首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A numerical analysis using a regional chemical transport model (CTM) is presented in comparison with Global Ozone Monitoring Experiment (GOME) and SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) satellite NO2 measurements over East Asia from 1996 to 2005 from a climatological perspective. Modeling results agree well with satellite retrievals in geographical distribution patterns, with systematic underestimation of the absolute values. The sharp increase in NO2 vertical column densities (VCDs) over central east China (CEC) after the year 2000 (14.1–20.5% yr−1 for the satellite observations and 10.8% yr−1 for model simulations) is analyzed quantitatively over different megacity clusters. The distinct emission increase patterns are responsible for the different increase trends observed over the Beijing megacity cluster (BJ), the Yangtze Delta (YD) and other CEC regions. The growth rate of satellite measured and CMAQ-modeled NO2 VCDs for the YD is much higher than that in other regions, with no clear seasonal variation. Apart from BJ and YD, NO2 emissions from other regions in CEC also expand considerably.  相似文献   

2.
A four-dimensional variational data assimilation system for optimization of NOx emissions (RC4-NOx) was developed. A parameterized NOx chemistry scheme was introduced into the RC4-NOx system, and key parameters such as chemical production and loss terms of NOx were calculated in advance using the Community Multiscale Air Quality (CMAQ) modeling system. RC4-NOx was applied to optimize NOx emissions over eastern China (EC) in July 1996, 1999, and 2002 using Global Ozone Monitoring Experiment (GOME) satellite observations of NO2 vertical column densities (VCDs) and a priori emissions from the Regional Emission Inventory in Asia (REAS). After assimilation, RC4-NOx generally reproduced the spatial distribution, regional averaged values, and time evolution of GOME NO2 VCDs. Over EC, a priori emissions were reduced by 20% in 1996 and by 8% in 1999, whereas a posteriori emissions were almost the same as a priori emissions in 2002. A priori emissions in the Beijing region were reduced by optimization over the whole simulation period. A posteriori emissions over the Yangtze Delta were larger than a priori emissions in 2002, although they were smaller in both 1996 and 1999. As in other areas, a priori emissions over the North China Plain were reduced in 1996; but those over the eastern part of the plain were increased in 1999, and the area of increased emissions moved slightly westward in 2002. In each region, the growth rates of a posteriori emissions during both 1996–1999 and 1999–2002 became generally larger than those of a priori emissions, and the trends of a posteriori emissions became similar to those of GOME NO2 VCDs. Our inverse modeling analysis indicates that the rate of increase of NOx emissions over EC from 1996 to 2002 was much larger for a posteriori emissions (49%) than for a priori emissions (19%).  相似文献   

3.
The behaviour of ozone (O3) and two important precursors, nitrogen dioxide (NO2) and formaldehyde (HCHO), over the East Mediterranean in spring from 1996 to 2002 is studied in order to characterise the buildup of tropospheric O3. The vertical distribution of O3 observed over Crete during the Photochemical Activity and Solar Ultraviolet Radiation (PAUR II) campaign in May 1999 has been used for validation of satellite-derived data. Retrievals of O3 columns from measurements of backscattered radiation by Global Ozone Monitoring Experiment (GOME) are compared with Total Ozone Mapping Spectrometer (TOMS), balloon, Systeme d’Analyse par Observation Zenithale (SAOZ) and LIDAR observations. The total O3 vertical columns vary between 270 and 402 DU and correlate well with changes in air circulation patterns. The total observed variability in tropospheric O3 is about 25 DU. Chemical box model calculations associate the GOME-observed NO2 and HCHO tropospheric columns with a potential of daily photochemical enhancement in the tropospheric O3 columns of about 0.8–1 DU over Crete and estimate the daily potential of regional photochemical buildup within upwind polluted air masses at about 2–8 DU. A Langrangian analysis attributes at most 10–20 DU of tropospheric O3 to stratosphere–troposphere exchange (STE). The remainder is attributed to long-range transport of O3 from industrial regions in Central Europe. From 1996 to 2002, in May no significant inter-annual variation in the tropospheric NO2 and HCHO columns over Crete has been observed by GOME suggesting no detectable increase in regionally produced tropospheric O3.  相似文献   

