首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 946 毫秒
1.
基于典型降雨TN入库过程的水库水质响应数值模拟分析   总被引:1,自引:0,他引:1  
以东北某大型水库为例,应用MIKE3软件,根据夏季典型降雨入库过程,模拟了水库水动力场。根据面源污染物入库质量浓度的时间变化特征,以TN为代表因子,对TN入库的动态过程进行了三维数值模拟。结果表明:面源污染物TN质量浓度与降雨量和入库流量有较强的相关关系;强降雨初期是面源污染的高峰期;在空间分布上,TN污染团中心在12 h、42 h、60 h、78 h时迁移扩散至入库口下游0.42 km、2.25 km、3.33 km、4.04 km;在时间尺度上,TN表层在对应时刻超标范围分别为0.98 km2、2.72 km2、3.71 km2、4.77 km2,污染团中心的质量浓度逐渐降低,分别为3.6 mg/L、3.1 mg/L、2.5 mg/L、2.1 mg/L。  相似文献   

2.
为研究电动二轮车与SUV正面碰撞事故形态中,骑车人头部损伤指标(HIC)与躯干横摆角、前倾角及参与方碰撞速度的关系,基于MADYMO软件验证后的运动型多用途车(SUV)与电动二轮车多刚体模型设计仿真试验。结果表明:骑车人HIC值随躯干横摆角的增大逐渐减小;电动二轮车车速不超过15 km/h或SUV车速超过50 km/h时,骑车人HIC值随躯干前倾角的增大逐渐减小;电动二轮车车速超过15 km/h或SUV车速不超过50 km/h时,骑车人HIC值随躯干前倾角的增大先增大后减小;提前同时增大骑车人躯干横摆角和前倾角可降低骑车人头部损伤程度。  相似文献   

3.
赣龙铁路下穿京九铁路时采用地道桥框架结构 ,施工采用顶推法 ;并采用钢便梁和挖孔桩加固以保证京九铁路的行车安全。由于运营的需要 ,将铁路行车限速由铁道部规定的 4 5km/h提高到客车 6 0km/h、货车4 5km/h ,为检验行车安全性和货车限速提高到 6 0km/h的可能性 ,南昌铁路局组织了试验列车通过便梁的试验 ,主要对轨道和便梁的动态安全性进行了测试 ;并通过对试验结果的分析和评估 ,证明了提高限速后行车的安全性 ,突破了铁道部限速规定 4 5km/h以内的限制 ,对既有线铁路施工时提高行车速度有重要意义。测试期间发现的施工便梁架设过程中存在的问题 ,对类似项目施工有一定的借鉴作用。  相似文献   

4.
为研究前车突然切入对驾驶人生理负荷的影响,利用MP150生理监测系统对22名被试进行虚拟驾驶试验。采集记录前车突然切入时被试的生理参数。研究驾驶人心率增长率和心率变异性(HRV)指标与车速、应激距离之间的关系。结果表明:自车速度为100 km/h时,随着前车切入距离从55.6 m减小到27.8 m,被试的平均心率增长率从16.21%增大到23.27%,HRV参数低频(LF)值也呈现下降趋势。前车切入距离一定,随着自车车速从60 km/h增加到120 km/h,被试的平均心率增长率存在显著性差异,平均从13.05%上升到21.85%。差异性检验结果表明,前车切入距离和自车速度发生变化时驾驶人的生理负荷变化趋势一致,但自车速度因素对驾驶人生理负荷的影响程度高于切入距离因素。  相似文献   

5.
为研究自动紧急制动(AEB)系统控制策略中触发宽度对行人横穿场景结果的影响,利用自动驾驶仿真软件PreScan建立道路及车辆模型,在Matlab模型控制平台Simulink中设计AEB纵向控制算法,模拟行人横穿危险场景,不断调整触发宽度,观察碰撞结果。结果表明:当汽车速度处于30~50 km/h时,系统触发宽度为1.75 m,能够起到很好的避撞效果;当汽车速度处于50~80 km/h时,触发宽度需随行人速度增加而增加;触发宽度越宽,汽车接收信息越多,AEB误作用概率增大,故将最大触发宽度设置为3.5 m;当汽车速度处于60~80 km/h时,需同时优化触发宽度值和全力制动提前时间的长短,才能避免碰撞。  相似文献   

