首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Conservation prioritization usually focuses on conservation of rare species or biodiversity, rather than ecological processes. This is partially due to a lack of informative indicators of ecosystem function. Biological soil crusts (BSCs) trap and retain soil and water resources in arid ecosystems and function as major carbon and nitrogen fixers; thus, they may be informative indicators of ecosystem function. We created spatial models of multiple indicators of the diversity and function of BSCs (species richness, evenness, functional diversity, functional redundancy, number of rare species, number of habitat specialists, nitrogen and carbon fixation indices, soil stabilization, and surface roughening) for the 800,000‐ha Grand Staircase‐Escalante National Monument (Utah, U.S.A.). We then combined the indicators into a single BSC function map and a single BSC biodiversity map (2 alternative types of conservation value) with an unweighted averaging procedure and a weighted procedure derived from validations performance. We also modeled potential degradation with data from a rangeland assessment survey. To determine which areas on the landscape were the highest conservation priorities, we overlaid the function‐ and diversity‐based conservation‐value layers on the potential degradation layer. Different methods for ascribing conservation‐value and conservation‐priority layers all yielded strikingly similar results (r= 0.89–0.99), which suggests that in this case biodiversity and function can be conserved simultaneously. We believe BSCs can be used as indicators of ecosystem function in concert with other indicators (such as plant‐community properties) and that such information can be used to prioritize conservation effort in drylands.  相似文献   

2.
Abstract: Habitat loss is silently leading numerous insects to extinction. Conservation efforts, however, have not been designed specifically to protect these organisms, despite their ecological and evolutionary significance. On the basis of species–host area equations, parameterized with data from the literature and interviews with botanical experts, I estimated the number of specialized plant‐feeding insects (i.e., monophages) that live in 34 biodiversity hotspots and the number committed to extinction because of habitat loss. I estimated that 795,971–1,602,423 monophagous insect species live in biodiversity hotspots on 150,371 endemic plant species, which is 5.3–10.6 monophages per plant species. I calculated that 213,830–547,500 monophagous species are committed to extinction in biodiversity hotspots because of reduction of the geographic range size of their endemic hosts. I provided rankings of biodiversity hotspots on the basis of estimated richness of monophagous insects and on estimated number of extinctions of monophagous species. Extinction rates were predicted to be higher in biodiversity hotspots located along strong environmental gradients and on archipelagos, where high spatial turnover of monophagous species along the geographic distribution of their endemic plants is likely. The results strongly support the overall strategy of selecting priority conservation areas worldwide primarily on the basis of richness of endemic plants. To face the global decline of insect herbivores, one must expand the coverage of the network of protected areas and improve the richness of native plants on private lands.  相似文献   

3.
Irreplaceable, self‐organizing landforms and the endemic and ecologically specialized biodiversity they support are threatened globally by anthropogenic disturbances. Although the outcome of disrupting landforms is somewhat understood, little information exists that documents population consequences of landform disturbance on endemic biodiversity. Conservation strategies for species dependent upon landforms have been difficult to devise because they require understanding complex feedbacks that create and maintain landforms and the consequences of landform configuration on demography of species. We characterized and quantified links between landform configuration and demography of an ecological specialist, the dunes sagebrush lizard (Sceloporus arenicolus), which occurs only in blowouts (i.e., wind‐blown sandy depressions) of Shinnery oak (Quercus havardii) sand‐dune landforms. We used matrix models to estimate vital rates from a multisite mark‐recapture study of 6 populations occupying landforms with different spatial configurations. Sensitivity and elasticity analyses demonstrated demographic rates among populations varied in sensitivity to different landform configurations. Specifically, significant relationships between blowout shape complexity and vital rate elasticities suggested direct links between S. arenicolus demography and amount of edge in Shinnery oak sand‐dune landforms. These landforms are irreplaceable, based on permanent transition of disturbed areas to alternative grassland ecosystem states. Additionally, complex feedbacks between wind, sand, and Shinnery oak maintain this landform, indicating restoration through land management practices is unlikely. Our findings that S. arenicolus population dynamics depended on landform configuration suggest that failure to consider processes of landform organization and their effects on species’ population dynamics may lead to incorrect inferences about threats to endemic species and ineffective habitat management for threatened or endangered species. As such, successful conservation of these systems and the biodiversity they support must be informed by research linking process‐oriented studies of self‐organized landforms with studies of movement, behavior, and demography of species that dwell in them.  相似文献   

