共查询到20条相似文献,搜索用时 15 毫秒
1.
The rapidly changing climate is posing growing threats for all species, but particularly for those already considered threatened. We reviewed 100 recovery plans for Australian terrestrial threatened species (50 fauna and 50 flora plans) written from 1997 to 2017. We recorded the number of plans that acknowledged climate change as a threat and of these how many proposed specific actions to ameliorate the threat. We classified these actions along a continuum from passive or incremental to active or interventionist. Overall, just under 60% of the sampled recovery plans listed climate change as a current or potential threat to the threatened taxa, and the likelihood of this acknowledgment increased over time. A far smaller proportion of the plans, however, identified specific actions associated with ameliorating climate risk (22%) and even fewer (9%) recommended any interventionist action in response to a climate-change-associated threat. Our results point to a disconnect between the knowledge generated on climate-change-related risk and potential adaptation strategies and the extent to which this knowledge has been incorporated into an important instrument of conservation action. 相似文献
2.
Lindsey L. Thurman John E. Gross Claudia Mengelt Erik A. Beever Laura M. Thompson Gregor W. Schuurman Christopher L. Hoving Julian D. Olden 《Conservation biology》2022,36(2):e13838
Adaptive capacity (AC)—the ability of a species to cope with or accommodate climate change—is a critical determinant of species vulnerability. Using information on species’ AC in conservation planning is key to ensuring successful outcomes. We identified connections between a list of species’ attributes (e.g., traits, population metrics, and behaviors) that were recently proposed for assessing species’ AC and management actions that may enhance AC for species at risk of extinction. Management actions were identified based on evidence from the literature, a review of actions used in other climate adaptation guidance, and our collective experience in diverse fields of global-change ecology and climate adaptation. Selected management actions support the general AC pathways of persist in place or shift in space, in response to contemporary climate change. Some actions, such as genetic manipulations, can be used to directly alter the ability of species to cope with climate change, whereas other actions can indirectly enhance AC by addressing ecological or anthropogenic constraints on the expression of a species’ innate abilities to adapt. Ours is the first synthesis of potential management actions directly linked to AC. Focusing on AC attributes helps improve understanding of how and why aspects of climate are affecting organisms, as well as the mechanisms by which management interventions affect a species’ AC and climate change vulnerability. Adaptive-capacity-informed climate adaptation is needed to build connections among the causes of vulnerability, AC, and proposed management actions that can facilitate AC and reduce vulnerability in support of evolving conservation paradigms. 相似文献
3.
Expansion of the global protected-area network has been proposed as a strategy to address threats from accelerating climate change and species extinction. A key step in increasing the effectiveness of such expansion is understanding how novel threats to biodiversity from climate change alter concepts such as rewilding, which have underpinned many proposals for large interconnected reserves. We reviewed potential challenges that climate change poses to rewilding and found that the conservation value of large protected areas persists under climate change. Nevertheless, more attention should be given to protection of microrefugia, macrorefugia, complete environmental gradients, and areas that connect current and future suitable climates and to maintaining ecosystem processes and stabilizing feedbacks via conservation strategies that are resilient to uncertainty regarding climate trends. Because a major element of the threat from climate change stems from its novel geographic patterns, we examined, as an example, the implications for climate-adaptation planning of latitudinal, longitudinal (continental to maritime), and elevational gradients in climate-change exposure across the Yellowstone-to-Yukon region, the locus of an iconic conservation proposal initially designed to conserve wide-ranging carnivore species. In addition to a continued emphasis on conserving intact landscapes, restoration of degraded low-elevation areas within the region is needed to capture sites important for landscape-level climate resilience. Extreme climate exposure projected for boreal North America suggests the need for ambitious goals for expansion of the protected-area network there to include refugia created by topography and ecological features, such as peatlands, whose conservation can also reduce emissions from carbon stored in soil. Qualitative understanding of underlying reserve design rules and the geography of climate-change exposure can strengthen the outcomes of inclusive regional planning processes that identify specific sites for protection. 相似文献
4.