4.
We assessed satellite derived tropospheric NO2 distribution on a global scale and identified the major NO2 hotspot regions. Combined GOME and SCIAMACHY measurements for the period 1996-2006 have been used to compute the trends over these regions. Our analysis shows that tropospheric NO2 column amounts have increased over the newly and rapidly developing regions like China (11 ± 2.6%/year), south Asia (1.76 ± 1.1%/year), Middle East (2.3 ± 1%/year) and South Africa (2.4 ± 2.2%/year). Tropospheric NO2 column amounts show some decrease over the eastern US (−2 ± 1.5%/year) and Europe (0.9 ± 2.1%/year). We found that although tropospheric NO2 column amounts decreased over the major developed regions in the past decade, the present tropospheric NO2 column amounts over these regions are still significantly higher than those observed over newly and rapidly developing regions (except China). Tropospheric NO2 column amounts show some decrease over South America and Central Africa, which are major biomass burning regions in the Southern Hemisphere.  相似文献   

5.
Sub-regional and sector level distribution of SO2 and NOx emissions inventories for India have been estimated for all the 466 Indian districts using base data for years 1990 and 1995. Although, national level emissions provide general guidelines for assessing mitigation alternatives, but significant regional and sectoral variability exist in Indian emissions. Districts reasonably capture this variability to a fine grid as 80% of these districts are smaller than 1°×1° resolution with 60% being smaller than even 1/2°×1/2°. Moreover, districts in India have well-established administrative and institutional mechanisms that would be useful for implementing and monitoring measures. District level emission estimates thus offer a finer regional scale inventory covering the combined interests of the scientific community and policy makers. The inventory assessment methodology adopted is similar to that prescribed by the Intergovernmental Panel on Climate Change (IPCC) for greenhouse gas (GHG) emissions. The sectoral decomposition at district level includes emissions from fossil fuel combustion, non-energy emissions from industrial activities and agriculture. Total SO2 and NOx emissions from India were 3542 and 2636 Gg, respectively (1990) and 4638 and 3462 Gg (1995) growing at annual rate of around 5.5%. The sectoral composition of SO2 emissions indicates a predominance of electric power generation sector (46%). Power and transport sector emissions equally dominate NOx emissions contributing nearly 30% each. However, majority of power plants are situated in predominantly rural districts while the latter are concentrated in large urban centers. Mitigation efforts for transport sector NOx emissions would therefore be higher. The district level analysis indicates diverse spatial distribution with the top 5% emitting districts contributing 46.5 and 33.3% of total national SO2 and NOx emissions, respectively. This skewed emission pattern, with a few districts, sectors and point sources emitting significant SO2 and NOx, offers mitigation flexibility to policy makers for cost-effective mitigation.  相似文献   

6.
Nitrogen oxides emissions in Asia during the period 1990–2020 due to anthropogenic activity are presented. These estimates are based on the RAINS-ASIA methodology (Foell et al., 1995, Acid Rain and Emission Reduction in Asia, World Bank), which includes a dynamic model for energy forecasts, and information on 6 energy sectors and 9 fuel types. The energy forecasts are combined with process emission factors to yield NOx emission estimates at the country level, the regional level, and on a 1 degree by 1 degree grid. In 1990 the total NOx emissions are estimated to be ∼19 Tg NO2, with China (43%), India (18%) and Japan (13%) accounting for 75% of the total. Emissions by fuel are dominated by burning of hard coal and emissions by economic activity are dominated by the power, transport, and industrial sectors. These new estimates of NOx emissions are compared with those published by Hameed and Dignon (1988, Atmospheric Environment 22, 441–449) and Akimoto and Narita (1994, Atmospheric Environment 28, 213–225). Future emissions under a no-further-control scenario are also presented. During the period 1990–2020 the NOx emissions increase by 350%, to ∼86 Tg NO2. The increase in NOx emissions by sector and end-use varies between countries, but in all countries this increase is strongest in the power and transport sectors. These results highlight the dynamic nature of energy use in Asia, and the need to take the rapid growth in NOx emissions in Asia into account in studies of air pollution and atmospheric chemistry.  相似文献   

