首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Interagency Monitoring of Protected Visual Environments (IMPROVE) particle monitoring network consists of approximately 160 sites at which fine particulate matter (PM2.5) mass and major species concentrations and course particulate matter (PM10) mass concentrations are determined by analysis of 24-hr duration sampling conducted on a 1-day-in-3 schedule A simple algorithm to estimate light extinction from the measured species concentrations was incorporated in the 1999 Regional Haze Rule as the basis for the haze metric used to track haze trends. A revised algorithm was developed that is more consistent with the recent atmospheric aerosol literature and reduces bias for high and low light extinction extremes. The revised algorithm differs from the original algorithm in having a term for estimating sea salt light scattering from Cl(-) ion data, using 1.8 instead of 1.4 for the mean ratio of organic mass to measured organic carbon, using site-specific Rayleigh scattering based on site elevation and mean temperature, employing a split component extinction efficiency associated with large and small size mode sulfate, nitrate and organic mass species, and adding a term for nitrogen dioxide (NO2) absorption for sites with NO2 concentration information. Light scattering estimates using the original and the revised algorithms are compared with nephelometer measurements at 21 IMPROVE monitoring sites. The revised algorithm reduces the underprediction of high haze periods and the overprediction of low haze periods compared with the performance of the original algorithm. This is most apparent at the hazier monitoring sites in the eastern United States. For each site, the PM10 composition for days selected as the best 20% and the worst 20% haze condition days are nearly identical regardless of whether the basis of selection was light scattering from the original or revised algorithms, or from nephelometer-measured light scattering.  相似文献   

2.
The 2017 revisions to the Regional Haze Rule clarify that visibility progress at Class I national parks and wilderness areas should be tracked on days with the highest anthropogenic contributions to haze (impairment). We compare the natural and anthropogenic contributions to haze in the western United States in 2011 estimated using the Environmental Protection Agency (EPA) recommended method and using model projections from the Comprehensive Air Quality Model with Extensions (CAMx) and the Particulate Source Apportionment Tool (PSAT). We do so because these two methods will be used by states to demonstrate visibility progress by 2028. If the two methods assume different natural and anthropogenic contributions, the projected benefits of reducing U.S. anthropogenic emissions will differ. The EPA method assumes that episodic elevated carbonaceous aerosols greater than an annual 95th percentile threshold are natural events. For western U.S. IMPROVE monitoring sites reviewed in this paper, CAMx-PSAT confirms these episodes are impacted by carbon from wildfire or prescribed fire events. The EPA method assumes that most of the ammonium sulfate is anthropogenic in origin. At most western sites CAMx-PSAT apportions more of the ammonium sulfate on the most impaired days to global boundary conditions and anthropogenic Canadian, Mexican, and offshore shipping emissions than to U.S. anthropogenic sources. For ammonium nitrate and coarse mass, CAMx-PSAT apportions greater contributions to U.S. anthropogenic sources than the EPA method assigns to total anthropogenic contributions. We conclude that for western IMPROVE sites, the EPA method is effective in selecting days that are likely to be impacted by anthropogenic emissions and that CAMx-PSAT is an effective approach to estimate U.S. source contributions. Improved inventories, particularly international and natural emissions, and further evaluation of global and regional model performance and PSAT attribution methods are recommended to increase confidence in modeled source characterization.

Implications: The western states intend to use the CAMx model to project visibility progress by 2028. Modeled visibility response to changes in U.S. anthropogenic emissions may be less than estimated using the EPA assumptions based on total U.S. and international anthropogenic contributions to visibility impairment. Additional model improvements are needed to better account for contributions to haze from natural and international emissions in current and future modeling years. These improvements will allow more direct comparison of model and EPA estimates of natural and anthropogenic contributions to haze and future visibility progress.  相似文献   