4.
Abstract:  The European wild rabbit ( Oryctolagus cuniculus ) is a staple prey species in Mediterranean ecosystems. The arrival and subsequent spread of rabbit hemorrhagic disease throughout southwestern Europe, however, has caused a decline in rabbit numbers, leading to considerable efforts to enhance wild rabbit populations, especially through habitat management. Because rabbit population dynamics depend on habitat suitability and changes in habitat structure and composition subsequent to habitat management, I evaluated the effects of population dynamics on the long-term impact of rabbit hemorrhagic disease on rabbit populations. I used an age-structured model with varying degrees of population productivity and turnover and different habitat carrying capacities, and I assumed the existence of a unique, highly pathogenic virus. My results suggest that disease impact may be highly dependent on habitat carrying capacity and rabbit population dynamics, and the model provided some insight into the current abundance of wild rabbits in different locations in southwestern Europe. The highest disease impact was estimated for populations located in habitats with low to medium carrying capacity. In contrast, disease impact was lower in high-density populations in habitats with high carrying capacity, corresponding to a lower mean age of rabbit infection and a resulting lower mortality from rabbit hemorrhagic disease. The outcomes of the model suggest that management strategies to help rabbit populations recover should be based on improving habitats to their maximum carrying capacity and increasing rabbit population productivity. In contrast, the use of strategies based on temporary increases in rabbit density, including vaccination campaigns, translocations, and temporal habitat improvements at medium carrying capacities, may increase disease impact, resulting in short-term decreases in rabbit population density.  相似文献   

5.
The variety of local animal sounds characterizes a landscape. We used ecoacoustics to noninvasively assess the species richness of various biotopes typical of an ecofriendly forest plantation with diverse ecological gradients and both nonnative and indigenous vegetation. The reference area was an adjacent large World Heritage Site protected area (PA). All sites were in a global biodiversity hotspot. Our results showed how taxa segregated into various biotopes. We identified 65 singing species, including birds, frogs, crickets, and katydids. Large, natural, protected grassland sites in the PA had the highest mean acoustic diversity (14.1 species/site). Areas covered in nonnative timber or grass species were devoid of acoustic species. Sites grazed by native and domestic megaherbivores were fairly rich (5.1) in acoustic species but none were unique to this habitat type, where acoustic diversity was greater than in intensively managed grassland sites (0.04). Natural vegetation patches inside the plantation mosaic supported high mean acoustic diversity (indigenous forests 7.6, grasslands 8.0, wetlands 9.1), which increased as plant heterogeneity and patch size increased. Indigenous forest patches within the plantation mosaic contained a highly characteristic acoustic species assemblage, emphasizing their complementary contribution to local biodiversity. Overall, acoustic signals determined spatial biodiversity patterns and can be a useful tool for guiding conservation.  相似文献   