Elie Gaget Alison Johnston Diego Pavón-Jordán Aleksi S. Lehikoinen Brett K. Sandercock Alaaeldin Soultan Luka Božič Preben Clausen Koen Devos Cristi Domsa Vitor Encarnação Sándor Faragó Niamh Fitzgerald Teresa Frost Clemence Gaudard Lívia Gosztonyi Fredrik Haas Menno Hornman Tom Langendoen Christina Ieronymidou Leho Luigujõe Włodzimierz Meissner Tibor Mikuska Blas Molina Zuzana Musilová Jean-Yves Paquet Nicky Petkov Danae Portolou Jozef Ridzoň Laimonas Sniauksta Antra Stīpniece Norbert Teufelbauer Johannes Wahl Marco Zenatello Jon E. Brommer 《Conservation biology》2022,36(4):e13877
Protected area networks help species respond to climate warming. However, the contribution of a site's environmental and conservation-relevant characteristics to these responses is not well understood. We investigated how composition of nonbreeding waterbird communities (97 species) in the European Union Natura 2000 (N2K) network (3018 sites) changed in response to increases in temperature over 25 years in 26 European countries. We measured community reshuffling based on abundance time series collected under the International Waterbird Census relative to N2K sites’ conservation targets, funding, designation period, and management plan status. Waterbird community composition in sites explicitly designated to protect them and with management plans changed more quickly in response to climate warming than in other N2K sites. Temporal community changes were not affected by the designation period despite greater exposure to temperature increase inside late-designated N2K sites. Sites funded under the LIFE program had lower climate-driven community changes than sites that did not received LIFE funding. Our findings imply that efficient conservation policy that helps waterbird communities respond to climate warming is associated with sites specifically managed for waterbirds. 相似文献
5.
Amanda Xuereb Cassidy C. D'Aloia Marco Andrello Louis Bernatchez Marie-Josée Fortin 《Conservation biology》2021,35(3):909-920
The availability of genomic data for an increasing number of species makes it possible to incorporate evolutionary processes into conservation plans. Recent studies show how genetic data can inform spatial conservation prioritization (SCP), but they focus on metrics of diversity and distinctness derived primarily from neutral genetic data sets. Identifying adaptive genetic markers can provide important information regarding the capacity for populations to adapt to environmental change. Yet, the effect of including metrics based on adaptive genomic data into SCP in comparison to more widely used neutral genetic metrics has not been explored. We used existing genomic data on a commercially exploited species, the giant California sea cucumber (Parastichopus californicus), to perform SCP for the coastal region of British Columbia (BC), Canada. Using a RAD-seq data set for 717 P. californicus individuals across 24 sampling locations, we identified putatively adaptive (i.e., candidate) single nucleotide polymorphisms (SNPs) based on genotype–environment associations with seafloor temperature. We calculated various metrics for both neutral and candidate SNPs and compared SCP outcomes with independent metrics and combinations of metrics. Priority areas varied depending on whether neutral or candidate SNPs were used and on the specific metric used. For example, targeting sites with a high frequency of warm-temperature-associated alleles to support persistence under future warming prioritized areas in the southern coastal region. In contrast, targeting sites with high expected heterozygosity at candidate loci to support persistence under future environmental uncertainty prioritized areas in the north. When combining metrics, all scenarios generated intermediate solutions, protecting sites that span latitudinal and thermal gradients. Our results demonstrate that distinguishing between neutral and adaptive markers can affect conservation solutions and emphasize the importance of defining objectives when choosing among various genomic metrics for SCP. 相似文献
6.
Shannon Hagerman Terre Satterfield Sara Nawaz Guillaume Peterson St-Laurent Robert Kozak Robin Gregory 《Conservation biology》2021,35(6):1932-1943
Novel management interventions intended to mitigate the impacts of climate change on biodiversity are increasingly being considered by scientists and practitioners. However, resistance to more transformative interventions remains common across both specialist and lay communities and is generally assumed to be strongly entrenched. We used a decision-pathways survey of the public in Canada and the United States (n = 1490) to test two propositions relating to climate-motivated interventions for conservation: most public groups are uncomfortable with interventionist options for conserving biodiversity and given the strong values basis for preferences regarding biodiversity and natural systems more broadly, people are unlikely to change their minds. Our pathways design tested and retested levels of comfort with interventions for forest ecosystems at three different points in the survey. Comfort was reexamined given different nudges (including new information from trusted experts) and in reference to a particular species (bristlecone pine [Pinus longaeva]). In contrast with expectations of public unease, baseline levels of public comfort with climate interventions in forests was moderately high (46% comfortable) and increased further when respondents were given new information and the opportunity to change their choice after consideration of a particular species. People who were initially comfortable with interventions tended to remain so (79%), whereas 42% of those who were initially uncomfortable and 40% of those who were uncertain shifted to comfortable by the end of the survey. In short and across questions, comfort levels with interventions were high, and where discomfort or uncertainty existed, such positions did not appear to be strongly held. We argue that a new decision logic, one based on anthropogenic responsibility, is beginning to replace a default reluctance to intervene with nature. 相似文献
7.