3.
Fine particulate matter (PM2.5) samples were simultaneously collected on Teflon and quartz filters between February 2010 and February 2011 at an urban monitoring site (CAMS2) in Dhaka, Bangladesh. The samples were collected using AirMetrics MiniVol samplers. The samples on Teflon filters were analyzed for their elemental composition by PIXE and PESA. Particulate carbon on quartz filters was analyzed using the IMPROVE thermal optical reflectance (TOR) method that divides carbon into four organic carbons (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. The data were analyzed by positive matrix factorization using the PMF2 program. Initially, only total OC and total EC were included in the analysis and five sources, including road dust, sea salt and Zn, soil dust, motor vehicles, and brick kilns, were obtained. In the second analysis, the eight carbon fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2, EC3) were included in order to ascertain whether additional source information could be extracted from the data. In this case, it is possible to identify more sources than with only total OC and EC. The motor vehicle source was separated into gasoline and diesel emissions and a fugitive Pb source was identified. Brick kilns contribute 7.9 μg/m3 and 6.0 μg/m3 of OC and EC, respectively, to the fine particulate matter based on the two results. From the estimated mass extinction coefficients and the apportioned source contributions, soil dust, brick kiln, diesel, gasoline, and the Pb sources were found to contribute most strongly to visibility degradation, particularly in the winter.

Implications: Fine particle concentrations in Dhaka, Bangladesh, are very high and cause significant degradation of urban visibility. This work shows that using carbon fraction data from the IMPROVE OC/EC protocol provides improved source apportionment. Soil dust, brick kiln, diesel, gasoline, and the Pb sources contribute strongly to haze, particularly in the winter.  相似文献   

4.
Canada has recently established standards for the management of particulate matter (PM) air quality. National networks currently measure PM mass concentrations and chemical speciation. Methods used in the U.S. IMPROVE network are applied to the 1994--2000 Canadian fine PM data to obtain a regional reconstruction of the visibility based on particle composition. Nationally, the greatest light extinction occurs in the Windsor-Quebec City corridor. Variations in the dominant chemical species responsible for the reduction in visibility are presented for regions across the country. In most regions, sulfate and nitrate contribute most greatly to reduced visibility. The visibility implications of achieving the Canada-Wide Standard (CWS) across the country are evaluated, with the greatest improvement in visibility associated with achieving the CWS in southern Ontario. Elsewhere in the country, achieving the CWS will actually result in deteriorating air quality. Improving current estimates of visibility requires higher spatially and temporally resolved measurements of organic and elemental carbon fractions and particulate nitrate.  相似文献   

5.
Protocols for the particulate matter (PM) National Ambient Air Quality Standards (NAAQS), and the Regional Haze Rule (RHR) give two complementary definitions for "natural" background airborne particle concentrations in the United States. The definition for the NAAQS derives largely from reported annual averages, whereas the definition for the RHR takes into account the frequency of occurrence of a range of visibility conditions estimated using fine particle composition. These definitions are simple, static representations of background or "unmanageable" aerosol conditions in the United States. An accumulation of data from rural-remote sites representing global conditions indicates that the airborne particle concentrations are highly variable. Observational campaigns show weather-related variations, including incidents of regional or intercontinental transport of pollution that influence background aerosol levels over midlatitude North America. Defining a background in North America based on long-term observations relies mainly on the remote-rural IMPROVE network in the United States, with a few additional measurements from Canada. Examination of the frequency of occurrence of mass concentrations and particle components provides insight not only about annual median conditions but also the variability of apparent background conditions. The results of this analysis suggest that a more elaborate approach to defining an unmanageable background could improve the present approach taken for information input into the U.S. regulatory process. An approach interpreting the continental gradients in fine PM (PM2.5) concentrations and composition may be warranted.  相似文献   

