首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
三峡水库支流汝溪河河口水体汞的时空变化特征   总被引:2,自引:2,他引:0  
为探究三峡水库水位调度过程中支流河口汞的变化特征,选取三峡库区腹心地带的典型支流汝溪河河口为研究区域,设置4个断面,分别于蓄水期(9~10月)、淹没期(11~12月)、退水期(2~3月)及落干期(5~6月)这4个时期分层采集水样,分析了水样中的总汞(THg)、颗粒态汞(PHg)、溶解态汞(DHg)、活性汞(RHg)、总甲基汞(TMeHg)及溶解态甲基汞(DMeHg).结果表明,汝溪河口区域THg和TMeHg的质量浓度与中国其它水库或天然水体相接近.不同深度水体中DHg和TMeHg的质量浓度存在显著性差别,其原因是水体中的DHg和TMeHg可能来源于沉积物的再悬浮.对比同时期不同断面各形态汞质量浓度的差别,发现蓄水期长江干流来水方向的不同将导致河口区域THg和PHg的质量浓度分布不均;退水期河口水体中的颗粒物会吸附并携带大量的PHg,导致水体中THg的质量浓度明显高于其它时期.水位较为稳定的淹没期和落干期TMeHg的质量浓度明显高于其它两个时期,表明稳定的水位可能更有利于水体中甲基汞的积累,而水体的剧烈扰动会明显降低水体中TMeHg的质量浓度.  相似文献   

2.
于2018年6月在东海开展航次调查,测定了水体中溶解气态汞(dissolved gaseous mercury,DGM)、活性汞(reactive Hg,RHg)、总汞(total Hg,THg)及溶解态汞(dissolved Hg, DHg)浓度,探究了夏季东海水体中DGM和RHg的分布特征及其控制因素。结果表明,东海水体DGM和RHg浓度分别为(151.3±75.9 )pg/L和(0.8±0.7) ng/L,DGM/THg、DGM/RHg和RHg/THg的数据分别为(4.5±2.5)%、(26.7±15.0)%和(21.6±14.8)%。与其他海洋体系相比,东海水体中DGM和RHg浓度显著高于多数大洋水体,低于或接近其他近海报道结果。空间分布上,东海水体DGM和RHg均呈现出相对复杂的分布趋势,在近岸浅层水、外海浅层及深层水中均存在明显的高值区,表明其可能受陆源输入和原位生成/去除过程共同控制。垂直分布上,底层水中DGM和RHg浓度相对较低,其他水层无显著差异。不同水层THg和DHg调查数据显示东海底层水中虽然THg浓度最高,但DHg相对其他水层浓度略低,这可能是导致底层水中RHg和DGM较低的主要原因。Spearman相关性分析和多元回归分析结果表明,RHg浓度和溶解氧(dissolved oxygen,DO)含量是影响海水中DGM浓度的关键控制因素,而DO含量是影响海水中RHg浓度的关键控制因素。  相似文献   

3.
三峡库区典型农田小流域水体汞的时空分布特征   总被引:10,自引:9,他引:1  
王娅  赵铮  木志坚  王定勇 《环境科学》2014,35(11):4095-4102
以三峡库区典型农田小流域——重庆涪陵王家沟为对象,分别于2012年11月~2013年9月对流域内不同类型水体总汞(THg)和总甲基汞(TMeHg)含量进行为期1 a的监测,探讨汞在农田流域水体中的时空分布特征.结果表明,流域内水体THg、TMeHg浓度范围分别为1.12~64.04 ng·L-1、0(未检出)~4.24 ng·L-1,均值分别为(13.54±10.55)ng·L-1、(0.22±0.42)ng·L-1,各类型水体THg均以颗粒态为主,雨水和池塘水TMeHg以颗粒态为主,井水和沟渠水则相反.在空间分布上,THg表现为雨水最高,池塘次之,井水最低,W2井相较于其他井THg浓度最高,各沟渠点水体THg浓度差异不大;TMeHg表现为沟渠水最高,池塘次之,井水最低,井水TMeHg浓度下游大于上游,各沟渠点水体TMeHg浓度差异大,甲基化率为沟渠水>池塘水>井水>雨水.在时间变化上,各类型水体THg浓度均表现为冷季高于暖季,TMeHg浓度则因水体类型而异.综合分析发现雨水是流域内汞的重要来源;农田流域颗粒物的迁移是汞、甲基汞迁移的主要途径,地表径流是影响流域对水库汞负荷贡献量的重要因素.  相似文献   