6.
Abstract: Conservationists commonly have framed ecological concerns in economic terms to garner political support for conservation and to increase public interest in preserving global biodiversity. Beginning in the early 1980s, conservation biologists adapted neoliberal economics to reframe ecosystem functions and related biodiversity as ecosystem services to humanity. Despite the economic success of programs such as the Catskill/Delaware watershed management plan in the United States and the creation of global carbon exchanges, today's marketplace often fails to adequately protect biodiversity. We used a Marxist critique to explain one reason for this failure and to suggest a possible, if partial, response. Reframing ecosystem functions as economic services does not address the political problem of commodification. Just as it obscures the labor of human workers, commodification obscures the importance of the biota (ecosystem workers) and related abiotic factors that contribute to ecosystem functions. This erasure of work done by ecosystems impedes public understanding of biodiversity. Odum and Odum's radical suggestion to use the language of ecosystems (i.e., emergy or energy memory) to describe economies, rather than using the language of economics (i.e., services) to describe ecosystems, reverses this erasure of the ecosystem worker. Considering the current dominance of economic forces, however, implementing such solutions would require social changes similar in magnitude to those that occurred during the 1960s. Niklas Luhmann argues that such substantive, yet rapid, social change requires synergy among multiple societal function systems (i.e., economy, education, law, politics, religion, science), rather than reliance on a single social sphere, such as the economy. Explicitly presenting ecosystem services as discreet and incomplete aspects of ecosystem functions not only allows potential economic and environmental benefits associated with ecosystem services, but also enables the social and political changes required to ensure valuation of ecosystem functions and related biodiversity in ways beyond their measurement on an economic scale.  相似文献   

7.
Abstract: In light of limited conservation funding, global conservation initiatives are increasingly focused on regions of the planet that have been identified as valuable on the basis of their species diversity, the vulnerability of resident species to extinction, or the perceived pristine nature of their ecosystems. Regions that have been resilient to high rates of extinction have not yet been systematically considered in conservation efforts. We used published range maps for 392 vertebrate species to compare historical and current species ranges. We used the results of the comparison to identify regions of the globe in which no known vertebrate species has been extirpated in the past 200 years. In 17 regions, no detectable vertebrate extinctions occurred in the past 200 years. In 6 other regions, reintroductions of species restored the full historic complement of vertebrate species. The effects of humans on a landscape, as measured by the human‐footprint index, although useful, was not a singularly good predictor of faunal intactness because more than 20% of intact land area was in heavily affected areas (50% of Earth's land area), and several regions where humans have had very little effect did not have intact faunas. Only 22% of intact land area was within protected‐area networks. High‐latitude areas were particularly underrepresented; they made up 3 of the 4 least‐protected areas in our analyses. Our results indicate that although protected areas are in some cases associated with the prevention of extinctions, there are many regions in which human activity coexists with intact vertebrate assemblages. In addition, our new approach for assessing the value of global regions for conservation identifies several regions that are not represented in other prioritization metrics.  相似文献   

8.
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land‐use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate‐change mitigation policies will reduce direct climate‐change impacts; however, these policies will influence land‐use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land‐use changes. We estimated past extinctions from historical land‐use changes (1500–2005) based on the global gridded land‐use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land‐use changes under alternative climate‐change scenarios (2005–2100). Future land‐use changes are projected to reduce natural vegetative cover by 26‐58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land‐use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate‐change mitigation scenario and biological factors such as the slope of the species–area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land‐use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land‐use changes in hotspots or by lessening the impact of future land‐use activities on biodiversity within hotspots.  相似文献   

9.
Abstract:  The Iberian Peninsula harbors about 50% of European plant and terrestrial vertebrate species and more than 30% of European endemic species. Despite the global recognition of its importance, the selection of protected areas has been ad hoc and the effectiveness of such choices has rarely been assessed. We compiled the most comprehensive distributional data set of Iberian terrestrial plant and vertebrate species available to date and used it to assess the degree of species representation within existing protected areas. Existing protected areas in Spain and Portugal reasonably represented the plant and animal species we considered (73–98%). Nevertheless, species of some groups (amphibians, reptiles, birds, and gymnosperms) did not accumulate in protected areas at a rate higher than expected by chance ( p > 0.05). We determined that to conserve all vertebrate and plant species in the Iberian Peninsula, at least 36 additional areas are needed. Selection of additional areas for conservation would be facilitated if such areas coincided with sites of community importance (SCI) designated under the European Commission Habitats Directive. Additional areas required for full representation of the selected plant and animal species all coincide with SCI in Spain. Nevertheless, the degree of coincidence varies between 0.3% and 74.6%, and there is a possibility that important areas for conservation occur outside the SCI. Our results support the view that current SCI can be used for prioritization of areas for conservation, but a systematic reevaluation of conservation priorities in Spain and Portugal would be necessary to ensure that effective conservation of one of European's most important biodiversity regions is achieved.  相似文献   