Sara H. Williams Sarah A. Scriven David F. R. P. Burslem Jane K. Hill Glen Reynolds Agnes L. Agama Frederick Kugan Colin R. Maycock Eyen Khoo Alexander Y. L. Hastie John B. Sugau Reuben Nilus Joan T. Pereira Sandy L. T. Tsen Leung Y. Lee Suzika Juiling Jenny A. Hodgson Lydia E. S. Cole Gregory P. Asner Luke J. Evans Jedediah F. Brodie 《Conservation biology》2020,34(4):934-942
Conservation planning tends to focus on protecting species’ ranges or landscape connectivity but seldom both—particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species’ ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species’ ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets. 相似文献
8.
Assisted migration (AM) is the translocation of species beyond their historical range to locations that are expected to be more suitable under future climate change. However, a relocated population may fail to establish in its donor community if there is high uncertainty in decision-making, climate, and interactions with the recipient ecological community. To quantify the benefit to persistence and risk of establishment failure of AM under different management scenarios (e.g., choosing target species, proportion of population to relocate, and optimal location to relocate), we built a stochastic metacommunity model to simulate several species reproducing, dispersing, and competing on a temperature gradient as temperature increases over time. Without AM, the species were vulnerable to climate change when they had low population sizes, short dispersal, and strong poleward competition. When relocating species that exemplified these traits, AM increased the long-term persistence of the species most when relocating a fraction of the donor population, even if the remaining population was very small or rapidly declining. This suggests that leaving behind a fraction of the population could be a robust approach, allowing managers to repeat AM in case they move the species to the wrong place and at the wrong time, especially when it is difficult to identify a species’ optimal climate. We found that AM most benefitted species with low dispersal ability and least benefited species with narrow thermal tolerances, for which AM increased extinction risk on average. Although relocation did not affect the persistence of nontarget species in our simple competitive model, researchers will need to consider a more complete set of community interactions to comprehensively understand invasion potential. 相似文献
9.
P.D. Boersma P. García Borboroglu N.J. Gownaris C.A. Bost A. Chiaradia S. Ellis T. Schneider P.J. Seddon A. Simeone P.N. Trathan L.J. Waller B. Wienecke 《Conservation biology》2020,34(1):103-112
More than half of the world's 18 penguin species are declining. We, the Steering Committee of the International Union for Conservation of Nature Species Survival Commission Penguin Specialist Group, determined that the penguin species in most critical need of conservation action are African penguin (Spheniscus demersus), Galápagos penguin (Spheniscus mendiculus), and Yellow-eyed penguin (Megadyptes antipodes). Due to small or rapidly declining populations, these species require immediate scientific collaboration and policy intervention. We also used a pairwise-ranking approach to prioritize research and conservation needs for all penguins. Among the 12 cross-taxa research areas we identified, we ranked quantifying population trends, estimating demographic rates, forecasting environmental patterns of change, and improving the knowledge of fisheries interactions as the highest priorities. The highest ranked conservation needs were to enhance marine spatial planning, improve stakeholder engagement, and develop disaster-management and species-specific action plans. We concurred that, to improve the translation of science into effective conservation for penguins, the scientific community and funding bodies must recognize the importance of and support long-term research; research on and conservation of penguins must expand its focus to include the nonbreeding season and juvenile stage; marine reserves must be designed at ecologically appropriate spatial and temporal scales; and communication between scientists and decision makers must be improved with the help of individual scientists and interdisciplinary working groups. 相似文献
10.