4.
为弄清水库沉积物间隙水中汞及甲基汞的分布及扩散特征,于2009年春、夏两季对东风水库进行了采样,分别采用两次金汞齐-CVAFS法和蒸馏-乙基化结合GC-CVAFS法测定沉积物间隙水中溶解态(DHg)和甲基汞(DMeHg)浓度。结果表明夏季沉积物间隙水DHg浓度远高于春季,而DMeHg浓度却略低于春季;沉积物间隙水中DHg和DMeHg均有向上覆水体扩散的趋势,其夏季扩散通量高于春季;间隙水中DMeHg对上覆水体的贡献率大于DHg,最高可达30%,再次证明了沉积物间隙水中的DMeHg是其上覆水体的重要来源。  相似文献   

5.
为探讨营养状态对太湖沉积物汞的分布及其甲基化的影响,以太湖不同营养水平的湖区为研究对象,采用PSA和GC-CVAFS方法,分别测定了沉积物总汞(THg)、甲基汞(MeHg)含量;另测定了沉积物有机质含量和水体总氮、总磷浓度.结果显示,太湖表层沉积物THg含量为32.30~150.28ng/g,均值为62.94ng/g,含量高低与营养化程度一致,其垂向分布主要受到人为活动和有机质的影响;MeHg含量为0.32~1.01ng/g,均值为0.51ng/g,不同营养水平的湖湾区MeHg含量差别不大,其分布受有机质的影响,高含量富集在表层,随深度的增加逐渐降低并趋于稳定;甲基化比率比较低主要是太湖水体溶解氧含量高抑制了甲基化过程.  相似文献   

6.
重庆缙云山降水中不同形态汞的含量及其沉降量   总被引:3,自引:3,他引:0  
于2013年4月至2014年3月连续1 a,利用湿沉降自动采样器采集了重庆缙云山的雨水样品,分析了样品中不同形态汞的含量,并计算其沉降量.结果表明,降水中总汞(THg)、溶解态汞(DHg)、颗粒态汞(PHg)、活性汞(RHg)、总甲基汞(Me Hg)、溶解态甲基汞(DMe Hg)、颗粒态甲基汞(PMe Hg)的含量范围分别为7.47~120.11、2.51~43.03、2.28~77.99、0.14~15.14、2.58×10-2~101.62×10-2、0.30×10-2~72.29×10-2、1.45×10-2~63.55×10-2ng·L-1.在计算各形态汞体积加权平均含量(VWM)的基础上,分别算出其年沉降通量为:42.71、23.51、19.20、5.87、0.61、0.34、0.27μg·(m2·a)-1.Me Hg占THg的比例是0.07%~3.79%(平均1.34%),而PHg占THg的比例以及PMe Hg占Me Hg的比例分别是10.49%~89.30%(平均49.95%)、4.31%~98.86%(平均43.14%).除Me Hg外,其它形态汞的含量和沉降量都表现出了明显的季节变化特征,THg、DHg、PHg的含量均为冬季最高而夏季最低,RHg的含量在春冬季明显高于秋夏季.THg、DHg、Me Hg、DMe Hg的沉降量与降雨量具有相同的季节变化趋势,均为春季夏季秋季冬季,RHg的沉降量也是春季最大,而冬季最小.缙云山大气汞沉降不仅受到降雨量、降雨频率以及其它气象条件的影响,也受到了人为活动的干扰.  相似文献   