10.
Theidentification of key biodiversity areas (KBA) was initiated by the International Union for Conservation of Nature in 2004 to overcome taxonomic biases in the selection of important areas for conservation, including freshwater ecosystems. Since then, several KBAs have been identified mainly based on the presence of trigger species (i.e., species that trigger either the vulnerability and or the irreplaceability criterion and thus identify a site as a KBA). However, to our knowledge, many of these KBAs have not been validated. Therefore, classical surveys of the taxa used to identify freshwater KBAs (fishes, molluscs, odonates, and aquatic plants) were conducted in Douro (Iberian Peninsula) and Sebou (Morocco) River basins in the Mediterranean Biodiversity Hotspot. Environmental DNA analyses were undertaken in the Moroccan KBAs. There was a mismatch between the supposed and actual presence of trigger species. None of the trigger species were found in 43% and 50% of all KBAs surveyed in the Douro and Sebou basins, respectively. Shortcomings of freshwater KBA identification relate to flawed or lack of distribution data for trigger species. This situation results from a misleading initial identification of KBAs based on poor (or even inaccurate) ecological information or due to increased human disturbance between initial KBA identification and the present. To improve identification of future freshwater KBAs, we suggest selecting trigger species with a more conservative approach; use of local expert knowledge and digital data (to assess habitat quality, species distribution, and potential threats); consideration of the subcatchment when delineating KBAs boundaries; thoughtful consideration of terrestrial special areas for conservation limits; and periodic field validation.  相似文献   

11.
Phylogeographic patterns among coastal fishes are expected to be influenced by distinct ecological, biological and life history traits, along with historical events and oceanography (past and present). This study focuses on the broad range phylogeography of the Montagu’s blenny Coryphoblennius galerita, a species with well-known ecological features, strictly tied to rocky environments and with limited dispersal capability. Eleven locations from the western Mediterranean to the Bay of Biscay (including the Macaronesian archipelagos) were sampled. Mitochondrial DNA control region (CR) and the first intron of the S7 ribosomal protein gene were used to address the population structure, the signatures of expansion/contraction events retained in the genealogies and potential glacial refugia. The genetic diversity of the Montagu’s blenny was high throughout the sampled area, reaching maximum values in the Mediterranean and western Iberian Peninsula. The results confirmed a marked structure of C. galerita along the sampled area, with a major separation found between the Mediterranean and the Atlantic populations, and suggesting also a separation between the Azores and the remaining Atlantic locations. This study revealed complex and deep genealogies for this species, with Montagu’s blenny populations presenting signatures of events clearly older than the Last Glacial Maximum, with lineages coalescing in early Pleistocene and Pliocene. Three potential glacial refugia where this species might have survived Pleistocene glaciations and from where the recolonization process might have taken place are suggested: South of Iberian Peninsula/North Africa, Mediterranean and Azores.  相似文献   

12.
Abstract: The Coral Triangle is the global center of marine biodiversity; however, its coral reefs are critically threatened. Because of the bipartite life history of many marine species with sedentary adults and dispersive pelagic larvae, designing effective marine protected areas requires an understanding of patterns of larval dispersal and connectivity among geographically discrete populations. We used mtDNA sequence data to examine patterns of genetic connectivity in the boring giant clam (Tridacna crocea) in an effort to guide conservation efforts within the Coral Triangle. We collected an approximately 485 base pair fragment of mtDNA cytochrome c oxidase 1 (CO1) from 414 individuals at 26 sites across Indonesia. Genetic structure was strong between regions (φST=0.549, p < 0.00001) with 3 strongly supported clades: one restricted to western Sumatra, another distributed across central Indonesia, and a third limited to eastern Indonesia and Papua. Even within the single largest clade, small but significant genetic structure was documented (φST=0.069, p < 0.00001), which indicates limited gene flow within and among phylogeographic regions. Significant patterns of isolation by distance indicated an average dispersal distance of only 25–50 km, which is far below dispersal predictions of 406–708 km derived from estimates of passive dispersal over 10 days via surface currents. The strong regional genetic structure we found indicates potent limits to genetic and demographic connectivity for this species throughout the Coral Triangle and provides a regional context for conservation planning. The recovery of 3 distinct evolutionarily significant units within a well‐studied taxonomic group suggests that biodiversity in this region may be significantly underestimated and that Tridacna taxa may be more endangered than currently recognized.  相似文献   