7.
Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality.The air quality improvement that would result from the targeted sulfur dioxide (SO2) and nitrogen oxides (NOx) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30–60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM2.5 can also decline by 3–15 μg m?3 (4–25%) due to the lower SO2 and sulfate concentrations. If similar controls are implemented for NOx emissions, NOx concentrations are estimated to decrease by 30–60% as compared with the 2010 BAU scenario. The annual mean PM2.5 concentrations will also decline by 2–14 μg m?3 (3–12%). In addition, the number of ozone (O3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O3 concentrations in the summer reduced by 8–30 ppb.  相似文献   

8.
Mixing in the planetary boundary layer (PBL) affects vertical distributions of air tracers in the lower troposphere. An accurate representation of PBL mixing is critical for chemical-transport models (CTMs) for applications sensitive to simulations of the vertical profiles of tracers. The full mixing assumption in the widely used global CTM GEOS-Chem has recently been supplemented with a non-local PBL scheme. This study analyzes the impact of the non-local scheme on model representation of PBL mixing, consequences for simulations of vertical profiles of air tracers and surface air pollution, and implications for model applications to the interpretation of data retrieved from satellite remote sensing. The non-local scheme significantly improves simulations of the vertical distributions for NO2 and O3, as evaluated using aircraft measurements in summer 2004. It also reduces model biases over the U.S. by more than 10 ppb for surface ozone concentrations at night and by 2–5 ppb for peak ozone in the afternoon, as evaluated using ground observations. The application to inverse modeling of anthropogenic NOx emissions for East China using satellite retrievals of NO2 from OMI and GOME-2 suggests that the full mixing assumption results in 3–14% differences in top–down emission budgets as compared to the non-local scheme. The top–down estimate combining the non-local scheme and the Lin et al. inverse modeling approach suggests a magnitude of 6.6 TgN yr?1 for emissions of NOx over East China in July 2008 and 8.0 TgN yr?1 for January 2009, with the magnitude and seasonality in good agreement with bottom–up estimates.  相似文献   

9.
Simultaneous measurements of nitrous acid (HONO) and nitrogen dioxide (NO2) using a differential optical absorption spectroscopy system, nitrogen oxide (NO) by an in situ chemiluminescence analyser and carbon dioxide (CO2) by a gas chromatographic technique were carried out in the Wuppertal Kiesbergtunnel. At high traffic density HONO concentrations of up to 45 ppbV were observed. However, at low traffic density unexpectedly high HONO concentrations of up to 10 ppbV were measured caused by heterogeneous HONO formation on the tunnel walls. In addition to the tunnel campaigns, emission measurements of HONO, NO2, NO and CO2 from different single vehicles (a truck, a diesel and a gasoline passenger car) were also performed. For the correction of the HONO emission data, the heterogeneous HONO formation on the tunnel walls was quantified by two different approaches (a) in different NO2 emission experiments in the tunnel without traffic and (b) on tunnel wall residue in the laboratory. The HONO concentration corrected for heterogeneous formation on the tunnel walls, in relation to the CO2 concentration can be used to estimate the amount of HONO, which is directly emitted from the vehicle fleet. From the measured data, emission ratios (e.g. HONO/NOx) and emission indices (e.g. mg HONO kg−1 fuel) were calculated. The calculated emission index of 88±18 mg HONO kg−1 fuel allows an estimation of the HONO emission rates from traffic into the atmosphere. Furthermore, the heterogeneous formation of HONO from NO2 on freshly emitted exhaust particles is discussed.  相似文献   

10.