7.
为研究太湖湖滨带水体藻密度、水质及风作用的时空分布特征,于2010年春、夏季调查了太湖湖滨带的水质、藻密度,同时结合风级、风向等数据,运用偏相关法分析了藻密度分布与水质、风作用的相关关系. 结果表明:春季湖滨带水体藻密度低于夏季,平均值分别为1.88×106、1.75×108 L-1,竺山湾、梅梁湾、西部沿岸藻密度较高. 太湖湖滨带水体ρ(TP)、ρ(TN)、ρ(NO3--N)、ρ(NH3-N)、ρ(CODMn)春季平均值分别为0.10、4.48、0.99、2.36、6.46mg/L ,夏季分别为0.16、2.09、0.60、0.43、6.73mg/L,其中高值主要分布在竺山湾、西部沿岸、梅梁湾湖滨带;在时间上,ρ(TN)、ρ(NH3-N)、ρ(DO)春季较高;ρ(TP)、pH夏季较高. 太湖湖滨带春、夏季风作用均以向岸的正作用力为主,夏季和春季风力作用平均值分别为0.26和0.73.风作用值较高的区域出现在梅梁湾、贡湖、西部沿岸. 偏相关分析结果表明:春、夏季藻密度分布均与风作用值呈显著正相关;春季只有透明度与藻密度的分布显著相关,夏季藻密度分布与ρ(CODMn)、ρ(SS)呈显著性正相关,而与pH呈显著负相关. 在富营养化严重的太湖,N、P等营养盐已经不再是藻类暴发的限制因子,而风作用及与之密切相关的湖流,北部竺山湾、梅梁湾似口袋状的地理形态,是影响藻密度分布的重要因素;另外,入湖河流污染对北部、西北部湖滨带自生藻类的滋生,水生植物、浮游动物对藻类分布也会有不同程度的影响.   相似文献   

8.
太湖北部不同湖区春、夏季溶解性酸性多糖分布   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究太湖dAPS(dissolved acidic polysaccharides,溶解性酸性多糖)的时空变化,探讨湖泊水体中dAPS对有机碳的贡献和重要性,于2012年春、夏季调查了太湖北部不同湖区(竺山湾、梅梁湾、贡湖湾、湖心区)水体中ρ(dAPS),分析了其时空变化特征及其与ρ(Chla)之间的关系,并探讨了不同湖湾中dAPS对DOC(溶解性有机碳)的贡献率. 结果表明,太湖北部水体中ρ(dAPS)春、夏季变化范围为3.02~9.93mg/L,平均值为(6.10±1.59) mg/L. 夏季太湖北部各湖区之间ρ(dAPS)没有显著性差异,春季梅梁湾中ρ(dAPS)显著高于湖心区(P<0.05),其他湖区并没有显著性差异. 春、夏两季ρ(dAPS)的最低值均出现在湖心区. 除贡湖湾外,夏季太湖北部各湖区ρ(dAPS)与ρ(Chla)都存在显著线性正相关,而春季各湖区则无显著线性关系. 这说明春、夏季dAPS的受控因素不一样,夏季ρ(dAPS)受藻类影响较大. 夏季各湖区dAPS对DOC的贡献率以贡湖湾最高,平均值高达46.7%±7.7%,春季则以梅梁湾的贡献率较高,平均值为68.6%±5.9%,这意味着dAPS在太湖水体有机碳循环中起着重要的作用.   相似文献   

9.
于2012年11~12月采集贵州不同营养状况的6座水库——三板溪水库、龙滩水库、万峰湖水库、百花湖水库、红枫湖水库和阿哈水库水样,分析水体中汞的形态分布及与水体富营养化之间的关系,探讨水体汞形态及其分布特征对水体富营养化的响应.结果表明:6座水库总汞浓度的平均值为(5.82±4.99)ng/L,其中在阿哈水库的库中和百花湖水库的岩脚寨采样点存在不同于其它点的局部污染源;MeHg浓度平均值为(0.08±0.07)ng/L,阿哈水库的MeHg浓度较高是其它水库的2~10倍,约为0.26ng/L.在枯水期,贵州6座水库的富营养化程度不同,其中三板溪水库和龙滩水库为表现为贫营养型;万峰湖水库表现为为贫中营养型;百花湖水库和红枫湖水库表现为为中富营养型;阿哈水库为富营养型.富营养化指数与总汞、甲基汞和溶解态甲基汞皆呈显著正相关(r=0.477,P<0.05; r=0.558, P<0.05;r =0.502, P< 0.05, n=19).富营养化对水库生态系统中形态汞之间的迁移和转化有着重要影响,为溶解态汞和甲基汞的生成提供了有利条件,对水体中汞的地球化学循环的影响不可忽视.  相似文献   