Seasonal snow is among the most important factors governing the ecology of many terrestrial ecosystems, but rising global temperatures are changing snow regimes and driving widespread declines in the depth and duration of snow cover. Loss of the insulating snow layer will fundamentally change the environment. Understanding how individuals, populations, and communities respond to different snow conditions is thus essential for predicting and managing future ecosystem change. We synthesized 365 studies that examined ecological responses to variation in winter snow conditions. This research encompasses a broad range of methods (experimental manipulations, measurement of natural snow gradients, and long-term monitoring), locations (35 countries), study organisms (plants, mammals, arthropods, birds, fish, lichen, and fungi), and response measures. Earlier snowmelt was consistently associated with advanced spring phenology in plants, mammals, and arthropods. Reduced snow depth often increased mortality or physical injury in plants, although there were few clear effects on animals. Neither snow depth nor snowmelt timing had clear or consistent directional effects on body size of animals or biomass of plants. However, because 96% of studies were from the northern hemisphere, the generality of these trends across ecosystems and localities is also unclear. We identified substantial research gaps for several taxonomic groups and response types; research on wintertime responses was notably scarce. Future research should prioritize examination of the mechanisms underlying responses to changing snow conditions and the consequences of those responses for seasonally snow-covered ecosystems. 相似文献
11.
Eden Zhang;Sin Yin Wong;Paul Czechowski;Aleks Terauds;Angelique E. Ray;Nicole Benaud;Devan S. Chelliah;Daniel Wilkins;Kate Montgomery;Belinda C. Ferrari; 《Conservation biology》2024,38(4):e14268
Overgeneralization and a lack of baseline data for microorganisms in high-latitude environments have restricted the understanding of the microbial response to climate change, which is needed to establish Antarctic conservation frameworks. To bridge this gap, we examined over 17,000 sequence variants of bacteria and microeukarya across the hyperarid Vestfold Hills and Windmill Islands regions of eastern Antarctica. Using an extended gradient forest model, we quantified multispecies response to variations along 79 edaphic gradients to explore the effects of change and wind-driven dispersal on community dynamics under projected warming trends. We also analyzed a second set of soil community data from the Windmill Islands to test our predictions of major environmental tipping points. Soil moisture was the most robust predictor for shaping the regional soil microbiome; the highest rates of compositional turnover occurred at 10–12% soil moisture threshold for photoautotrophs, such as Cyanobacteria, Chlorophyta, and Ochrophyta. Dust profiles revealed a high dispersal propensity for Chlamydomonas, a microalga, and higher biomass was detected at trafficked research stations. This could signal the potential for algal blooms and increased nonendemic species dispersal as human activities increase in the region. Predicted increases in moisture availability on the Windmill Islands were accompanied by high photoautotroph abundances. Abundances of rare oligotrophic taxa, such as Eremiobacterota and Candidatus Dormibacterota, which play a crucial role in atmospheric chemosynthesis, declined over time. That photosynthetic taxa increased as soil moisture increased under a warming scenario suggests the potential for competition between primary production strategies and thus a more biotically driven ecosystem should the climate become milder. Better understanding of environmental triggers will aid conservation efforts, and it is crucial that long-term monitoring of our study sites be established for the protection of Antarctic desert ecosystems. Furthermore, the successful implementation of an improved gradient forest model presents an exciting opportunity to broaden its use on microbial systems globally. 相似文献
12.
Diana E. Bowler Henning Heldbjerg Anthony D. Fox Maaike de Jong Katrin Böhning-Gaese 《Conservation biology》2019,33(5):1120-1130
Evidence of declines in insect populations has recently received considerable scientific and societal attention. However, the lack of long-term insect monitoring makes it difficult to assess whether declines are geographically widespread. By contrast, bird populations are well monitored and often used as indicators of environmental change. We compared the population trends of European insectivorous birds with those of other birds to assess whether patterns in bird population trends were consistent with declines of insects. We further examined whether declines were evident for insectivores with different habitats, foraging strata, and other ecological preferences. Bird population trends were estimated for Europe (1990–2015) and Denmark (1990–2016). On average, insectivores declined over the study period (13% across Europe and 28% in Denmark), whereas omnivores had stable populations. Seedeaters also declined (28% across Europe; 34% in Denmark), but this assessment was based on fewer species than for other groups. The effects of insectivory were stronger for farmland species (especially grassland species), for ground feeders, and for cold-adapted species. Insectivory was associated with long-distance migration, which was also linked to population declines. However, many insectivores had stable populations, especially habitat generalists. Our findings suggest that the decline of insectivores is primarily associated with agricultural intensification and loss of grassland habitat. The loss of both seed and insect specialists indicates an overall trend toward bird communities dominated by diet generalists. 相似文献
13.
