首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work investigated color and biochemical oxygen demand (COD) removal from treated landfill leachate via advanced oxidative processes (AOPs) artificially emitted. The AOP H2O2/UV, TiO2/UV, and photolysis were tested in two bench‐scale photoreactors: The first one with UV‐C lamp and the other with UV‐A lamp associated or not with coagulation / flocculation pretreatment. Crude leachate samples with pH ranging from 8 to 3 were used, and time varied in 30, 45, and 60 minutes. Experiments were performed in two stages: step 1 with a 20 mL volume from each sample and step 2 with repetition of the best results from the previous step, adopting the 150 mL volume. In step 1, the AOP applied in the crude leachate sample showed the best results, standing out H2O2/UV‐C with 30 minutes and TiO2/UV‐A with 60 minutes. In step 2, H2O2/UV‐C had a 60% color removal and 25% COD reduction, while TiO2/UV‐A had a 10% color removal and 20% COD reduction. Therefore, the H2O2/UV‐C process was the most efficient, because the complex characteristics of the effluent interfered in the TiO2/UV‐A efficiency, but it is necessary to eliminate the process interferences. The use of artificial radiation is a viable alternative; however, it can be costly, being relevant in the associations between processes with artificial UV and solar UV, as the natural radiation becomes more attractive and allows the process operating costs reduction.  相似文献   

2.
The degradation of polyacrylamide (PAM) in simulate wastewater was studied in UV/Fenton/C4H4O62? system. The factors such as molecular ratio of H2O2/Fe2+/C4H4O62?, pH, and the dosage of Fenton reagent that could affect the PAM degradation in the UV/Fenton/C4H4O62? system were investigated. The experimental results showed that adding C4H4O62? to UV/Fenton system could form photosensitive ferrous complexes, which led to higher degradation efficiency of PAM. The degradation rate of PAM could be up to 95.2% under the following conditions: the concentration of H2O2, Fe2+, and C4H4O62? were 22.5, 2.25, and 2.25 mmol/L, respectively (i.e., molecular ratio of H2O2/Fe2+/C4H4O62? was 10:1:1), the pH value was 3.0.  相似文献   

3.
Fenton oxidation pretreatment was investigated for enhancement of biodegradability of wastewater sludge (WWS) which was subsequently used as substrate for the production of value- added products. The Response surface method with fractional factorial and central composite designs was applied to determine the effects of Fenton parameters on solubilization and biodegradability of sludge and the optimization of the Fenton process. Maximum solubilization and biodegradability were obtained as 70% and 74%, respectively at the optimal conditions: 0.01 ml H2O2/g SS, 150 [H2O2]0/[Fe2+]0, 25 g/L TS, at 25 °C and 60 min duration. Further, these optimal conditions were tested for the production of a value added product, Bacillus thuringiensis (Bt) which is being used as a biopesticide in the agriculture and forestry sector. It was observed that Bt growth using Fenton oxidized sludge as a substrate was improved with a maximum total cell count of 1.63 × 109 CFU ml?1 and 96% sporulation after 48 h of fermentation. The results were also tested against ultrasonication treatment and the total cell count was found to be 4.08 × 108 CFU ml?1 with a sporulation of 90%. Hence, classic Fenton oxidation was demonstrated to be a rather more promising chemical pre-treatment for Bt - based biopesticide production using WWS when compared to ultrasonication as a physical pre-treatment.  相似文献   