10.
三峡库区消落带落干期植被生长茂盛,蓄水后消落带被淹没,土壤-植物系统在长时间淹水情况下,随着体系内物理化学性质的改变,汞形态也会发生变化,从而对库区水生生态系统中汞含量以及形态带来一定的影响.为此,本研究选取三峡库区4种优势植物室内栽培,再进行室内模拟淹水试验,研究淹水后土壤、水体中甲基汞(Me Hg)以及其他形态汞的变化.结果表明,淹水过程中植物的存在有利于土壤Me Hg的生成,同时对上覆水不同形态汞浓度影响显著.狗牙根作为消落带优势种,由于其体内总汞及甲基汞含量较高,淹水后对土壤以及上覆水系统中甲基汞以及其他汞形态的影响最为明显.淹水第90 d,狗牙根+土+江水(B1)处理土壤Me Hg的含量最高,为(1 135.86±113.84)ng·kg~(-1),是不加植物的对照处理土+江水(CK2)中土壤Me Hg含量的2倍左右;上覆水总甲基汞(TMe Hg)、溶解态甲基汞(DMe Hg)、总汞(THg)、溶解态汞(DHg)和活性汞(RHg)均呈峰值偏左的抛物线状变化,在第30 d时达到峰值,其中B1处理上覆水TMe Hg、THg和DHg最高,分别为(2.88±0.06)、(40.29±2.42)和(35.51±3.77)ng·L~(-1),三者中溶解态汞是其主要存在形式.因此可以推测三峡库区消落带植物淹水后将增加水库汞污染负荷.  相似文献   

11.
张翔  张成  孙荣国  王定勇 《环境科学》2014,35(12):4560-4566
被淹没的植物是水库甲基汞异常升高的来源之一.为探寻淹水条件下三峡水库消落带植物中汞的动态变化特征及其对水体的影响,通过室内模拟试验,研究淹水条件下稗草、狗牙根、玉米秸秆中汞含量变化及其向水体释汞情况.结果表明,3种植物总汞含量范围为9.21~12.07 ng·g-1,甲基汞占总汞的质量分数约为1%~2%.淹水后,植物总汞含量逐渐降低,其降幅为35.81%~55.96%;而上覆水溶解态汞(DHg)浓度迅速上升,增幅为103.23%~232.15%,说明植物腐烂分解会向水体释放汞.淹水环境为植物体组织内甲基化提供了充裕条件,导致植物残体甲基汞含量升高,为初始含量的3.04~6.63倍,而上覆水溶解态甲基汞(DMe Hg)浓度也显著升高,为初始浓度的14.84~16.05倍.淹水期间,上覆水中DMe Hg与溶解氧(DO)浓度表现为极显著负相关,与可溶性有机碳(DOC)浓度存在显著正相关.而在整个淹水过程中,上覆水DHg浓度变化量为植物总汞释放量的41.74%~47.01%,且各植物残体总汞含量与上覆水DHg浓度存在极显著负相关.  相似文献   

12.
为了解不同耕作方式对稻田中甲基汞的影响,在免耕冬水、垄作免耕、厢作免耕、水旱轮作和常规平作等5种耕作方式的长期定位试验地,分层采集土壤和上覆水样品,分析了汞及甲基汞的垂直分布特征.结果表明,免耕冬水、垄作免耕以及厢作免耕条件下土壤总汞含量在10~20 cm层最高,其中免耕冬水富集效果相对明显;而水旱轮作和常规平作处理则随土层加深呈下降趋势,其中水旱轮作更有利于汞的迁移转化.免耕冬水、厢作免耕、常规平作土壤甲基汞含量在剖面的分布规律与土壤总汞类似,除水旱轮作土壤汞甲基化能力在底层比表、中层较强外,其余4种处理则相反.5种耕作方式下稻田上覆水中溶解态汞(DHg)和溶解态甲基汞(DMe Hg)含量均随水深而增加,且水旱轮作和常规平作相对较高.各处理孔隙水中DHg含量与该层次土壤总汞含量有关,两者在土壤剖面上的波动趋势基本相同.免耕冬水、垄作免耕的孔隙水中DMe Hg含量及DMe Hg占DHg比例均在10~20 cm层出现最大值.水旱轮作和常规平作的孔隙水DMe Hg含量则相反,在10~20 cm层有最低值,两种处理的DMe Hg占DHg比例随土壤深度增加而上升.不同处理孔隙水中DMe Hg含量及DMe Hg占DHg比例均大于对应处理上覆水的值.  相似文献   