Fabien Verniest;Thomas Galewski;Olivier Boutron;Laura Dami;Pierre Defos du Rau;Anis Guelmami;Romain Julliard;Nadège Popoff;Marie Suet;Loïc Willm;Wed Abdou;Hichem Azafzaf;Nadjiba Bendjedda;Taulant Bino;John J. Borg;Luka Božič;Mohamed Dakki;Rhimou El Hamoumi;Vitor Encarnação;Kiraz Erciyas-Yavuz;Khaled Etayeb;Valeri Georgiev;Ayman Hamada;Ohad Hatzofe;Christina Ieronymidou;Tom Langendoen;Tibor Mikuska;Blas Molina;Filipe Moniz;Caroline Moussy;Asmaâ Ouassou;Nicky Petkov;Danae Portolou;Tareq Qaneer;Samir Sayoud;Marko Šćiban;Goran Topić;Danka Uzunova;Gal Vine;Andrej Vizi;Erald Xeka;Marco Zenatello;Elie Gaget;Isabelle Le Viol; 《Conservation biology》2024,38(6):e14288
Sea-level rise (SLR) is expected to cause major changes to coastal wetlands, which are among the world's most vulnerable ecosystems and are critical for nonbreeding waterbirds. Because strategies for adaptation to SLR, such as nature-based solutions and designation of protected areas, can locally reduce the negative effects of coastal flooding under SLR on coastal wetlands, it is crucial to prioritize adaptation efforts, especially for wetlands of international importance for biodiversity. We assessed the exposure of coastal wetlands important for nonbreeding waterbirds to projected SLR along the Mediterranean coasts of 8 countries by modeling future coastal flooding under 7 scenarios of SLR by 2100 (from 44- to 161-cm rise) with a static inundation approach. Exposure to coastal flooding under future SLR was assessed for 938 Mediterranean coastal sites (≤30 km from the coastline) where 145 species of nonbreeding birds were monitored as part of the International Waterbird Census and for which the monitoring area was delineated by a polygon (64.3% of the coastal sites monitored in the Mediterranean region). Thirty-four percent of sites were threatened by future SLR, even under the most optimistic scenarios. Protected study sites and study sites of international importance for waterbirds were, respectively, 1.5 and 2 times more exposed to SLR than the other sites under the most optimistic scenario. Accordingly, we advocate for the development of a prioritization scheme to be applied to these wetlands for the implementation of strategies for adaptation to SLR to anticipate the effects of coastal flooding. Our study provides major guidance for conservation planning under global change in several countries of the Mediterranean region. 相似文献
14.
Roderick B. Gagne Kevin R. Crooks Meggan E. Craft Elliott S. Chiu Nicholas M. Fountain-Jones Jennifer L. Malmberg Scott Carver W. Chris Funk Sue VandeWoude 《Conservation biology》2022,36(1):e13719
Parasite success typically depends on a close relationship with one or more hosts; therefore, attributes of parasitic infection have the potential to provide indirect details of host natural history and are biologically relevant to animal conservation. Characterization of parasite infections has been useful in delineating host populations and has served as a proxy for assessment of environmental quality. In other cases, the utility of parasites is just being explored, for example, as indicators of host connectivity. Innovative studies of parasite biology can provide information to manage major conservation threats by using parasite assemblage, prevalence, or genetic data to provide insights into the host. Overexploitation, habitat loss and fragmentation, invasive species, and climate change are major threats to animal conservation, and all of these can be informed by parasites. 相似文献
15.
