ratio (2-9) was generally observed. The total carbon content of PM2.5 ranged between 3 and 77% (averages: 12-32%), peaking near industrial/heavy trafficked sites. Principal component analysis identified heavy oil burning, ferrous/non-ferrous industry and vehicular emissions as the main sources of metal pollution.  相似文献   
3.
Two measurement campaigns were conducted in two sampling sites, An Thinh and Duy Minh, in northern Vietnam during the months of November–December 2000 and November 2001–February 2002 in order to investigate the extend of the particulate air pollution from the Pha Lai coal fired power plant. Fine particle samples were analyzed by Energy Dispersive X-Ray Fluorescence spectrometry and soot samples were analyzed by reflectometer. The result showed that high concentration of soot and elements mostly coincided with the air masses originating from the power plant. Sea spray aerosol was found to be the major source of chlorine at both sites. Ratios of specific elements and principal component analysis (PCA) revealed that coal combustion was the main contributor to the air pollution at both sites. PCA also indicated that there were other sources responsible for the elements emission, probably the influence of long distance transport and Asian Brown Cloud.  相似文献   
4.
A biomass-generated soot was sequentially treated by HCl-HF solution, organic solvent, and oxidative acid to remove ash, extractable native organic matter (EOM), and amorphous carbon. The compositional heterogeneity and nano-structure of the untreated and treated soot samples were characterized by elemental analysis, thermal gravimetric analysis, BET-N2 surface area, and electron microscopic analysis. Sorption properties of polar and nonpolar organic pollutants onto the soot samples were compared, and individual contributions of adsorption and absorption were quantified. The sorption isotherms for raw sample were practically linear, while were nonlinear for the pretreated-soot. The removal of EOM enhanced adsorption and reduced absorption, indicating that EOM served as a partitioning phase and simultaneously masked the adsorptive sites. By drastic-oxidation, the outer amorphous carbon and the inner disordered core of the soot particles were completely removed, and a fullerene-like nanoporous structure (aromatic shell) was created, which promoted additional π-π interaction between phenanthrene and the soot.  相似文献   
5.
Black carbon (BC) and total organic carbon (TOC) were quantified in the surface soils of Switzerland (N = 105) and Delhi (N = 36), India, to examine their relationships with contents of polycyclic aromatic hydrocarbons (PAH). BC content in Swiss (background) soils (N = 104) varied from 0.41 to 4.75 mg/g (median: 1.13 mg/g) and constituted 1-9% (median: 3%) of TOC. Indian (urban) soils had similar BC concentrations (0.37-2.05 mg/g, median: 1.19 mg/g), with relatively higher BC/TOC (6-23%, median: 13%). Similar to TOC, BC showed significant positive correlation with lighter PAH, but no correlation with heavier PAH in Swiss soils. In contrast, heavier PAH were significantly correlated only with BC in Delhi soils. It seems that TOC governs the distribution of PAH in organic matter rich background soils, while the proximity to emission sources is reflected by BC-PAH association in urban soils.  相似文献   
6.
Traffic vehicles, many of which are powered by port fuel injection (PFI) engines, are major sources of particulate matter in the urban atmosphere. We studied particles from the emission of a commercial PFI-engine vehicle when it was running under the states of cold start, hot start, hot stabilized running, idle and acceleration, using a transmission electron microscope and an energy-dispersive X-ray detector. Results showed that the particles were mainly composed of organic, soot, and Ca-rich particles, with a small amount of S-rich and metal-containing particles, and displayed a unimodal size distribution with the peak at 600?nm. The emissions were highest under the cold start running state, followed by the hot start, hot stabilized, acceleration, and idle running states. Organic particles under the hot start and hot stabilized running states were higher than those of other running states. Soot particles were highest under the cold start running state. Under the idle running state, the relative number fraction of Ca-rich particles was high although their absolute number was low. These results indicate that PFI-engine vehicles emit substantial primary particles, which favor the formation of secondary aerosols via providing reaction sites and reaction catalysts, as well as supplying soot, organic, mineral and metal particles in the size range of the accumulation mode. In addition, the contents of Ca, P, and Zn in organic particles may serve as fingerprints for source apportionment of particles from PFI-engine vehicles.  相似文献   
7.
采用低温燃烧法制备了Na+部分取代La3+的La1-xNaxCo0.5Mn0.5O3系钙钛矿型复合氧化物催化剂。利用程序升温反应(TPR)技术,对催化剂应用于柴油机常规排放物中的碳微粒(soot)和氮氧化合物(NOx)的同时催化脱除性能进行了研究。  相似文献   
8.
The determination of the structure of carbon materials is an analytical problem that join the research scientific communities involved in the chemical characterization of heavy fuel-derived products (heavy fuel oils, coal-derived fuels, shale oil, etc.) and of carbon materials (polycyclic aromatic compounds, tar, soot) produced in many combustion processes.

