首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
基础理论   24篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2005年   1篇
  2004年   3篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F ) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.  相似文献   
2.
Reintroductions are increasingly used to reestablish species, but a paucity of long‐term postrelease monitoring has limited understanding of whether and when viable populations subsequently persist. We conducted temporal genetic analyses of reintroduced populations of swift foxes (Vulpes velox) in Canada (Alberta and Saskatchewan) and the United States (Montana). We used samples collected 4 years apart, 17 years from the initiation of the reintroduction, and 3 years after the conclusion of releases. To assess program success, we genotyped 304 hair samples, subsampled from the known range in 2000 and 2001, and 2005 and 2006, at 7 microsatellite loci. We compared diversity, effective population size, and genetic connectivity over time in each population. Diversity remained stable over time and there was evidence of increasing effective population size. We determined population structure in both periods after correcting for differences in sample sizes. The geographic distribution of these populations roughly corresponded with the original release locations, which suggests the release sites had residual effects on the population structure. However, given that both reintroduction sites had similar source populations, habitat fragmentation, due to cropland, may be associated with the population structure we found. Although our results indicate growing, stable populations, future connectivity analyses are warranted to ensure both populations are not subject to negative small‐population effects. Our results demonstrate the importance of multiple sampling years to fully capture population dynamics of reintroduced populations. Análisis Temporal de la Estructura Genética para Evaluar la Dinámica Poblacional de Zorros (Vulpes velox) Reintroducidos  相似文献   
3.
The relation among inbreeding, heterozygosity, and fitness has been studied primarily among outbred populations, and little is known about these phenomena in endangered populations. Most researchers conclude that the relation between coefficient of inbreeding estimated from pedigrees and fitness traits (inbreeding‐fitness correlations) better reflects inbreeding depression than the relation between marker heterozygosity and fitness traits (heterozygosity‐fitness correlations). However, it has been suggested recently that heterozygosity‐fitness correlations should only be expected when inbreeding generates extensive identity disequilibrium (correlations in heterozygosity and homozygosity across loci throughout the genome). We tested this hypothesis in Mohor gazelle (Gazella dama mhorr) and Iberian lynx (Lynx pardinus). For Mohor gazelle, we calculated the inbreeding coefficient and measured heterozygosity at 17 microsatellite loci. For Iberian lynx, we measured heterozygosity at 36 microsatellite loci. In both species we estimated semen quality, a phenotypic trait directly related to fitness that is controlled by many loci and is affected by inbreeding depression. Both species showed evidence of extensive identity disequilibrium, and in both species heterozygosity was associated with semen quality. In the Iberian lynx the low proportion of normal sperm associated with low levels of heterozygosity was so extreme that it is likely to limit the fertility of males. In Mohor gazelle, although heterozygosity was associated with semen quality, inbreeding coefficient was not. This result suggests that when coefficient of inbreeding is calculated on the basis of a genealogy that begins after a long history of inbreeding, the coefficient of inbreeding fails to capture previous demographic information because it is a poor estimator of accumulated individual inbreeding. We conclude that among highly endangered species with extensive identity disequilibrium, examination of heterozygosity‐fitness correlations may be an effective way to detect inbreeding depression, whereas inbreeding‐fitness correlations may be poor indicators of inbreeding depression if the pedigree does not accurately reflect the history of inbreeding. Correlaciones Heterocigosidad‐ Adaptabilidad y Depresión Endogámica en Dos Especies de Mamíferos Críticamente en Peligro  相似文献   
4.
We examined how ecological and evolutionary (eco‐evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco‐evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco‐evo PVA using individual‐based models with individual‐level genotype tracking and dynamic genotype–phenotype mapping to model emergent population‐level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco‐evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence.  相似文献   
5.
6.