6.
为降低后排左侧乘员在轿车60°斜角碰撞刚性壁障时的损伤程度,利用Presys建立有限元轿车、刚性障碍壁和假人整体模型,经Ls-Dyna求解计算后用Presys有限元软件分析30、40、50 km/h车速下的后排左侧乘员损伤情况。结果表明:随着碰撞车速的增高后排左侧假人头部加速度和颈部受力增大;碰撞车速为40 km/h时假人头部Y轴加速度比其他2种碰撞车速大;假人胸部加速度及加速度增幅随着碰撞车速的增加而增大。  相似文献   

7.
为了研究单车事故中柱状物对客车驾驶室的影响,采用三维显式有限元分析软件LS-DYNA 3D建立了客车正面撞击刚性柱的数值模拟模型。刚性柱直径依据美国法规FMVSS_214来设定,分别为254 mm(D)、381 mm(1.5D)和508 mm(2D),客车初速度分别设置为30 km/h、40 km/h和50 km/h。基于GB 11551—2014《汽车正面碰撞的乘员保护》和美国法规FMVSS_214《侧面碰撞保护》试验要求,分别开展不同速度(30 km/h、40 km/h、50 km/h)及不同刚性柱直径(254mm(D)、381 mm(1.5D)、508 mm(2D))工况下客车正面撞击刚性柱虚拟仿真试验。选取12个参数来评价刚性柱对客车驾驶室完整性的影响,包括驾驶室左侧6个测量点和驾驶室右侧6个测量点,驾驶室左侧结构6个测量点的最大位移表示驾驶室左侧结构的最大变形量,驾驶室右侧结构6个测量点的最大位移表示驾驶室右侧结构的最大变形量。结果表明:刚性柱直径一定时,初始速度越大,驾驶室完整性越差;初始速度一定时,刚性柱直径越大,驾驶室完整性越好。  相似文献   

8.
在对我国高速铁路环境振动实测的基础上,分析了我国高速铁路环境振动特性。实测分析结果表明:对于350 km/h客运专线,高速动车组运行时铁路环境振动主频出现在40 Hz左右;对于250 km/h客运专线,高速动车组运行时铁路环境振动主频出现在25 Hz左右;货物列车运行所产生的铁路环境振动,其主频大多出现在12.5 Hz左右。地面环境振动传播规律为近场范围内距线路距离加倍,环境振动衰减2~3 dB。列车引起的地面振动随车速的提高而增大,与日本新干线的桥梁及其周围地面的振动进行的测试结果基本一致。  相似文献   

9.
为研究CRTSⅢ型板式无砟轨道环境振动特点,对成灌快铁某路基段地面振动进行了现场测试,分析了不同测点地面振动加速度时程特点、频谱特征和铅垂向振级随距离的衰减特性。结果表明:CRH 1型动车组以181 km/h速度通过测试路基地段时,地面振动持续时间约6 s,距线路中心线22 m处振动峰值加速度为60 mm/s2,由于传播过程中的几何阻尼和材料阻尼作用,52 m处振动峰值加速度衰减为10 mm/s2;在22 m处振动能量主要分布在20~60 Hz,传播过程中高频振动随距离衰减更快,52 m处振动能量主要分布在20~23Hz;地面振动垂向振级随距离的衰减符合对数规律。  相似文献   

10.
为探究安全变道概率条件下高速公路立交最小净距,将相邻立交净间距分为向内侧变道段、标志识别段和向外侧变道段3部分。结合动力学和速度一致性原理,分析安全变道时的临界车头间距;运用概率论和交通流理论研究车辆变道概率组合特性。综合考虑车道数、服务交通量、设计速度和限制速度等条件,建立高速公路立交净距与安全变道概率关系模型。研究表明,安全变道概率阈值为0.95时,一级服务水平下不同车道数和设计速度的高速公路立交最小安全净距分别为:1 800 m(2,3车道,100 km/h)、2 200 m(2,3车道,120 km/h)、2 350 m(4车道,120 km/h),安全变道概率随立交净距的增大而呈阶梯型增长。  相似文献   