4.
In this study, two pilot-scale aerobic landfill reactors with (A1) and without (A2) leachate recirculation are used to obtain detailed information on the quantity and quality of leachate in aerobic landfills. The observed parameters of leachate quality are pH, chloride (Cl), chemical oxygen demand (COD), biological oxygen demand (BOD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), and nitrate (NO3-N). pH values of the leachate increased to 7 after 50 days in reactor A1 and after 70 days in reactor A2. Cl concentrations increased rapidly to 6100 (A1) and 6900 (A2) mg/L after 80 days, from initial values of 3000 and 2800 mg/L, respectively. COD and BOD values decreased rapidly in the A1 landfill reactor, indicating the rapid oxidation of organic matter. The BOD/COD ratio indicates that leachate recirculation slightly increases the degradation of solid waste in aerobic landfills. NH3-N concentrations decreased as a result of the nitrification process. Denitrification occurred in parts of the reactors as a result of intermittent aeration; this process causes a decrease in NO3 concentrations. There is a marked difference between the A1 and A2 reactors in terms of leachate quantity. Recirculated leachate made up 53.3% of the leachate generated from the A1 reactor during the experiment, while leachate quantity decreased by 47.3% with recirculation when compared with the aerobic dry landfill reactor.  相似文献   

5.
The olive mill waste (OMW) generated from olive oil extraction process constitutes a major environmental concern owing to its high organic and mineral matters and acidic pH. Anaerobic digestion (AD) is a main treatment for reducing the organic matter and toxic substances contained in OMW and generating at the same time, energy in the form of biogas. AD of OMW that contains lignocellulose is limited by the rate of hydrolysis due to their recalcitrant structure. This study is devoted to the effect of Fenton process (FP) pretreatment on olive mill wastewater (OMSW) /olive mill solid waste (OMWW) co-digestion to improve their digestibility and in this way the biogas production. The FP pretreatment was performed in batch mode at 25°C, various H2O2/[Fe2+] ratios (100–1200), catalyst concentration ([Fe2+]) ranging from 0.25 to 2 mM, reaction time varying from 30 to150 min, and different pH (3–11). The best performance was obtained with H2O2/[Fe2+] = 1000, [Fe2+] = 1.5 mM, 120 min, and pH 3. Biochemical methane potential (BMP) tests conducted in batch wise digester and at mesophilic conditions (37 °C) showed that cumulative biogas and methane production were higher without FP treatment, and correspond to 699 and 416 mL/g VS, respectively. However, pre-treated OMSW results into an increase of 24% of methane yield. After 30 days of AD, the methane yield was 63%, 54%, and 48%, respectively, for OMSW treated without iron precipitation, with iron precipitation and untreated OMSW sample.  相似文献   

6.
Landfill leachate contains high concentrations of organic matter, color, heavy metals and toxic substances. This study presents the feasibility of a commercial nanofiltration membrane (NF-300) in the removal of pollutants from a landfill leachate generated from the Treatment Stabilization and Disposal Facility in Gujarat state of India. Two different leachate samples (Leachates A and B) were collected from the downstream side of closed landfill cells A and B. The average quality of the leachate was 67 719 mg/L COD, 217 mg/L ammonical nitrogen, 22 418 mg/L BOD, 3847 mg/L chlorides and 909 mg/L sulphate. The operating variables studied were applied pressure (4–20 atm), feed flowrate (5–15 L/min) and pH (2, 4, 5.5 and 6.7). It was observed that the solute rejection (RO) increased with increase in feed pressure and decreased with increase in feed concentration at constant feed flowrate. In the present study, the rejection of cations followed the sequence: RO (Cr3+) > RO (Ni2+) > RO (Zn2+) > RO (Cu2+) > RO (Cd2+) for leachates A and B. The order of solute rejection sequence is inversely proportional to the diffusion coefficients. The rejection of sulphate ions by the NF-300 membrane was 83 and 85%, while the rejection of chlorides was 62 and 65% for leachates A and B, respectively. The NF-300 membrane was characterized by using the combined-film theory-Spiegler–Kedem (CFSK) model based on irreversible thermodynamics and the ion transport model based on the extended Nernst–Planck equation. The membrane transport parameters were estimated using the Levenberg–Marquadt method. The estimated parameters were used to predict the membrane performance and the predicted values are in good agreement with the experimental results.  相似文献   