Protected areas are an important part of broader landscapes that are often used to preserve biodiversity or natural features. Some argue that protected areas may also help ensure provision of ecosystem services. However, the effect of protection on ecosystem services and whether protection affects the provision of ecosystem services is known only for a few services in a few types of landscapes. We sought to fill this gap by investigating the effect of watershed protection status and land use and land cover on biodiversity and the provision of ecosystem services. We compared the ecosystem services provided in and around streams in 4 watershed types: International Union for Conservation of Nature category II protected forests, unprotected forests, unprotected forests with recent timber harvesting, and unprotected areas with agriculture. We surveyed 28 streams distributed across these watershed types in Quebec, Canada, to quantify provisioning of clean water, carbon storage, recreation, wild foods, habitat quality, and terrestrial and aquatic biodiversity richness and abundance. The quantity and quality of ecosystem services and biodiversity were generally higher in sites with intact forest—whether protected or not—relative to those embedded in production landscapes with forestry or agriculture. Clean-water provision, carbon storage, habitat quality, and tree diversity were significantly higher in and around streams surrounded by forest. Recreation, wild foods, and aquatic biodiversity did not vary among watershed types. Although some services can be provided by both protected and unprotected areas, protection status may help secure the continued supply of services sensitive to changes in land use or land cover. Our findings provide needed information about the ecosystem service and biodiversity trade-offs and synergies that result from developing a watershed or from protecting it. 相似文献
16.
Diogo Alagador 《Conservation biology》2023,37(2):e14026
Amphibians are severely affected by climate change, particularly in regions where droughts prevail and water availability is scarce. The extirpation of amphibians triggers cascading effects that disrupt the trophic structure of food webs and ecosystems. Dedicated assessments of the spatial adaptive potential of amphibian species under climate change are, therefore, essential to provide guidelines for their effective conservation. I used predictions about the location of suitable climates for 27 amphibian species in the Iberian Peninsula from a baseline period to 2080 to typify shifting species’ ranges. The time at which these range types are expected to be functionally important for the adaptation of a species was used to identify full or partial refugia; areas most likely to be the home of populations moving into new climatically suitable grounds; areas most likely to receive populations after climate adaptive dispersal; and climatically unsuitable areas near suitable areas. I implemented an area prioritization protocol for each species to obtain a cohesive set of areas that would provide maximum adaptability and where management interventions should be prioritized. A connectivity assessment pinpointed where facilitative strategies would be most effective. Each of the 27 species had distinct spatial requirements but, common to all species, a bottleneck effect was predicted by 2050 because source areas for subsequent dispersal were small in extent. Three species emerged as difficult to maintain up to 2080. The Iberian northwest was predicted to capture adaptive range for most species. My study offers analytical guidelines for managers and decision makers to undertake systematic assessments on where and when to intervene to maximize the persistence of amphibian species and the functionality of the ecosystems that depend on them. 相似文献
17.
Erick J. Lundgren;Arian D. Wallach;Jens-Christian Svenning;Martin A. Schlaepfer;Astrid L. A. Andersson;Daniel Ramp; 《Conservation biology》2024,38(6):e14270
International and national conservation policies almost exclusively focus on conserving species in their historic native ranges, thus excluding species that have been introduced by people and some of those that have extended their ranges on their own accord. Given that many of such migrants are threatened in their native ranges, conservation goals that explicitly exclude these populations may overlook opportunities to prevent extinctions and respond dynamically to rapidly changing environmental and climatic conditions. Focusing on terrestrial mammals, we quantified the number of threatened mammals that have established new populations through assisted migration (i.e., introduction). We devised 4 alternative scenarios for the inclusion of assisted-migrant populations in mainstream conservation policy with the aim of preventing global species extinctions. We then used spatial prioritization algorithms to simulate how these scenarios could change global spatial conservation priorities. We found that 22% (70 species out of 265) of all identified assisted-migrant mammals were threatened in their native ranges, mirroring the 25% of all mammals that are threatened. Reassessing global threat statuses by combining native and migrant ranges reduced the threat status of 23 species (∼33% of threatened assisted migrants). Thus, including migrant populations in threat assessments provides a more accurate assessment of actual global extinction risk among species. Spatial prioritization simulations showed that reimagining the role of assisted-migrant populations in preventing species extinction could increase the importance of overlooked landscapes, particularly in central Australia, Europe, and the southwestern United States. Our results indicated that these various and nonexhaustive ways to consider assisted-migrant populations, with due consideration of potential conservation conflicts with resident taxa, may provide unprecedented opportunities to prevent species extinctions. 相似文献
18.