Relationship between Population Size and Fitness   总被引:8,自引:1,他引:8  
Abstract:  Long-term effective population size, which determines rates of inbreeding, is correlated with population fitness. Fitness, in turn, influences population persistence. I synthesized data from the literature concerning the effects of population size on population fitness in natural populations of plants to determine how large populations must be to maintain levels of fitness that will provide adequate protection against environmental perturbations that can cause extinction. Integral to this comment on what has been done and what needs to be done, sThe evidence suggests that there is a linear relationship between log population size and population fitness over the range of population sizes examined. More importantly, populations will have to be maintained at sizes of >2000 individuals to maintain population fitness at levels compatible with the conservation goal of long-term persistence. This approach to estimating minimum viable population size provides estimates that are in general agreement with those from numerous other studies and strengthens the argument that conservation efforts should ultimately aim at maintaining populations of several thousand individuals to ensure long-term persistence.  相似文献   
7.
8.
Abstract: Optimization of contributions of parents to progeny by minimizing the average coancestry of the progeny is an effective strategy for maintaining genetic diversity in ex situ conservation programs, but its application on the basis of molecular markers has the negative collateral effect of homogenizing the allelic frequencies at each locus. Because one of the objectives of a conservation program is to preserve the genetic composition of the original endangered population, we devised a method in which markers are used to maintain the allele frequency distribution at each locus as closely as possible to that of the native population. Contributions of parents were obtained so as to minimize changes in allele frequency for a set of molecular markers in a population of reduced size. We used computer simulations, under a range of scenarios, to assess the effectiveness of the method in comparison with methods in which contributions of minimum coancestry are sought, either making use of molecular markers or genealogical information. Our simulations indicated that the proposed method effectively maintained the original distribution of allele frequencies, particularly under strong linkage, and maintained acceptable levels of genetic diversity in the population. Nevertheless, contributions of minimum coancestry determined from pedigree information but ignoring the genealogy previous to the conservation program, was the most effective method for maintaining allelic frequencies in realistic situations.  相似文献   
9.
The Paradox of Forest Fragmentation Genetics   总被引:5,自引:0,他引:5  
Abstract:  Theory predicts widespread loss of genetic diversity from drift and inbreeding in trees subjected to habitat fragmentation, yet empirical support of this theory is scarce. We argue that population genetics theory may be misapplied in light of ecological realities that, when recognized, require scrutiny of underlying evolutionary assumptions. One ecological reality is that fragment boundaries often do not represent boundaries for mating populations of trees that benefit from long-distance pollination, sometimes abetted by long-distance seed dispersal. Where fragments do not delineate populations, genetic theory of small populations does not apply. Even in spatially isolated populations, where genetic theory may eventually apply, evolutionary arguments assume that samples from fragmented populations represent trees that have had sufficient time to experience drift, inbreeding, and ultimately inbreeding depression, an unwarranted assumption where stands in fragments are living relicts of largely unrelated predisturbance populations. Genetic degradation may not be as important as ecological degradation for many decades following habitat fragmentation.  相似文献   
10.
Abstract:  We integrated genetics and demography into population modeling in the context of species restorations, in which both the origin of released individuals and the management strategy may influence the success of introduction. Through an explicit individual-based simulation approach, we investigated the effects of the age of released individuals by exploring the relative merits of releasing juveniles or adults to establish populations. We included the effect of genetic variability responsible for inbreeding depression and mutational meltdown. Our general analysis uncovered an interaction between the age of founders and the extent of intrapopulation fitness variability, which substantially influenced the efficiency of selection in populations founded by juveniles and had subsequent positive consequences for long-term persistence compared with the case in which adults were released. We then applied the model to the case of the reintroduction of the Griffon Vulture ( Gyps fulvus fulvus ) to southern France, for which post-release data were available. The demographic aspects of this reintroduction were already analyzed and published, suggesting that it is more efficient to release adults than juveniles, despite an observed reduction of demographic parameters following the release of adults. In that context, the inclusion of genetic considerations qualitatively changes the conclusion, predicting reduced long-term extinction risk if juveniles rather than adults are released.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号