7.
This study analyzes and compares the results of leachate composition at the semi-aerobic Pulau Burung Landfill Site (PBLS) (unaerated pond and intermittently aerated pond) and the anaerobic Kulim Sanitary Landfill in the northern region of Malaysia. The raw samples were collected and analyzed for twenty parameters. The average values of the parameters such as phenols (1.2, 6.7, and 2.6 mg/L), total nitrogen (448, 1200, and 300 mg/L N-TN), ammonia-N (542, 1568, and 538 mg/L NH3-N), nitrite (91, 49, and 52 mg/L NO2?-N), total phosphorus (21, 17, and 19 mg/L), BOD5 (83, 243, and 326 mg/L), COD (935, 2345, and 1892 mg/L), BOD5/COD (0.096,0.1124,0.205%), pH (8.20, 8.28, and 7.76), turbidity (1546, 180, and 1936 Formazin attenuation units (FAU)), and color (3334, 3347, and 4041 Pt Co) for leachate at the semi-aerobic PBLS (unaerated and intermittently aerated) and the anaerobic Kulim Sanitary Landfill were recorded, respectively. The obtained results were compared with previously published data and data from the Malaysia Environmental Quality Act 1974. The results indicated that Pulau Burung leachate was more stabilized compared with Kulim leachate. Furthermore, the aeration process in PBLS has a considerable effect on reducing the concentration of several pollutants. The studied leachate requires treatment to minimize the pollutants to an acceptable level prior to discharge into water courses.  相似文献   

8.
氧化法预处理垃圾渗滤液技术研究及应用   总被引:3,自引:0,他引:3  
叶胜辉 《环境技术》2005,24(3):33-34
由于垃圾渗滤液含有多种有毒有害的难降解的有机物,影响了生物处理效果。采用Fenton氧化法、湿式催化氧化法和电解氧化法预处理,可减少渗滤液的污染负荷,提高可生化性,在实际应用中取得良好的效果。  相似文献   

9.
The destruction of antibiotic-resistant microorganisms at the source of contamination is necessary due to their adverse effects and to their increasingly widespread occurrence in the environment. To address this problem, Fenton and ozone oxidation processes were applied to synthetically contaminated cow manure to remove the tetM gene and its host, Escherichia coli HB101. The efficiency of the processes was evaluated by enumeration of E. coli HB101 and by PCR amplification of the tetM gene. The results of this study show that 56.60% bacterial inactivation (corresponding to a 0.36 log reduction) was achieved by a Fenton reagent dose of 50 mM H2O2 and 5 mM Fe2+ without acidifying the manure. Despite the high organic content of cow manure, 98.50% bacterial inactivation (corresponding to a 1.83 log reduction) was obtained by the ozonation process with an applied dose of 3.125 mg ozone/g manure slurry. The PCR study revealed that the band intensity of the tetM gene gradually decreased by increasing the Fenton reagent and the applied ozone dose. However, significantly high doses of oxidants would be required to completely eliminate bacterial pollution in manure.  相似文献   

10.
Seaweed can be anaerobically digested for the production of energy-rich methane. However, the use of seaweed digestate as a fertilizer may be restricted because of the high heavy metal content especially cadmium. Reducing the concentration of heavy metals in the digestate will enable its use as a fertilizer. In this laboratory-scale study, the potential of seaweed and its leachate in the production of methane were evaluated in batch tests. The effect of removing the heavy metals from seaweed leachate was evaluated in both batch test and treatment in an upflow anaerobic sludge blanket (UASB) reactor. The heavy metals were removed from seaweed leachate using an imminodiacetic acid (IDA) polyacrylamide cryogel carrier. The methane yield obtained in the anaerobic digestion of seaweed was 0.12 N l CH4/g VSadded. The same methane yield was obtained when the seaweed leachate was used for methane production. The IDA-cryogel carrier was efficient in removing Cd2+, Cu2+, Ni2+ and Zn2+ ions from seaweed leachate. The removal of heavy metals in the seaweed leachate led to a decrease in the methane yield. The maximum sustainable organic loading rate (OLR) attained in the UASB reactor was 20.6 g tCOD/l/day corresponding to a hydraulic retention time (HRT) of 12 h and with a total COD removal efficiency of about 81%. Hydrolysis and treatment with IDA cryogel reduced the heavy metals content in the seaweed leachate before methane production. This study also demonstrated the suitability of the treatment of seaweed leachate in a UASB reactor.  相似文献   