13.
Abstract: Distribution models are used increasingly for species conservation assessments over extensive areas, but the spatial resolution of the modeled data and, consequently, of the predictions generated directly from these models are usually too coarse for local conservation applications. Comprehensive distribution data at finer spatial resolution, however, require a level of sampling that is impractical for most species and regions. Models can be downscaled to predict distribution at finer resolutions, but this increases uncertainty because the predictive ability of models is not necessarily consistent beyond their original scale. We analyzed the performance of downscaled, previously published models of environmental favorability (a generalized linear modeling technique) for a restricted endemic insectivore, the Iberian desman (Galemys pyrenaicus), and a more widespread carnivore, the Eurasian otter (Lutra lutra), in the Iberian Peninsula. The models, built from presence–absence data at 10 × 10 km resolution, were extrapolated to a resolution 100 times finer (1 × 1 km). We compared downscaled predictions of environmental quality for the two species with published data on local observations and on important conservation sites proposed by experts. Predictions were significantly related to observed presence or absence of species and to expert selection of sampling sites and important conservation sites. Our results suggest the potential usefulness of downscaled projections of environmental quality as a proxy for expensive and time‐consuming field studies when the field studies are not feasible. This method may be valid for other similar species if coarse‐resolution distribution data are available to define high‐quality areas at a scale that is practical for the application of concrete conservation measures.  相似文献   

14.
Abstract: Global declines in biodiversity and the widespread degradation of ecosystem services have led to urgent calls to safeguard both. Responses to this urgency include calls to integrate the needs of ecosystem services and biodiversity into the design of conservation interventions. The benefits of such integration are purported to include improvements in the justification and resources available for these interventions. Nevertheless, additional costs and potential trade‐offs remain poorly understood in the design of interventions that seek to conserve biodiversity and ecosystem services. We sought to investigate the synergies and trade‐offs in safeguarding ecosystem services and biodiversity in South Africa's Little Karoo. We used data on three ecosystem services—carbon storage, water recharge, and fodder provision—and data on biodiversity to examine several conservation planning scenarios. First, we investigated the amount of each ecosystem service captured incidentally by a conservation plan to meet targets for biodiversity only while minimizing opportunity costs. We then examined the costs of adding targets for ecosystem services into this conservation plan. Finally, we explored trade‐offs between biodiversity and ecosystem service targets at a fixed cost. At least 30% of each ecosystem service was captured incidentally when all of biodiversity targets were met. By including data on ecosystem services, we increased the amount of services captured by at least 20% for all three services without additional costs. When biodiversity targets were reduced by 8%, an extra 40% of fodder provision and water recharge were obtained and 58% of carbon could be captured for the same cost. The opportunity cost (in terms of forgone production) of safeguarding 100% of the biodiversity targets was about US$500 million. Our results showed that with a small decrease in biodiversity target achievement, substantial gains for the conservation of ecosystem services can be achieved within our biodiversity priority areas for no extra cost.  相似文献   