11.
为了解车-车碰撞事故中驾乘人员损伤差异影响因素,首先运用PC-Crash软件再现一例真实交通事故,通过分析面包车驾驶员的运动学及损伤响应,验证了其仿真车内乘员损伤的有效性,然后设计了包含6组车速、12个碰撞位置的72次试验,并通过仿真获得人体损伤数据,利用作图法分析所得数据.结果表明:当且仅当车速大于等于50 km/h时,驾乘人员头、胸、腿等部位的损伤才会出现明显差异,且差异程度随碰撞车速增加而增大;当车速大于50 km/h且碰撞位置在被撞车辆左侧或右侧前方时,驾乘人员各部位损伤差异最明显,其中又以腿部损伤最为突出,且靠近撞击侧乘员的损伤更严重.研究成果将为更好地利用损伤认定驾乘关系提供支持.  相似文献   

12.
给出了轨道交通车辆横向偏移量的计算方法 ,并应用列车 -线路动力耦合模型 ,分析了广州地铁三号线的安全限界变化问题。确定了当前按 80km/h行车速度设计的建筑限界能满足 13 0km/h行车速度的要求 ,限界尺寸不需改动可保证列车运行安全平稳  相似文献   

13.
为探明400 km/h高速列车在隧道内运行时的列车风特性,采用三维、非定常、可压缩和可实现的k-ε湍流模型进行数值模拟计算,分析隧道内列车风时域演变特征和空间分布特征,并按照列车各部分到达和驶离测点的时间对车体周围流场进行分区,采用5个特征参数衡量各区域内列车风速度的变化,探讨列车编组长度和隧道长度对列车风的影响。研究结果表明:隧道内列车风时域变化特征受列车运行位置和隧道内压力波传播的显著影响;列车风正峰值会随着列车编组长度、列车速度的增大而增加,且峰值到达时刻分别延后和提前,8车编组对应的列车风正峰值相较于3车编组时增加68.75%,400 km/h时的列车风正峰值相较于300 km/h时增加22.65%;同种隧道长度下的列车风速度最大正峰值出现在隧道中点位置处,且此处的波动更为剧烈复杂,主要是压缩波和膨胀波叠加得更加频繁。长隧道内压力波系叠加对列车风速度峰值的影响减弱,当隧道长度达到3 km时,列车风正峰值相较于1 km长度时下降30.70%。  相似文献   

14.
以某城际铁路下穿埋地燃气管道工程为例,应用车辆-轨道耦合动力学理论建立了车辆-轨道垂向耦合动力学模型,计算了250 km/h行车速度下的钢轨扣件支点反力;利用ANSYS建立了包括轨道、隧道结构、土体和燃气管道的三维有限元模型,以钢轨扣件反力为输入荷载,分析了列车运营条件下燃气管道的振动响应特性,并分析了会车对燃气管道振动响应特性的影响。结果表明,当列车单向运营速度为250 km/h时,燃气管道的最大振动加速度为1.175×10~(-3)m/s~2。如果在管道下方会车,列车运行振动对埋地燃气管道的影响范围显著增大,振动位移幅值和加速度幅值增幅分别为85.2%和75.8%,最大位移为2.21×10-5m,最大振动加速度为2.12×10~(-3)m/s~2。根据预测计算结果判断,本工程列车单向运营引起的埋地燃气管道的振动烈度小于I度,会车时振动烈度略大于I度。  相似文献   

15.
针对山区高速公路长纵坡路段大型车事故多发的问题,依托云南罗富高速公路交通安全保障项目,围绕对大型车辆下长坡时有效控制车速的方案,建立了"人体-车身-车轮"系统振动模型,从理论上分析了不同断面减速带对汽车平顺性影响的理论研究,设计了适合高速公路使用特点的减速带,并辅以道路试验进行方案优化,最后给出了减速带布置方案.结果表明,轿车车速为60~70 km/h,货车车速为30~40 km/h时,减速带对汽车平顺性的影响既在乘员可承受范围内,也不会降低汽车的行驶安全性,同时有效降低了事故多发路段的事故率,减少了人员伤亡和经济损失.  相似文献   