11.
FeSO4·xH2O is generated in large amounts in galvanizing workshops. It can be reutilized by conversion to Fe2O3. In this study, the recovery of Fe2O3 from FeSO4·xH2O formed in the galvanizing process has been examined. The experimental work was carried out at various temperatures and times in the oxidizing medium. The reaction temperatures and times were selected as 450, 500, 550, 600, 650, 700, 800 and 900°C, and 15, 30, 45, 60, 90 and 120 minutes, respectively. In order to determine the amount of Fe2O3, a titrimetric method was applied. The reaction products were characterized by means of IR and XRD techniques.The extent of conversion is low at temperatures below 650°C. Almost all of the iron (II) sulfate in the original sample was converted to iron(III) oxide at 650°C (120 min), 700°C (90 min), 800°C (60 min) and 900°C (45 min).  相似文献   

12.
The aim of present study was to investigate the quality of the produced effluent from different units of the Iran Central Iron Ore in Bafq city and comparison of effluent with the standards. This study presents the physicochemical and biological parameters data of effluent of three Sequencing batch reactors (SBR) with a capacity of 160 m3?d?1. Most common parameters include pH, total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), biochemical oxygen demand (BOD5), chemical oxygen demand (COD), heavy metals, and total coliforms and fecal coliforms as biological indicators. Then, for each SBR system, the average of each parameter was determined, and results were compared with the standard recommended by the Iranian Environmental Protection Agency. Based on the results, some of the parameters, including BOD5, COD, and TSS in the wastewater treatment plant (WWTP) effluent, are higher than the permitted amount for discharge to the surface water. Considering the BOD5, COD, and TSS concentration in WWTPs, the treated wastewater is only suitable for agricultural and irrigation use. Therefore, wastewater produced by Iran Central Iron Ore Co. will need additional treatment to achieve standard quality of water before discharge in surface water and adsorbent well.  相似文献   

13.
Radon is a radioactive gas that enters buildings and is known to cause lung cancer. Danish building regulation recommends simple remedial measures for radon levels between 200 and 400 Bq m−3, and more effective methods for levels above 400 Bq m−3. The Danish National Board of Health found that radon levels in 4.6% of the dwellings were above the reference level, and that the distribution of radon levels in Danish one-family houses is lognormal with a geometric mean of 57.7 Bq m−3 and a geometric standard deviation of 2.28. The purpose of the paper is to present a cost–benefit analysis of a possible future governmental intervention against radon in existing Danish one-family houses. In other words, it seeks to answer the question: is it socio-economically worthwhile to avert lung cancer deaths by reducing radon levels in the most exposed dwellings? The results indicate that an intervention based on the anti-radon measures recommended by the Danish building regulation would, if implemented, avert less than 30 deaths each year. By comparison, a total of 300 people die from radon exposure annually in Denmark. The total costs exceed the valuated health benefits by €62 million (6% discount rate). It is concluded that it is not socio-economically favourable to reduce radon levels in existing Danish one-family houses. These results are based on a discount rate of 6%, a value of preventing a statistical fatality of €1.4 million, and a relatively high cost of remediation in Denmark compared to other countries. Based on the sensitivity analysis, the conclusion will be different if a discount rate of 4.3% or less is used, or if the value of preventing a statistical fatality is €2.54 million or higher, or if the cost of remediation is reduced.  相似文献   

