首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental Science and Pollution Research - This study aimed to determine the effect of land-use changes on the non-carcinogenic health risk of nitrate ion exposure of underground drinking water...  相似文献   

2.
Environmental Science and Pollution Research - Water resource is in high demand within the Yangtze River Delta, given its developed economy. Long-term exploitation of this resource has posed risks...  相似文献   

3.
Environmental Science and Pollution Research - Increasing evidence indicates that groundwater can contain high dissolved phosphorus (P) concentrations, thereby contributing as a potential pollution...  相似文献   

4.
5.
Environmental Science and Pollution Research - Although heavy metal pollution has developed into a major global environmental problem, most research has focused on specific elements, especially...  相似文献   

6.
Land use in east China tends to change from paddy rice to vegetables or other high-value cash crops, resulting in high input rates of organic manures and increased risk of contamination with both heavy metals (HMs) and antibiotics. This investigation was conducted to determine the accumulation, distribution and risks of HMs and tetracyclines (TCs) in surface soils and profiles receiving different amounts of farmyard manure. Soil samples collected from suburbs of Hangzhou city, Zhejiang province were introduced to represent three types of land use change from paddy rice to asparagus production, vineyards and field mustard cultivation, and divided into two portions, one of which was air-dried and sieved through 2-, 0.3- and 0.149-mm nylon mesh for determination of pH and heavy metals. The other portion was frozen at ?20 °C, freeze-dried and sieved through a 0.3-mm nylon mesh for tetracyline determination. HM and TC concentrations in surface soils of 14-year-old mustard fields were the highest with total Cu, Zn, Cd and ∑TCs of 50.5, 196, 1.03 mg?kg?1 and 22.9 μg?kg?1, respectively, on average. The total Cu sequence was field mustard?>?vineyards?>?asparagus when duration of land use change was considered; oxytetracycline (OTC) and doxycycline were dominant in soils used for asparagus production; OTC was dominant in vineyards and chlortetracycline (CTC) was dominant in mustard soils. There were positive pollution relationships among Cu, Zn and ∑TCs, especially between Cu and Zn or Cu and ∑TCs. Repeated and excessive application of manures from intensive farming systems may produce combined contamination with HMs and TCs which were found in the top 20 cm of the arable soil profiles and also extended to 20–40 cm depth. Increasing manure application rate and cultivation time led to continuing increases in residue concentrations and movement down the soil profile.  相似文献   

7.
The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive.  相似文献   

8.
We investigated whether nitrate-N (NO3(-)-N) concentrations of shallow groundwater (< 30 m from the land surface) in a region of intensive agriculture could be predicted on the basis of land use information, topsoil properties that affect the ability of topsoil to generate nitrate at a site, or the 'leaching risk' at different sites. Groundwater NO3(-)-N concentrations were collected biannually for 3 years at 88 sites within the Waikato Region of New Zealand. The land use was classed as either the predominant land use of the farm where the well or bore was located, or the dominant land use within a 500 m radius of the well or bore. Topsoil properties that affect the ability of soil to generate nitrate were also measured at all the sites, and a leaching risk assessment model 'DRASTIC' was used to assess the risk of NO3(-)-N leaching to groundwater at each site. The concentration of NO3(-)-N in shallow groundwater in the Waikato Region varied considerably, both temporally and spatially. Nine percent of sites surveyed had groundwater NO3(-)-N concentrations exceeding maximum allowable concentrations of 11.3 ppm recommended by the World Health Organisation for potable drinking water which is accepted as a public health standard in New Zealand. Over half (56%) of the sites had concentrations that exceeded 3 ppm, indicating effects of human activities (commonly referred to as a human activity value). Very few trends in NO3(-)-N concentration that could be attributed to land use were identified, although market garden sites had higher concentrations of NO3(-)-N in underlying groundwater than drystock/sheep sites when the land use within 500 m radius of a sampling site was used to define the land use. There was also some evidence that within a district, NO3(-)-N concentrations in groundwater increased as the proportion of area used for dairy farming increased. Compared to pastoral land, market gardens had lower total C and N, potentially mineralisable N and denitrifying enzyme assay. However, none of these soil properties were directly related to groundwater NO3(-)-N concentrations. Instead, the DRASTIC index (which ranks sites according to their risk of solute leaching) gave the best correlation with groundwater NO3(-)-N concentrations. The permeability of the vadose zone was the most important parameter. The three approaches used were all considered unsuitable for assessing nitrate concentrations of groundwater, although a best-fit combination of parameters measured was able to account for nearly half the variance in groundwater NO3(-)-N concentrations. We suggest that non-point source groundwater NO3(-)-N contamination in the region reflects the intensive agricultural practices, and that localised, site-specific, factors may affect NO3(-)-N concentrations in shallow groundwaters as much as the general land use in the surrounding area.  相似文献   