6.
Visibility: science and regulation   总被引:50,自引:0,他引:50  
The 1999 Regional Haze Rule provides a context for this review of visibility, the science that describes it, and the use of that science in regulatory guidance. The scientific basis for the 1999 regulation is adequate. The deciview metric that tracks progress is an imperfect but objective measure of what people see near the prevailing visual range. The definition of natural visibility conditions is adequate for current planning, but it will need to be refined as visibility improves. Emissions from other countries will set achievable levels above those produced by natural sources. Some natural events, notably dust storms and wildfires, are episodic and cannot be represented by annual average background values or emission estimates. Sulfur dioxide (SO2) emission reductions correspond with lower sulfate (SO4(2-)) concentrations and visibility improvements in the regions where these have occurred. Non-road emissions have been growing more rapidly than emissions from other sources, which have remained stable or decreased since 1970. Simpler models representing transport, limiting precursor pollutants, and gas-to-particle equilibrium should be used to understand where and when emission reductions will be effective, rather than large complex models that have insufficient input and validation measurements. Examples of model-based source attribution show large differences among estimates from various modeling systems and with ambient measurements.  相似文献   

7.
This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001-2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988-1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect.  相似文献   

8.
Abstract

This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001–2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988–1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect.  相似文献   

9.
Proposals from the European Commission have raised the possibility that Member States may be able to subtract the concentrations of natural components of airborne particulate matter from measured concentrations when evaluating compliance with EU Limit Values. By applying the pragmatic mass closure model [Harrison et al., 2003. A pragmatic mass closure model for airborne particulate matter at urban background and roadside sites. Atmospheric Environment 37, 4927–4933] to chemical composition data for PM10, it has been possible to estimate the concentrations of natural sea salt, strongly bound water and secondary organic carbon (which is assumed wholly biogenic) to the measured mass of PM10. Because of the difficulty in distinguishing between natural and anthropogenic crustal dusts, the contribution of natural windblown dust and soil has not been accounted for. When the natural components are estimated for two urban and one rural site in the UK, the long-term mean PM10 concentration is reduced by between 5.2 and 7.3 μg m−3. The number of exceedences of the 50 μg m−3 24-h limit value falls dramatically from 54 to 21 (from a total of 291 days) at an urban street canyon site, 7 to 3 (n=292 days) at an urban background site and from 8 to 0 (n=241 days) at a rural site when using gravimetric PM10 concentrations. The calculations have also been performed using PM10 concentrations measured by TEOM increased by a factor of 1.3 as recommended by the European Commission as an interim means of estimating gravimetric equivalency, and the number of exceedences of the 24-h limit value fell from 92 to 47 (from a total of 291 days) at the urban street canyon site, from 11 to 3 (n=292 days) at the urban background site and from 6 to 3 (n=241) at the rural site. Clearly, therefore, application of this proposed measure would make a very major difference to the likelihood of compliance or otherwise with the 24-h limit value for PM10.  相似文献   

10.
The chemical composition of marine aerosols as a function of their size is an important parameter for the evaluation of their impact on the global climate system. In this work we model fine particle organic matter emitted by sea spray processes and its influence on the aerosol chemical properties at the global scale using the off-line global Chemistry-Transport Model TM5. TM5 is coupled to a microphysical aerosol dynamics model providing size resolved information on particle masses and numbers. The mass of the emitted sea spray particles is partitioned between water insoluble organic matter (WIOM) and sea salt components in the accumulation mode using a function that relates the emitted organic fraction to the surface ocean chlorophyll-a concentrations. The global emission in the sub-micron size range of organic matter by sea spray process is 8.2 Tg yr?1, compared to 24 Tg fine yr?1 sea-salt emissions. When the marine sources are included, the concentrations of modelled primary particulate organic matter (POM) increase mainly over the oceans. The model predictions of WIOM and sea salt are evaluated against measurements carried out at Mace Head (Northern Hemisphere) and Amsterdam Island (Southern Hemisphere), showing that in clean marine conditions WIOM marine emissions contribute significantly to POM values.  相似文献   

