首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
综合类   3篇
评价与监测   3篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
基于高分辨率的TROPOMI数据,分析了我国疫情爆发期的NO2空间分布情况,同时对比了疫情同比期和环比期不同地区的变化情况.分析表明,全国范围内NO2柱浓度的同比下降率和环比下降率分别为40.46%和50.09%,经济发达且人口稠密的城市群,排放量下降较为显著,其中江苏、河南、山东、浙江等NO2历史排放较高的省份受疫情影响更大.湖北省疫情期的NO2柱浓度绝对值(1.63×1015molec/cm2)在中东部省份属于最低位水平,同比和环比下降率也均在50%以上.相对来说,武汉、孝感等周边城市的影响远大于十堰、恩施等西部山区.地基国控站点的NO2质量浓度也显示了与卫星观测较一致的空间分布和变化趋势,证明了采用“自上而下”的遥感手段,可以对不同区域的大气污染排放强度和社会经济活动水平进行快速评估.  相似文献   
2.
基于2015—2020年近地面NO2质量浓度数据和2019年哨兵-5P TROPOMI卫星探测的对流层NO2柱浓度数据,采用相关性分析、趋势分析等方法探究新疆天山北坡经济带6个城市NO2污染的时空分布特征。结果表明:(1)从年均值来看,天山北坡经济带NO2质量浓度总体呈下降趋势,尤其2018—2020年下降明显。其中乌鲁木齐NO2质量浓度值最高、博乐最低。(2)从季度均值和月均值来看,各城市NO2质量浓度季节变化明显,其中夏季最低、冬季最高;月均值呈“中间低、两头高”的变化特征。(3)从日均值来看,各城市NO2质量浓度大多呈现双峰型分布,分别出现在早上10:00和晚上23:00。(4)从空间分布来看,NO2柱浓度高值区多分布在人口密集和工业发达的城市地区,尤其是乌鲁木齐、昌吉、五家渠、石河子污染最为严重。  相似文献   
3.
本文采用XGBoost机器学习算法,融合臭氧浓度地面监测数据、欧洲中期天气预报中心的ERA5数据集、中国多尺度排放清单模型构建的排放清单数据集、高分辨率遥感影像(TROPOMI_NO2、OMI_NO2)以及人口数据和DEM数据,构建训练估算数据集,开展近地面臭氧浓度估算研究.模型构建采用递归式特征消除法进行特征变量的选择,并对其进行十折交叉和自建模验证,R2分别为0.871和0.955,RMSE分别为12.8μg·m-3和7.514μg·m-3.同时进行了高分辨率遥感影像对估算结果的贡献分析,结果表明引入TROPOMI_NO2因子参与建模可校正近地面臭氧浓度普遍被低估现象.模型模拟结果显示臭氧浓度回归估算结果层次更加分明、条带现象消失、连续性和平滑性明显改善.  相似文献   
4.
千岛湖地区是我国重要的自然保护区,属于典型生态功能区。当前,臭氧(O3)正频繁成为影响千岛湖地区空气质量的首要污染物,但对于与此相关的千岛湖地区O3生成敏感性,研究人员目前仍未了解清楚。利用2019—2021年TROPOMI卫星观测数据,运用O3生成敏感性指示剂方法,即甲醛对流层垂直柱浓度和二氧化氮对流层垂直柱浓度的比值(FNR),量化解析了千岛湖地区O3生成敏感区的时空演化特征。结果表明,千岛湖地区FNR呈现逐年升高趋势,且显著高于杭州市主城区。千岛湖地区氮氧化物(NOx)控制区逐年扩张,自2019年开始,由西南向东北逐步蔓延。截至2021年,NOx控制区已基本覆盖整个千岛湖地区。千岛湖地区O3生成敏感区在夏季基本属于NOx控制区,在其他季节属于NOx控制区或协同控制区。结合气象再分析数据发现,FNR与温度呈强正相关(r=0.8),与相对湿度呈较弱正相关,与风速和云液态水含量呈较弱负相关。当温度大于7.0 ℃、风速小于6.2 m/s、云液态水含量小于5.5×10-5 g/m3、相对湿度大于57.5%时,O3生成趋向于受NOx控制。此外,与杭州市相比,千岛湖地区O3生成对气象参数变化更为敏感。研究成果对我国典型生态功能区O3污染防控具有重要的启示作用。  相似文献   
5.
中国地表臭氧浓度估算及健康影响评估   总被引:1,自引:0,他引:1  
赵楠  卢毅敏 《环境科学》2022,43(3):1235-1245
在PM2.5浓度逐年下降的背景下,臭氧浓度不降反升,臭氧已成为中国暖季的主要污染物之一.基于大数据关联分析思路,构建并开发了极限梯度提升(XGBoost)臭氧浓度估算模型,用以估算2019年中国每日最大8 h平均臭氧浓度(O3_8h),用于人类暴露评估.该模型输入地面监测站点数据、高分辨率遥感卫星数据、气象数据、排放清...  相似文献   
6.
以2020年1月—2021年9月对流层观测仪(TROPOMI)卫星观测资料反演获取的对流层甲醛(HCHO)、二氧化氮(NO2)柱浓度数据为依据,采用统计方法分析了扬州市HCHO和NO2柱浓度的时空分布特征。结果表明,扬州市对流层HCHO、NO2平均柱浓度分别为903.01×1013, 633.77×1013mole/cm2;受太阳紫外辐射影响,HCHO柱浓度变化特征表现为6月最高、1月最低;受气象条件和人为排放强度影响,NO2则表现为1月最高、8月最低。2021年1—9月扬州市对流层HCHO、NO2柱浓度月均值同比2020年分别增长4.0%,40.6%。空间分布特征显示,扬州市对流层HCHO和NO2浓度高值区主要分布在扬州市南部,且浓度高值区域与重点排污企业分布情况较为一致,多为电力供热、工业锅炉、冶金、石化与化工、表面涂层等行业。相关性分析显示,对流层HCHO与气温、臭氧浓度呈显著正相关,而NO2与气温、臭氧浓度呈显著负相关。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号