The knowledge of the structure of these “difficult” fuels and of the carbon materials produced by incomplete combustion is relevant to research for the best low-environmental impact operation of combustion systems; but an array of many analytical and spectroscopic tools are necessary, and often not sufficient, to attempt the characterization of such complex products and in particular to determine the distribution of molecular masses.

In this paper the size exclusion chromatography using N-methyl-pyrrolidinone as eluent has been applied for the characterization of different carbon materials starting from typical carbon species, commercially available like polyacenaphthylene, carbon black, naphthalene pitch up to combustion products like soot and soot extract collected in fuel-rich combustion systems. Two main fractions were detected, separated and molecular weights (MWs) determined by comparison with polystyrene standards: a first fraction consisted of particles with very large molecular masses (>100 000 u); a second fraction consisted of species in a relatively small MW range (200–600 u). The distribution of these fractions changes in dependence on the carbon sample characteristics.

Fluorescence spectroscopy applied on the fractions separated by size-exclusion chromatography has been used and comparatively interpreted giving indications on the differences and similarities in chemical structure of such different materials.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAH) were analysed in 23 soil samples (0–10 cm layer) from the Swiss soil monitoring network (NABO) together with total organic carbon (TOC) and black carbon (BC) concentration, as well as some PAH source diagnostic ratios and molecular markers. The concentrations of the sum of 16 EPA priority PAHs ranged from 50 to 619 μg/kg dw. Concentrations increased from arable, permanent and pasture grassland, forest, to urban soils and were 21–89% lower than median numbers reported in the literature for similar Swiss and European soils. NABO soils contained BC in concentrations from 0.4 to 1.8 mg/g dw, except for two sites with markedly higher levels. These numbers corresponded to 1–6% of TOC and were comparable to the limited published BC data in soil and sediments obtained with comparable analytical methods. The various PAH ratios and molecular markers pointed to a domination of pyrogenically formed PAHs in Swiss soils. In concert, the gathered data suggest the following major findings: (1) gas phase PAHs (naphthalene to fluorene) were long-range transported, cold-condensated at higher altitudes, and approaching equilibrium with soil organic matter (OM); (2) (partially) particle-bound PAHs (phenanthrene to benzo[ghi]perylene) were mostly deposited regionally in urban areas, and not equilibrated with soil OM; (3) Diesel combustion appeared to be a major emission source of PAH and BC in urban areas; and (4) wood combustion might have contributed significantly to PAH burdens in some soils of remote/alpine (forest) sites.  相似文献   
10.
Oxygenated fuel represents an attractive alternative as an additive for reducing soot emissions.Dimethyl carbonate(DMC) is an oxygenated compound which is a good option to reduce soot,but the detailed characteristics of soot produced from combustion of hydrocarbon fuels blended with DMC are still lacking. The present research studied the nanostructure and reactivity of soot particles in ethylene/DMC normal and inverse diffusion flames. High resolution transmission electron microscopy(HRTEM), X-ray diffraction(XRD), and thermogravimetric analysis(TGA)were used to analyze the nanostructure and reactivity of soot. It was found that DMC addition was effective in decreasing the average weights of soot formed in flames. The results of HRTEM images showed that soot particles obtained with DMC addition showed liquid-like material and tight bonding, and exhibited more highly disorganized layers, which give it higher reactivity than soot obtained without DMC addition. Furthermore, HRTEM was used to analyze soot fringe characteristics consisting of fringe tortuosity, fringe length, and fringe separation. XRD was used to crosscheck the results for fringe separation, and was consistent with HRTEM results. In addition, the mass loss curve of TGA experiments showed that DMC addition could enhance the reactivity of soot particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号