11.
This study applies a methodology for discriminating local and external contributions of atmospheric particulate matter (PM) at a rural background station in the North-western coast of Spain. The main inputs at the nearest scale have come from soil dust, marine aerosol and road traffic. At a larger scale, the highest contributions have come from fossil-fuel combustion sources, giving rise to relatively high ammonium sulphate background levels, mainly in summer. External contributions from long-range transport processes of African dust and nitrate have been detected. Morocco and Western Sahara have been identified as the main potential source regions of African dust, with a higher content of Al and Ti than other crustal components. Geographical areas from central and Eastern Europe have been identified as potential sources of particulate nitrate. The discrimination of the PM contribution from natural and anthropogenic sources at different geographical scales is a necessary information for establishing PM reduction strategies in specific areas.  相似文献   

12.
The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM10 filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6?%. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.  相似文献   

13.
Abstract

Since 1990, basic knowledge of the “chemical climate” of fine particles, has greatly improved from Junge’s compilation from the 1960s. A worldwide baseline distribution of fine particle concentrations on a synoptic scale of approximately 1000 km can be estimated at least qualitatively from measurements. A geographical distribution of fine particle characteristics is deduced from a synthesis of a variety of disparate data collected at ground level on all continents, especially in the northern hemisphere. On the average, the regional mass concentrations range from 1 to 80 μg/m3, with the highest concentrations in regions of high population density and industrialization. Fine particles by mass on a continental and hemispheric spatial scale are generally dominated by non-sea salt sulfate (0.2 to ~20 μg/m3, or ~25%) and organic carbon (0.2->10 μg/m3, or ~25%), with lesser contributions of ammonium, nitrate, elemental carbon, and elements found in sea salt or soil dust. The crustal and trace metal elements contribute a varied amount to fine particle mass depending on location, with a larger contribution in marine conditions or during certain events such as dust storms or volcanic disturbances. The average distribution of mass concentration and major components depends on the proximity to areal aggregations of sources, most of which are continental in origin, with contributions from sea salt emissions in the marine environment. The highest concentrations generally are within or near very large population and industrial centers, especially in Asia, including parts of China and India, as well as North America and Europe. Natural sources of blowing dust, sea salt, and wildfires contribute to large, intermittent spatial-scale particle loadings beyond these ranges. A sampling of 10 megacities illustrates a range of characteristic particle composition, dependent on local and regional sources. Long-range transport of pollution from spatially aggregated sources over hundreds of kilometers creates persistent regional- and continental-scale gradients of mass concentration, sulfate, and carbon species especially in the northern hemisphere. Data are sparse in the southern hemisphere, especially beyond 45° S, but are generally very low in mass concentrations.  相似文献   

14.
Because the particulate organic carbon (OC) concentrations reported in U.S. Environment Protection Agency Speciation Trends Network (STN) data were not blank corrected, the OC blank concentrations were estimated using the intercept in particulate matter < or = 2.5 microm in aerodynamic diameter (PM2.5) regression against OC concentrations. The estimated OC blank concentrations ranged from 1 to 2.4 microg/m3 showing higher values in urban areas for the 13 monitoring sites in the northeastern United States. In the STN data, several different samplers and analyzers are used, and various instruments show different method detection limit (MDL) values, as well as errors. A comprehensive set of error structures that would be used for numerous source apportionment studies of STN data was estimated by comparing a limited set of measured concentrations and their associated uncertainties. To examine the estimated error structures and investigate the appropriate MDL values, PM2.5 samples collected at a STN site in Burlington, VT, were analyzed through the application of the positive matrix factorization. A total of 323 samples that were collected between December 2000 and December 2003 and 49 species based on several variable selection criteria were used, and eight sources were successfully identified in this study with the estimated error structures and min values among different MDL values from the five instruments: secondary sulfate aerosol (41%), secondary nitrate aerosol (20%), airborne soil (15%), gasoline vehicle emissions (7%), diesel emissions (7%), aged sea salt (4%), copper smelting (3%), and ferrous smelting (2%). Time series plots of contributions from airborne soil indicate that the highly elevated impacts from this source were likely caused primarily by dust storms.  相似文献   