15.
Wildlife consumption can be viewed as an ecosystem provisioning service (the production of a material good through ecological functioning) because of wildlife's ability to persist under sustainable levels of harvest. We used the case of wildlife harvest and consumption in northeastern Madagascar to identify the distribution of these services to local households and communities to further our understanding of local reliance on natural resources. We inferred these benefits from demand curves built with data on wildlife sales transactions. On average, the value of wildlife provisioning represented 57% of annual household cash income in local communities from the Makira Natural Park and Masoala National Park, and harvested areas produced an economic return of U.S.$0.42 ha?1· year?1. Variability in value of harvested wildlife was high among communities and households with an approximate 2 orders of magnitude difference in the proportional value of wildlife to household income. The imputed price of harvested wildlife and its consumption were strongly associated (p< 0.001), and increases in price led to reduced harvest for consumption. Heightened monitoring and enforcement of hunting could increase the costs of harvesting and thus elevate the price and reduce consumption of wildlife. Increased enforcement would therefore be beneficial to biodiversity conservation but could limit local people's food supply. Specifically, our results provide an estimate of the cost of offsetting economic losses to local populations from the enforcement of conservation policies. By explicitly estimating the welfare effects of consumed wildlife, our results may inform targeted interventions by public health and development specialists as they allocate sparse funds to support regions, households, or individuals most vulnerable to changes in access to wildlife. Valoración Económica de la Caza de Subsistencia de Vida Silvestre en Madagascar  相似文献   

16.
Nonnative invasive species are one of the main global threats to biodiversity. The understanding of the traits characterizing successful invaders and invasion-prone ecosystems is increasing, but our predictive ability is still limited. Quantitative information on biotic homogenization and particularly its temporal dynamics is even scarcer. We used freshwater fish distribution data in the Iberian Peninsula in four periods (before human intervention, 1991, 1995, and 2001) to assess the temporal dynamics of biotic homogenization among river basins. The percentage of introduced species among fish faunas has increased in recent times (from 41.8% in 1991 to 52.5% in 2001), leading to a clear increase in the similarity of community composition among basins. The mean Jaccard's index increase (a measure of biotic homogenization) from the pristine situation to the present (17.1%) was similar to that for Californian fish but higher than for other studies. However, biotic homogenization was found to be a temporally dynamic process, with finer temporal grain analyses detecting transient stages of biotic differentiation. Introduced species assemblages were spatially structured along a latitudinal gradient in the Iberian Peninsula, with species related to sport fishing being characteristic of northern basins. Although the comparison of fish distributions in the Iberian Peninsula and France showed significant and generalized biotic homogenization, nonnative assemblages of northeastern Iberian basins were more similar to those of France than to those of the rest of the Iberian Peninsula, indicating a main introduction route. Species introduced to the Iberian Peninsula tended to be mainly piscivores or widely introduced species that previously had been introduced to France. Our results indicate that the simultaneous analysis of the spatial distribution of introduced assemblages (excluding native species that reflect other biogeographical patterns) and their specific traits can be an effective tool to detect introduction and invasion routes and to predict future invaders from donor regions.  相似文献   

17.
Abstract: Globally, ecosystems are under increasing anthropogenic pressure; thus, many are at risk of elimination. This situation has led the International Union for Conservation of Nature (IUCN) to propose a quantitative approach to ecosystem‐risk assessment. However, there is a need for their proposed criteria to be evaluated through practical examples spanning a diverse range of ecosystems and scales. We applied the IUCN's ecosystem red‐list criteria, which are based on changes in extent of ecosystems and reductions in ecosystem processes, to New Zealand's 72 naturally uncommon ecosystems. We aimed to test the applicability of the proposed criteria to ecosystems that are naturally uncommon (i.e., those that would naturally occur over a small area in the absence of human activity) and to provide information on the probability of ecosystem elimination so that conservation priorities might be set. We also tested the hypothesis that naturally uncommon ecosystems classified as threatened on the basis of IUCN Red List criteria contain more threatened plant species than those classified as nonthreatened. We identified 18 critically endangered, 17 endangered, and 10 vulnerable ecosystems. We estimated that naturally uncommon ecosystems contained 145 (85%) of mainland New Zealand's taxonomically distinct nationally critical, nationally endangered, and nationally vulnerable plant species, 66 (46%) of which were endemic to naturally uncommon ecosystems. We estimated there was a greater number of threatened plant species (per unit area) in critically endangered ecosystems than in ecosystems classified as nonthreatened. With their high levels of endemism and rapid and relatively well‐documented history of anthropogenic change, New Zealand's naturally uncommon ecosystems provide an excellent case‐study for the ongoing development of international criteria for threatened ecosystems. We suggest that interactions and synergies among decline in area, decline in function, and the scale of application of the criteria be used to improve the IUCN criteria for threatened ecosystems.  相似文献   

