首页 | 本学科首页   官方微博 | 高级检索  
     检索      

植物超富集砷机制研究的最新进展
引用本文:段桂兰,王利红,陈玉,孟祥燕,董妍,朱永官.植物超富集砷机制研究的最新进展[J].环境科学学报,2007,27(5):714-720.
作者姓名:段桂兰  王利红  陈玉  孟祥燕  董妍  朱永官
作者单位:1. 中国科学院生态环境研究中心,北京,100085
2. 山东农业大学资源与环境学院,泰安,271018
摘    要:砷污染是全球环境热点问题之一,土壤砷污染治理是一个急需解决的难题.随着不同砷超富集植物的发现,植物修复技术因其投资和维护成本低、不易造成二次污染等优点而成为国际学术界研究的热点和前沿领域.深入理解超富集植物体内砷代谢和富集机制是有效利用植物修复技术来治理砷污染土壤的关键.近年来,植物超富集砷机制的研究取得了很大进展.已有的研究结果证明,蜈蚣草(P.vittata)对砷的吸收和转运能力显著高于非超富集植物,转运到地上部的砷主要储存在羽叶细胞的液胞中;蜈蚣草具有很强的抗氧化胁迫能力和五价砷(As(Ⅴ))还原能力;菌根共生有利于蜈蚣草的生长和砷的富集.有关植物超富集砷机制的分子生物学研究也取得了可喜的进展.砷酸盐还原酶基因(PvACR2)和植络素合成酶基因(PvPCS1)都被克隆并表征,cTPI同源基因(PV4-8)也被证明具有将As(Ⅴ)还原成三价砷(As(Ⅲ))的功能.尽管植物超富集砷机制的研究取得了迅速进展,但至今学术界仍没有全面理解为什么这些蕨类植物具有超富集砷的功能,相关功能基因、酶和转运蛋白的研究有待进一步深入.

关 键 词:  蜈蚣草  超富集  植物修复  蕨类植物  超富集  机制研究  plants  hyperaccumulation  arsenic  mechanisms  understanding  developments  转运蛋白  功能基因  相关  全面理解  学术  三价砷  同源基因  表征  克隆  合成酶基因  植络素
文章编号:0253-2468(2007)05-0714-07
收稿时间:1/9/2007 12:00:00 AM
修稿时间:01 9 2007 12:00AM

Recent developments in understanding the mechanisms of arsenic hyperaccumulation in plants
DUAN Guilan,WANG Lihong,CHEN Yu,MENG Xianyan,DONG Yan and ZHU Yongguan.Recent developments in understanding the mechanisms of arsenic hyperaccumulation in plants[J].Acta Scientiae Circumstantiae,2007,27(5):714-720.
Authors:DUAN Guilan  WANG Lihong  CHEN Yu  MENG Xianyan  DONG Yan and ZHU Yongguan
Institution:Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085,Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085,College of Resources and Environmental Sciences, Shandong Agricultural University, Tai'an 271018,Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085,Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 and Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085
Abstract:Cleanup of arsenic As contaminated soils has become a major environmental concern around the globe. With the discovery of As hyperaccumulators (e.g. Pteris vittata L.), phytoremediation has attracted particular interest across the world, since it is considered as an environmentally-friendly and cost-effective technology for As decontamination. Knowledge of the mechanisms of As hyperaccumulation in P. vittata may contribute to the optimization of phytoremediation processes. Recent research has discovered that P. vittata is significantly more efficient than other plants in As accumulation and translocation, and in compartmentalization of As within the cell vacuole. This fern is also highly resistant to oxidative stress and efficiently reduces As (V). Arbuscular mycorrhizal symbiosis is beneficial to fern growth and As accumulation. The arsenate reductase gene (PvACR2) and phytochelatin synthase gene (PvPCS1) have been cloned and characterized. The cTPI homolog PV4- 8 has also been shown to function as an arsenate reductase, reducing As (V) to As (III). Although rapid advancements have been made in understanding the mechanism of As hyperaccumulation in plants, it is still not fully clear why these plants can hyperaccumulate As, and further studies should be concentrated on key functional genes, enzymes and transporters involved in As hyperaccumulation. This review summarizes the recent research advances and studies of the mechanisms of As hyperaccumulation in Pteris vittata and its application in phytoremediation.
Keywords:arsenic  Pteris vittata  hyperaccumulation  phytoremediation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号