15.
In 1997, the U.S. Environmental Protection Agency (EPA) revised its particulate matter standards to include an annual standard for fine particulate matter (PM2.5; 15 microg/m3) and a 24-hr standard (65 microg/m3). The 24-hr standard was lowered to 35 microg/m3 in 2006 in an effort to further reduce overall ambient PM2.5 concentrations. Identifying and quantifying sources of particulate matter affecting a particular location through source apportionment methods is now an important component of the information available to decision makers when evaluating the new standards. This literature compilation summarizes a subset of the source apportionment research and general findings on fine particulate matter in the eastern half of the United States using Positive Matrix Factorization. The results between studies are generally comparable when comparable datasets are used; however, methodologies vary considerably. Commonly identified source categories include: secondary sulfate/coal burning (sometimes over 50% of total mass), secondary organic carbon/mobile sources, crustal sources, biomass burning, nitrate, various industrial processes, and sea salt. The source apportionment tools and methodologies have passed the proof-of-concept stage and are now being used to understand the ambient composition of particulate matter for sites across the United States and the spatial relationship of sources to the receptor. Recommendations are made for further and standardized method development for source apportionment studies, and specific research areas of interest for the eastern United States are proposed.  相似文献   

16.
Windblown dust is known to impede visibility, deteriorate air quality and modify the radiation budget. Arid and semiarid areas with unpaved and unvegetated land cover are particularly prone to windblown dust, which is often attributed to high particulate matter (PM) pollution in such areas. Yet, windblown dust is poorly represented in existing regulatory air quality models. In a study by the authors on modeling episodic high PM events along the US/Mexico border using the state-of-the-art CMAQ/MM5/SMOKE air quality modeling system [Choi, Y.-J., Hyde, P., Fernando, H.J.S., 2006. Modeling of episodic particulate matter events using a 3D air quality model with fine grid: applications to a pair of cities in the US/Mexico border. Atmospheric Environment 40, 5181–5201], some of the observed PM10 NAAQS exceedances were inferred as due to windblown dust, but the modeling system was incapable of dealing with time-dependent episodic dust entrainment during high wind periods. In this paper, a time-dependent entrainment parameterization for windblown dust is implemented in the CMAQ/MM5/SMOKE modeling system with the hope of improving PM predictions. An approach for realizing windblown dust emission flux for each grid cell over the study domain on an hourly basis, which accounts for the influence of factors such as soil moisture content, atmospheric stability and wind speed, is presented in detail. Comparison of model predictions with observational data taken at a pair of US/Mexico border towns shows a clear improvement of model performance upon implementation of the dust emission flux parameterization.  相似文献   

17.
One of the major challenges facing the world today is defining paths to sustainable futures. Part of the challenge is developing a national energy strategy that promotes an adequate energy supply for the United States, while enhancing environmental quality and maintaining U.S. competitiveness in the world economy. To assist in this challenge, we have developed a screening technique to analyze the effectiveness of different proposed emissions reduction strategies. The technique, referred to as the visibility assessment screening technique (VAST), is designed to examine possible impacts on visibility of emission changes of sulfur oxides, nitrogen oxides, volatile organic compounds (i.e., SO2, NOx, and VOC) and fine and coarse particulate matter (PM). The influence of relative humidity, natural aerosols, and the chemical interconnections among sulfur and nitrogen components of aerosols in determining the effectiveness of Clean Air Act Amendment and other projected energy-related emissions changes on eastern and western visibility are explored. The effectiveness of these strategies on particulate matter impacts and potentially on ozone is also noted.  相似文献   