Chiara Dragonetti Valeria Y. Mendez Angarita Moreno Di Marco 《Conservation biology》2023,37(3):e14035
Mountains are among the natural systems most affected by climate change, and mountain mammals are considered particularly imperiled, given their high degree of specialization to narrow tolerance bands of environmental conditions. Climate change mitigation policies, such as the Paris Agreement, are essential to stem climate change impacts on natural systems. But how significant is the Paris Agreement to the survival of mountain mammals? We investigated how alternative emission scenarios may determine change in the realized climatic niche of mountain carnivores and ungulates in 2050. We based our predictions of future change in species niches based on how species have responded to past environmental changes, focusing on the probabilities of niche shrink and niche stability. We found that achieving the Paris Agreement's commitments would substantially reduce climate instability for mountain species. Specifically, limiting global warming to below 1.5°C would reduce the probability of niche shrinkage by 4% compared with a high-emission scenario. Globally, carnivores showed greater niche shrinkage than ungulates, whereas ungulates were more likely to shift their niches (i.e., face a level of climate change that allows adaptation). Twenty-three species threatened by climate change according to the IUCN Red List had greater niche contraction than other species we analyzed (3% higher on average). We therefore argue that climate mitigation policies must be coupled with rapid species-specific conservation intervention and sustainable land-use policies to avoid high risk of loss of already vulnerable species. 相似文献
19.
Richard Schuster Rachel Buxton Jeffrey O. Hanson Allison D. Binley Jeremy Pittman Vivitskaia Tulloch Frank A. La Sorte Patrick R. Roehrdanz Peter H. Verburg Amanda D. Rodewald Scott Wilson Hugh P. Possingham Joseph R. Bennett 《Conservation biology》2023,37(3):e14048
Protected areas are a key instrument for conservation. Despite this, they are vulnerable to risks associated with weak governance, land-use intensification, and climate change. We used a novel hierarchical optimization approach to identify priority areas for expanding the global protected area system that explicitly accounted for such risks while maximizing protection of all known terrestrial vertebrate species. To incorporate risk categories, we built on the minimum set problem, where the objective is to reach species distribution protection targets while accounting for 1 constraint, such as land cost or area. We expanded this approach to include multiple objectives accounting for risk in the problem formulation by treating each risk layer as a separate objective in the problem formulation. Reducing exposure to these risks required expanding the area of the global protected area system by 1.6% while still meeting conservation targets. Incorporating risks from weak governance drove the greatest changes in spatial priorities for protection, and incorporating risks from climate change required the largest increase (2.52%) in global protected area. Conserving wide-ranging species required countries with relatively strong governance to protect more land when they bordered nations with comparatively weak governance. Our results underscore the need for cross-jurisdictional coordination and demonstrate how risk can be efficiently incorporated into conservation planning. Planeación de las áreas protegidas para conservar la biodiversidad en un futuro incierto 相似文献
20.
For sea turtles, like many oviparous species, increasing temperatures during development threaten to increase embryonic mortality, alter offspring quality, and potentially create suboptimal primary sex ratios. Various methods are being implemented to mitigate the effects of climate change on reproductive success, but these methods, such as breeding programs, translocations, and shading, are often invasive and expensive. Irrigation is an alternative strategy for cooling nests that, depending on location, can be implemented relatively quickly and cheaply. However, multiple factors, including ambient conditions, nest substrate, and species characteristics, can influence irrigation success. Additionally, irrigation can vary in duration, frequency, and the volume of water applied to nests, which influences the cooling achieved and embryonic survival. Thus, it is critical to understand how to maximize cooling and manage risks before implementing irrigation as a nest-cooling strategy. We reviewed the literature on nest irrigation to examine whether artificial irrigation is feasible as a population management tool. Key factors that affected cooling were the volume of water applied and the frequency of applications. Embryonic responses varied with species, ambient conditions, and the timing of irrigation during development. Nest inundation was the key risk to a successful irrigation regime. Future irrigation regimes must identify clear targets, either primary or adult sex ratios, that maximize population viability. Monitoring population responses and adjusting the irrigation regime in response to population characteristics will be critical. Most studies reported on the manipulation of only one or two variables, further research is required to understand how altering multiple factors in an irrigation regime influences the cooling achieved and embryonic responses. 相似文献