18.
Abstract: Coextinction is a poorly quantified phenomenon, but results of recent modeling suggest high losses to global biodiversity through the loss of dependent species when hosts go extinct. There are critical gaps in coextinction theory, and we outline these in a framework to direct future research toward more accurate estimates of coextinction rates. Specifically, the most critical priorities include acquisition of more accurate host data, including the threat status of host species; acquisition of data on the use of hosts by dependent species across a wide array of localities, habitats, and breadth of both hosts and dependents; development of models that incorporate correlates of nonrandom host and dependent extinctions, such as phylogeny and traits that increase extinction‐proneness; and determination of whether dependents are being lost before their hosts and adjusting models accordingly. Without synergistic development of better empirical data and more realistic models to estimate the number of cothreatened species and coextinction rates, the contribution of coextinction to global declines in biodiversity will remain unknown and unmanaged.  相似文献   

19.
Rarity is often considered an indication of species extinction risk, and it is frequently used to obtain measures of species vulnerability. However, there is no strong evidence of a correlation between species vulnerability and threat. Moreover, there is no consensus about how rarity should be measured. I used a multidimensional characterization of species rarity to calculate a vulnerability index for tenebrionid beetles inhabiting an Italian region in the Mediterranean biodiversity hotspot. I used different metrics to examine 3 dimensions of rarity: species range, ecology, and population. Species with rarity values below the median were scored as rare for each dimension. I combined rarity scores into a vulnerability index. I then correlated species vulnerability with range trends (expanded vs. contracted). Different measures of the same rarity dimension were strongly correlated and produced similar vulnerability scores. This result indicates rarity‐based vulnerability estimates are slightly affected by the way a certain rarity dimension is measured. Vulnerability was correlated with range trends; species with the highest vulnerability had the strongest range contraction. However, a large number of common species also underwent range contraction in the last 50 years, and there was no clear relation between range contraction and their ecology. This indicates that in general human‐induced environmental changes affected species irrespective of their assumed vulnerability and that focusing only on rare species may severely bias perceptions of the extent of species decline. Relaciones entre Rareza de Especies, Vulnerabilidad y Contracción de Distribución Geográfica para un Grupo de Escarabajos en una Región Densamente Poblada en el Hotspot de Biodiversidad del Mediterráneo  相似文献   

20.
Abstract: Following creation of the 2010 Biodiversity Target under the Convention on Biological Diversity and adoption of the United Nations Millennium Development Goals, information on status and trends of biodiversity at the national level has become increasingly important to both science and policy. National red lists (NRLs) of threatened species may provide suitable data for reporting on progress toward these goals and for informing national conservation priority setting. This information will also become increasingly important for developing species‐ and ecosystem‐based strategies for climate change adaptation. We conducted a thorough global review of NRLs in 109 countries and analyzed gaps in NRL coverage in terms of geography and taxonomy to determine priority regions and taxonomic groups for further investment. We then examined correlations between the NRL data set and gross domestic product (GDP) and vertebrate species richness. The largest geographic gap was in Oceania, followed by middle Africa, the Caribbean, and western Africa, whereas the largest taxonomic gaps were for invertebrates, fungi, and lichens. The comprehensiveness of NRL coverage within a given country was positively correlated with GDP and negatively correlated with total vertebrate richness and threatened vertebrate richness. This supports the assertion that regions with the greatest and most vulnerable biodiversity receive the least conservation attention and indicates that financial resources may be an integral limitation. To improve coverage of NRLs, we propose a combination of projects that target underrepresented taxa or regions and projects that provide the means for countries to create or update NRLs on their own. We recommend improvements in knowledge transfer within and across regions as a priority for future investment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号