18.
Trends in fine particulate matter <2.5 microm in diameter (PM2.5) and visibility in the Southeastern United States were evaluated for sites in the Interagency Monitoring of Protected Visual Environments, Speciated Trends Network, and Southeastern Aerosol Research and Characterization Study networks. These analyses are part of the technical assessment by Visibility Improvement-State and Tribal Association of the Southeast (VISTAS), the regional planning organization for the southeastern states, in support of State Implementation Plans for the regional haze rule. At all of the VISTAS IMPROVE sites, ammonium sulfate and organic carbon (OC) are the largest and second largest contributors, respectively, to light extinction on both the 20% haziest and 20% clearest days. Ammonium nitrate, elemental carbon (EC), soils, and coarse particles make comparatively small contributions to PM2.5 mass and light extinction on most days at the Class I areas. At Southern Appalachian sites, the 20% haziest days occur primarily in the late spring to fall, whereas at coastal sites, the 20% haziest days can occur through out the year. Levels of ammonium sulfate in Class I areas are similar to those in nearby urban areas and are generally higher at the interior sites than the coastal sites. Concentrations of OC, ammonium nitrate, and, sometimes, EC, tend to be higher in the urban areas than in nearby Class I areas, although differences in measurement methods complicate comparisons between networks. Results support regional controls of sulfur dioxide for both regional haze and PM2.5 implementation and suggest that controls of local sources of OC, EC, or nitrogen oxides might also be considered for urban areas that are not attaining the annual National Ambient Air Quality Standard for PM2.5.  相似文献   

19.
Abstract

Because the particulate organic carbon (OC) concentrations reported in U.S. Environment Protection Agency Speciation Trends Network (STN) data were not blank corrected, the OC blank concentrations were estimated using the intercept in particulate matter ≤2.5 µm in aerodynamic diameter (PM2.5) regression against OC concentrations. The estimated OC blank concentrations ranged from 1 to 2.4 μg/m3 showing higher values in urban areas for the 13 monitoring sites in the northeastern United States. In the STN data, several different samplers and analyzers are used, and various instruments show different method detection limit (MDL) values, as well as errors. A comprehensive set of error structures that would be used for numerous source apportionment studies of STN data was estimated by comparing a limited set of measured concentrations and their associated uncertainties. To examine the estimated error structures and investigate the appropriate MDL values, PM2.5 samples collected at a STN site in Burlington, VT, were analyzed through the application of the positive matrix factorization. A total of 323 samples that were collected between December 2000 and December 2003 and 49 species based on several variable selection criteria were used, and eight sources were successfully identi?ed in this study with the estimated error structures and min values among different MDL values from the ?ve instruments: secondary sulfate aerosol (41%), secondary nitrate aerosol (20%), airborne soil (15%), gasoline vehicle emissions (7%), diesel emissions (7%), aged sea salt (4%), copper smelting (3%), and ferrous smelting (2%). Time series plots of contributions from airborne soil indicate that the highly elevated impacts from this source were likely caused primarily by dust storms.  相似文献   

20.
Air quality field data, collected as part of the fine particulate matter Supersites program and other field measurements programs, have been used to assess the role of aerosol transport, over length scales of approximately 100-1000 km, on fine particulate matter concentrations. Assessment of data from New York, NY; Baltimore, MD; Pittsburgh, PA; Atlanta, GA; Houston, TX; St. Louis, MO; and Fresno, CA, indicates that in virtually all of the regions, transport of aerosol over distances of 100-1000 km has a significant impact on urban particulate matter concentrations and a dominant role in determining rural particulate matter concentrations, though the nature of the regional contributions differs from region to region. This assessment is generally consistent with previous conceptual models of fine particulate matter formation and accumulation in these regions. The nature of the transported aerosol is largely sulfate in Eastern and Midwestern cities and nitrate in the Central Valley of California. In addition to physical transport of aerosol over distances of 100-1000 km, regional transport of aerosol precursors may lead to conditions conducive to large-scale nucleation events. Regional nucleation events have been reported in the East, Midwest, and in California. The events occurred in the morning soon after surface layers coupled with layers aloft, and the events generate ultrafine particles. In some cases, these nucleation events have been correlated with availability of sulfur dioxide and, therefore, may be sulfate formation events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号