9.
10.
Traditionally, monitoring of soil, groundwater and surface water quality is coordinated by different authorities in the Netherlands. Nowadays, the European Water Framework Directive (EU, 2,000) stimulates an integrated approach of the complete soil-groundwater-surface water system. Based on water quality data from several test catchments, we propose a conceptual model stating that stream water quality at different discharges is the result of different mixing ratios of groundwater from different depths. This concept is used for a regional study of the groundwater contribution to surface water contamination in the Dutch province of Noord-Brabant, using the large amount of available data from the regional monitoring networks. The results show that groundwater is a dominant source of surface water contamination. The poor chemical condition of upper and shallow groundwater leads to exceedance of the quality standards in receiving surface waters, especially during quick flow periods.  相似文献   

11.
A myriad of physical, chemical, and biological processes controls the fate of organic contaminants in soils. The knowledge of bioavailability of a contaminant in soil can be useful to conduct environmental risk assessment. We conducted batch equilibrium experiments to investigate the sorption of cyromazine (CA) and its metabolite melamine (MA) onto five typical soils of China belonging to suborders Ali-Perudic Ferrosols, Udic Argosols, Gleyic-Stagnic Anthrosols, Ustic Cambosols, and Udic Isohumosols. Results showed that sorption of CA and MA onto soils was linear, as indicated by the Freundlich and Langmuir models. Different sorption behaviors of CA and MA were observed on the five agricultural soils, with lgK f values (Freundlich model) of 1.6505–2.6557 and 1.632–2.549, respectively. Moreover, the K f values for CA and MA were positively correlated with soil organic matter (r?=?0.989, r?=?0.976) and significantly negatively correlated with pH (r?=??0.938, r?=??0.964). The free energy of sorption of CA and MA ranged from ?20.8 to ?23.0 kJ mol?1 and ?20.8 to ?22.8 kJ mol?1, respectively, suggesting that the sorption of CA and MA onto the soils is primarily a physical process.  相似文献   

12.
The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO3-, N-NH4+, P-PO4(3-), Total P, F-and Cl-) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO3-, P-PO4(3-)and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F-and Cl- are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land use patterns in the watershed. The results indicate that peak concentrations of agrochemicals in groundwater could be reduced by improving fertilization practices (by splitting and modifying timing of applications) and by operating the regional canal system to maintain the water table low, especially during the rainy periods.  相似文献   

13.
The assessment of spatial and temporal variation of water quality influenced by land use is necessary to manage the environment sustainably in basin scales. Understanding the correlations between land use and different formats of nonpoint source nutrients pollutants is a priority in order to assess pollutants loading and predicting the impact on surface water quality. Forest, upland, paddy field, and pasture are the dominant land use in the study area, and their land use pattern status has direct connection with nonpoint source (NPS) pollutant loading. In this study, two land use scenarios (1995 and 2010) were used to evaluate the impact of land use changes on NPS pollutants loading in basins upstream of Three Gorges Reservoir (TGR), using a calibrated and validated version of the soil and water assessment tool (SWAT) model. The Pengxi River is one of the largest tributaries of the Yangtze River upstream of the TGR, and the study area included the basins of the Dong and Puli Rivers, two major tributaries of the Pengxi River. The results indicated that the calibrated SWAT model could successfully reproduce the loading of NPS pollutants in the basins of the Dong and Puli Rivers. During the 16-year study period, the land use changed markedly with obvious increase of water body and construction. Average distance was used to measure relative distribution patterns of land use types to basin outlets. Forest was mainly distributed in upstream areas whereas other land use types, in particular, water bodies and construction areas were mainly distributed in downstream areas. The precipitation showed a non-significant influence on NPS pollutants loading; to the contrary, interaction between precipitation and land use were significant sources of variation. The different types of land use change were sensitive to NPS pollutants as well as land use pattern. The influence of background value of soil nutrient on NPS pollutants loading was evaluated in upland and paddy field. It was found that total nitrogen (TN) and total phosphorous (TP) in upland were more sensitive to NPS pollutants loading than in paddy fields. The results of this study have implications for management of the TGR to reduce the loading of NPS pollutants into downstream water bodies.  相似文献   

14.
Environmental Science and Pollution Research - To analyze the impact of particle sizes on sources and related health risks for heavy metals, road dust samples in Beijing were collected and sifted...  相似文献   