14.
The estimation of leachate quantities produced in landfills is necessary to dimension the treatment plants allowing to reduce the polluting load of these effluents and consequently avoid their negative impacts on the environment. Different leachate quantification methods were used in this study to assess the leachate volume produced at the Oum Azza landfill. The water balance method give comparable estimations of leachate production to the Ouled Berjal landfill ratio. The first method showed average values between 487 and 495 m3/day for 2015, 2018, and 2019, and at the same time, the second method gave values between 470 and 477 m3/day for the same years. In contrast, the World Bank ratio showed high values that vary between 2260 and 2295 m3/day for 2015, 2018, and 2019. The on-site data and the statistical analysis showed us that the World Bank ratio is not adapted for the estimation of the leachates produced in Oum Azza landfill, while the water balance and the ratio of Ouled Berjal landfill allowed to give comparable results to reality.  相似文献   

15.
MEA solutions were subjected to oxidative degradation at both low and high gas rates. Solutions were degraded with 100 mL/min of 98%O2/2%CO2 with mass transfer achieved by vortexing. Solutions were analyzed for degradation products by IC and HPLC. In a parallel apparatus 7.5 L/min of 15%O2/2%CO2 was sparged through solution, with additional mass transfer achieved by vortexing. A Fourier Transform Infrared (FTIR) analyzer collected continuous gas-phase data on volatile products.Hydroxyethyl-formamide (HEF) and hydroxyethylimidazole (HEI) are the major liquid-phase oxidation products. In the presence of Fe2+ and Cu2+, HEF, HEI, and MEA losses increase by a factor of 3 compared to Fe2+ alone. Cr3+ and Ni2+, two metals present in stainless steel alloys, resulted in MEA losses that are 55% greater. In terms of oxidative degradation potential (greatest to lowest): Cu2+ > Cr3+/Ni2+ > Fe2+ > V5+.Inhibitor A reduces the formation of known products by 90% when catalyzed by Fe2+ and Cu2+ and by 99% with Cr3+/Ni2+. Inhibitor B reduces product rates by 97% and MEA losses by 75%, while a 100:1 ratio of EDTA to Fe2+ completely inhibits oxidation.  相似文献   

16.
Leachate generated in a landfill may not be treated by conventional biological treatment due to its nature and complexity. The process of forming aerobic granules in batch sequencing reactors having features such as; reducing the settling process time and saving energy consumption and high decomposition rate have been noticed by researchers. In the present study, the structure of sequencing batch reactors (SBRs) was evaluated for the formation of granules, which were subsequently utilized for the treatment of landfill leachate. The experiment was initiated by using the GSBR, containing 1200 ml with different apparatuses, to develop granular sludge, and synthetic wastewater was added to reinforcement. The selected parameters for the operational hydraulic retention time (HRT) of the wastewater (6-h cycles) included feeding, idle, aeration, settling, and discharge. Furthermore, the controlled conditions were the dissolved oxygen (DO) range of 2–2.2 mg/L, temperature range of 20–23℃, and pH of 7.5–8.3. The chemical oxygen demand (COD), mixed liquor suspended solids (MLSS), and sludge volume index (SVI) daily were measured at the influent and effluent of GSBR reactor. The main properties of aerobic granular sludge were identified during the research procedures, and the remarkable settling and potent, high-density microbial structure of the granules were confirmed. The mean size of the formulated granules was estimated at 7.46 ± 1.8 mm, and the volume of the biomass also increased from approximately 1607 to 4137 mg/L through the granulation process. Moreover, 98% of the influent chemical oxygen demand (COD) could be removed by the formulated granular sludge, and the final-stage organic loading rate was estimated at 5.65 COD/m3/day. According to the results, GSBRs could be employed for the formulation of aerobic granular sludge for the treatment of landfill leachate.  相似文献   

17.
以醇酮模拟水为研究对象,系统考察了芬顿法和湿式过氧化氢氧化法主要因素的影响规律,其中包括H2O2加量、pH值、Fe2+加量、反应时间等。通过单因素实验分别得到较优的反应条件。在较优条件下,芬顿法使醇酮模拟水的COD去除率达到73.40%,B/C由原来的0.15提高至0.30;湿式过氧化氢氧化法使醇酮模拟水的COD去除率达到73.12%,B/C提高到0.36。两种处理方法较大的提高了醇酮模拟水的可生化性,为后续的深度处理创造了条件。  相似文献   