13.
春季胶州湾海水汞的形态研究   总被引:1,自引:1,他引:0  
于2010-04对胶州湾进行定点连续采样,采用现场和室内分离测定的方法,分析了海水中汞的形态及其日变化特征,以进一步认识汞在近海环境中的归宿和环境效应.结果表明,胶州湾表层海水中溶解态元素汞(DEM)浓度为97.5 pg.L-1(38.2~156 pg.L-1),最高值和最低值分别出现在13:00和17:30,主要受潮汐和光照的影响.DEM含量随深度的增加而下降,表层海水DEM主要来源于Hg(Ⅱ)的光致还原.活性汞(RHg)、溶解态汞(DHg)浓度分别为7.94 ng.L-1(4.39~19.3 ng.L-1)和13.9 ng.L-1(7.32~49.1 ng.L-1),均在13:00出现最大值,主要是受潮汐带来污染较重的海水的影响.活性汞和溶解态汞浓度随水深变化的趋势相似,受到光照和水温的影响,表层海水活性汞占溶解态汞的比例最大.海水中活性汞平均占溶解态汞的62%,具有相对较高的活性和生物可利用性,为DEM的形成提供了条件.甲基汞(MeHg)浓度较低,平均为0.30 ng.L-1,部分未检出.  相似文献   

14.
乌江流域大气降雨中不同形态汞的时空分布   总被引:6,自引:0,他引:6  
2006年1~12月测定了乌江流域5个水库库区大气降雨中不同形态汞的浓度.结果表明,总汞、溶解态汞、颗粒态汞、活性汞、甲基汞的浓度范围分别为7.49~149.13ng·L-1、1.23~10.02ng·L-1、5.76~141.92ng·L-1、0.56~2.94ng·L-1、0.082~0.821ng·L-1.降雨中颗粒态汞为主要形态,约占总汞比例的67.6%~96.1% (平均87%),活性汞、甲基汞占总汞的比例分别为5.1%和0.68%.除活性汞外,其它形态汞的浓度存在明显的季节变化趋势,冬春季的浓度明显高于夏秋季,而不同形态汞的空间分布特征不明显.降雨中汞的浓度主要受降雨量及燃煤等人为活动的影响.  相似文献   

15.
于2015年3月29日至5月6日乘东方红2号从青岛前往西北太平洋,采用现场测定与室内分析结合的方法分析了黄海到西北太平海域表层海水中Hg形态及分布特征,以认识黄海到西北太平洋海水Hg的含量及区域Hg的迁移。黄海-西北太平洋表层海水中总汞(THg,total mercury)变化范围为0.11~2.50 ng/L,平均为0.75±0.51 ng/L,THg的含量呈近海高大洋低;表层海水中活性汞(RHg,reactive mercury)范围为0.10~1.45 ng/L,平均为0.33±0.24 ng/L,RHg/THg平均为48.4%,海水中RHg与水温呈显著性正相关(r=0.494*,P=0.045);表层海水中溶解性气态汞(DGM,dissolved gaseous mercury)的含量为11.7~105.7 pg/L,平均浓度39.6±22.9 pg/L。海水中DGM与气温呈显著正相关(r=0.633*,P=0.011),与风速呈显著负相关关系(r=-0.660**,P=0.006)。从黄海到西北太平洋DGM含量逐渐升高,其日变化呈现白天高夜晚低的趋势,主要受光照的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号