15.
AP Jackson  GH Eduljee 《Chemosphere》1994,29(12):2523-2543
A model has been developed to describe the transfer of PCDDs and PCDFs from sludge-amended soils to the human foodchain. The model is conservative and assumes that all foods consumed by an individual are derived from sludge-amended soils. Predicted concentrations of PCDDs and PCDFs in potatoes, cereals, root vegetables and leafy vegetables were in close agreement with mean concentrations reported in the food survey conducted by MAFF in the UK. Predicted concentrations in milk were well below the Maximum Tolerable Concentration adopted by MAFF. Assuming a half-life of ten years in sludge-amended soils, the maximum estimated incremental daily intake (IDI) predicted by the model following ten applications of sludge to agricultural land was 0.80 pg I-TEQ kg−1 day−1, representing an increase of approximately 45% on current levels of background exposure. For an individual whose diet is solely derived from sludge-amended soils, the total exposure is predicted to be approximately 181 pg I-TEQ day−1 or 2.6 pg I-TEQ kg−1 day−1. This compares with an average background exposure of approximately 2 pg I-TEQ kg−1 day−1, well within the TDI of 10 pg I-TEQ kg−1 day−1 and indicates that the application of sewage sludge to agricultural land under the conditions assumed would not appear to present a significant health risk under the conservative scenarios considered in this assessment.  相似文献   

16.
为了解加油站运营对周边浅层地下水环境质量的影响,随机选择了12个正常运营20年以上的加油站,在加油站上游和下游共布设了27口地下水监测井,对地下水中石油烃、苯系物、萘、1,2-二氯乙烷和甲基叔丁基醚开展了水质监测。结果表明,石油烃在地下水中的检出率较高,为96.3%,检出浓度为4.2~544.7μg/L,检出组分主要为柴油烃中的C26和C20,检出率分别达到了88.9%和77.8%;汽油烃的有效组分C6~C9未检出,作为汽油添加剂的1,2-二氯乙烷和甲基叔丁基醚在地下水中存在,检出率分别为96.3%和22.2%,检出浓度分别为1.7~30.9μg/L和3.8~30.9μg/L。其中,11.1%的监测井中甲基叔丁基醚浓度超过了EPA推荐的饮用水安全的浓度限值(20μg/L),3.7%的监测井中1,2-二氯乙烷浓度超过了《地表水环境质量标准》(GB 3838-2002)中"集中式生活饮用水地表水源地特定项目标准限值"规定的30μg/L。总体而言,石油烃、苯系物、1,2-二氯乙烷和甲基叔丁基醚的含量远低于油品渗(泄)漏导致的污染水平。  相似文献   

17.
Environmental Science and Pollution Research - A total of fifty groundwater samples were collected in the western part of Nizamabad district, Telangana State, India. The results obtained were...  相似文献   

18.
Singh KP  Mohan D  Sinha S  Dalwani R 《Chemosphere》2004,55(2):227-255
Studies were undertaken to assess the impact of wastewater/sludge disposal (metals and pesticides) from sewage treatment plants (STPs) in Jajmau, Kanpur (5 MLD) and Dinapur, Varanasi (80 MLD), on health, agriculture and environmental quality in the receiving/application areas around Kanpur and Varanasi in Uttar Pradesh, India. The raw, treated and mixed treated urban wastewater samples were collected from the inlet and outlet points of the plants during peak (morning and evening) and non-peak (noon) hours. The impact of the treated wastewater toxicants (metals and pesticides) on the environmental quality of the disposal area was assessed in terms of their levels in different media samples viz., water, soil, crops, vegetation, and food grains. The data generated show elevated levels of metals and pesticides in all the environmental media, suggesting a definite adverse impact on the environmental quality of the disposal area. The critical levels of the heavy metals in the soil for agricultural crops are found to be much higher than those observed in the study areas receiving no effluents. The sludge from the STPs has both positive and negative impacts on agriculture as it is loaded with high levels of toxic heavy metals and pesticides, but also enriched with several useful ingredients such as N, P, and K providing fertilizer values. The sludge studied had cadmium, chromium and nickel levels above tolerable levels as prescribed for agricultural and lands application. Bio-monitoring of the metals and pesticides levels in the human blood and urine of the different population groups under study areas was undertaken. All the different approaches indicated a considerable risk and impact of heavy metals and pesticides on human health in the exposed areas receiving the wastewater from the STPs.  相似文献   

19.
Environmental Science and Pollution Research - Overexploitation of groundwater has resulted in seawater intrusion in many semiarid and arid coastal areas. This study illustrates the origin of...  相似文献   

20.
Organic pollutants such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs) and polycyclic aromatic hydrocarbons (PAHs), as well as some metals are periodically monitored in soil and vegetation samples collected in Tarragona County (Spain). We here report the temporal trends of the concentrations of the above pollutants between the initial survey (2002) and that recently (2009) performed. The area under evaluation was divided into 4 sections (chemical, petrochemical, urban/residential and unpolluted). In general terms, urban soils presented the highest concentrations of PCDD/Fs, PCNs and PAHs, confirming that traffic is a very important emission source of these pollutants. In addition, substantially higher levels of PAHs and some metals were found in vegetation samples from the petrochemical complex. The assessment of health risks of these contaminants indicated that the current concentrations of micropollutants did not mean additional non-carcinogenic or cancer risks for the population living in the zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号