18.
Regeneration studies of wastewater effluent from an organized industrial district (OID) for possible reuse in textile industry as process water was investigated. Advanced treatment methods including Fenton process, polyaluminium chloride (PAC) coagulation and ion exchange were applied on OID effluent. In Fenton process removal efficiencies for suspended solids (SS), chemical oxygen demand (COD), SAC436 (spectral absorption coefficient), SAC525 and SAC620 were determined 61%, 36%, 35%, 49% and 67%, respectively. After Fenton process, wastewater samples were coagulated with PAC. Optimum removal efficiencies for SS, COD, Fe ion, SAC436, SAC525 and SAC620 were determined 83%, 18%, 93%, 32%, 36% and 58%, respectively. Ion exchange experiments were conducted on chemically coagulated wastewater samples to improve the quality of wastewater. Optimum dosage of resins was determined. The experiments revealed that 1:1 resin ratio (20 mL H-type resin:20 mL OH-type resin) gave the best removal rates for the parameters considered in this study. Study results indicated that quality of the wastewater was suitable for the process water characteristics of textile industry and unit wastewater treatment cost was determined as 2.54 €/m3.  相似文献   

19.
GC-MS法测定垃圾填埋场渗滤液中的有机污染物   总被引:1,自引:0,他引:1  
刘田  孙卫玲  倪晋仁  周翠 《四川环境》2007,26(2):1-5,10
采用GC-MS联用技术对深圳市两个垃圾填埋场(A和B)渗滤液中的有机污染物进行分析。垃圾场A是简易生活垃圾填埋场,垃圾场B是生活垃圾焚烧底渣填埋场。垃圾场A渗滤液中COD、TOC、NH3-N、NO3^--N等污染指标的浓度比垃圾场B渗滤液高一个数量级。两个垃圾填埋场渗滤液中分别检测出主要有机物72种和57种,其中含有大量难降解有机物,如酚类、胺类、杂环类物质。两个垃圾填埋场渗滤液中有机物组分的相对含量不同,渗滤液A中酚类物质含量最高,渗滤液B中有机物多为长链烷烃。  相似文献   

20.
It was shown that the 4 Hz 30 dB mechanical vibration (MV) of physiological solution (PS) had modulation effect on snail heart contractility. However, the nature of metabolic pathway of MV-treated PS-induced effect is not clear yet. It was suggested that the MV-induced modulation of water molecules dissociation leads to the variation of reactive oxygen species’ level in cell bathing medium, which could serve as a messenger for switching on the metabolic pathway(s) responsible for modulation of muscle contractility. The aim of present work was to check this hypothesis and to elucidate the metabolic pathway through which the effect of MV-treated PS on heart contractility was realized. For this purpose, the effect of MV on heat fusion periods (HFP) and H2O2 content in PS, as well as on heart contractility, 45Ca2+ efflux, intracellular levels of cGMP and cAMP, muscle hydration, and ouabain binding were studied. It was shown that MV treatment of PS increased the HFP-(21.33 ± 4%) and decreased the H2O2 content-(5 ± 0.9%). The intracardiac perfusion by MV-treated PS increased the amplitudes of heart contractility, which was accompanied by the increasing of 45Ca2+ efflux (252.4 ± 16%), elevation of cGMP’s level (42.05 ± 7%), decreasing of cAMP’s level (82.67 ± 7%), increasing of the tissue hydration (18.64 ± 3%), and increasing of the number of ouabain binding sides (25 ± 4%). It was suggested that MV-induced increasing of heart muscle contraction amplitudes is due to the decreases of H2O2 content in the medium, which leads to the elevation of heart muscle contractility in result of activation of cGMP-dependent Na+/Ca2+ exchange in forward regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号