16.
陆译 《劳动保护》2013,(11):74-77
2002年4月23日清晨,一列满载数千吨货物的列车从美国加利福尼亚疾速驶向洛杉矶.7时27分,在货车经过一个信号灯时,刺眼的阳光让货车工程师并未看清信号灯的停车指示,他误以为导轨已经分离.列车以接近80 km/h的速度驶过,按这个速度,至少要向前滑行5 km才能停下来. 当天早上7时29分,一列市郊往返客运列车驶离加利福尼亚里弗赛德,开始了每日例行的向南85 km的旅程.与大多数市郊往返列车一样,它与更大型更重的货运列车使用同一条铁轨.一套复杂的转接和信号系统保证它们不会相撞.  相似文献   

17.
袁华明 《安全》2014,35(12):46-47
1工程概况 丽攀高速C12合同段起讫桩号为K43+232-K44+558,路线全长1.326km,公路等级为四车道高速公路,设计速度为80km/h,整体式路基宽度24.5m,中央分隔带2.0m。桥梁宽度:整体式24m,分离式11.75m;设计荷载为公路-Ⅰ级;设计洪水频率1/100,特大桥1/300;本地区地震基本烈度为度Ⅶ;航道等级III-(3)。主要工程数量有:路基挖方20.4万立方米,路基填方4.145万立方米,  相似文献   

18.
为研究交叉口进口道车辆限速值对交叉口的安全和运行产生的影响,通过微观仿真平台,分析车辆在交叉口限速分别为30,38和46 km/h时的车均延误、车均行程时间,并将车辆行驶轨迹输入安全辅助评价(SSAM)软件中展开分析。结果表明,车辆限速值的提高对车均延误的影响不大,但会减小车辆在进口道的车均行程时间。另外,限速值从30 km/h提高到46 km/h,引起的碰撞时间(TTC)、后侵占时间(PET)数值变化不显著,但使总冲突数从42个增加到59个。  相似文献   

19.
为研究车速和环境照度变化对目标物识认时间的影响,选取27名驾驶人,在实际道路和真实照度环境中,以不同车速驾驶车辆对黑白目标物进行识认试验。应用配对t检验法对数据进行差异性显著检验,并分析黑白颜色目标物受车速和照度共同影响时的识认时间规律。结果表明:除照度为500 lx以上且速度为30,40和80 km/h外,驾驶人对黑白目标物的识认有显著性差异;黑色目标物整体的识认时间比白色目标物长,黑色识认性在低照度环境中相对较差;黑色目标物受照度影响主要的波峰为200和400 lx时,白色目标物受照度影响较大的波峰为200和500 lx时;环境照度为101~200 lx,行车速度为40 km/h时,驾驶人基础视力中识认能力下降最快。  相似文献   

20.
为减小乘员在车辆碰撞事故中的损伤概率,进而为降低事故严重程度提供理论依据,以车辆碰撞前后速度变化ΔV为自变量,根据头部和胸部的损伤公式,分析全重叠正面碰撞过程中乘员在安全带和安全气囊组合的4种约束条件下的损伤,将损伤数据与事故损伤判定标准——简明创伤分级标准(AIS)关联,预测乘员损伤等级为AIS3+的概率,并结合具体实例进行说明。结果表明:随着车辆碰撞前后速度变化ΔV增加,乘员损伤等级AIS3+的概率增大; 4种约束条件下,当ΔV小于20 km/h,AIS3+概率均低于10%;当ΔV处于20~60 km/h时,安全带和安全气囊同时约束对乘员的保护效果最好,其对应的AIS3+概率最低;当ΔV超过60 km/h时,约束系统对乘员的保护作用有限,4种约束条件对应的AIS3+概率均超过85%。故在碰撞之前,驾驶员应通过降低ΔV以及确保乘员受到安全带和安全气囊的共同保护,来减小乘员损伤概率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号