Introduction  

It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO2, NOx, and CO2. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO2 emission trend of power plant sector in Iran.  相似文献   

11.
Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals and are believed to favor ozone formation significantly. Traffic emission data for both compounds are scarce and mostly outdated. A better knowledge of today's HCHO and HONO emissions related to traffic is needed to refine air quality models. Here the authors report results from continuous ambient air measurements taken at a highway junction in Houston, Texas, from July 15 to October 15, 2009. The observational data were compared with emission estimates from currently available mobile emission models (MOBILE6; MOVES [MOtor Vehicle Emission Simulator]). Observations indicated a molar carbon monoxide (CO) versus nitrogen oxides (NOx) ratio of 6.01 ± 0.15 (r 2 = 0.91), which is in agreement with other field studies. Both MOBILE6 and MOVES overestimate this emission ratio by 92% and 24%, respectively. For HCHO/CO, an overall slope of 3.14 ± 0.14 g HCHO/kg CO was observed. Whereas MOBILE6 largely underestimates this ratio by 77%, MOVES calculates somewhat higher HCHO/CO ratios (1.87) than MOBILE6, but is still significantly lower than the observed ratio. MOVES shows high HCHO/CO ratios during the early morning hours due to heavy-duty diesel off-network emissions. The differences of the modeled CO/NOx and HCHO/CO ratios are largely due to higher NOx and HCHO emissions in MOVES (30% and 57%, respectively, increased from MOBILE6 for 2009), as CO emissions were about the same in both models. The observed HONO/NOx emission ratio is around 0.017 ± 0.0009 kg HONO/kg NOx which is twice as high as in MOVES. The observed NO2/NOx emission ratio is around 0.16 ± 0.01 kg NO2/kg NOx, which is a bit more than 50% higher than in MOVES. MOVES overestimates the CO/CO2 emission ratio by a factor of 3 compared with the observations, which is 0.0033 ± 0.0002 kg CO/kg CO2. This as well as CO/NOx overestimation is coming from light-duty gasoline vehicles.
Implications: Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals that ultimately contribute to ozone formation. There still exist uncertainties in emission sources of HONO and HCHO and thus regional air quality modeling still tend to underestimate concentrations of free radicals in the atmosphere. This paper demonstrates that the latest U.S. Environmental Protection Agency (EPA) traffic emission model MOVES still shows significant deviations from observed emission ratios, in particular underestimation of HCHO/CO and HONO/NOx ratios. Improving the performance of MOVES may improve regional air quality modeling.  相似文献   

12.
Source-contribution assessment of ambient NO2 concentration was performed at Pantnagar, India through simulation of two urban mathematical dispersive models namely Gaussian Finite Line Source Model (GFLSM) and Industrial Source Complex Model (ISCST-3) and model performances were evaluated. Principal approaches were development of comprehensive emission inventory, monitoring of traffic density and regional air quality and conclusively simulation of urban dispersive models. Initially, 18 industries were found responsible for emission of 39.11 kg/h of NO2 through 43 elevated stacks. Further, vehicular emission potential in terms of NO2 was computed as 7.1 kg/h. Air quality monitoring delineates an annual average NO2 concentration of 32.6 μg/m3. Finally, GFLSM and ISCST-3 were simulated in conjunction with developed emission inventories and existing meteorological conditions. Models simulation indicated that contribution of NO2 from industrial and vehicular source was in a range of 45-70% and 9-39%, respectively. Further, statistical analysis revealed satisfactory model performance with an aggregate accuracy of 61.9%.  相似文献   

13.
Concentrations of CO, SO2, NO, NO2, and NOY were measured atop the University of Houston's Moody Tower supersite during the 2006 TexAQS-II Radical and Aerosol Measurement Project (TRAMP). The lowest concentrations of all primary and secondary species were observed in clean marine air in southerly flow. SO2 concentrations were usually low, but increased dramatically in sporadic midday plumes advected from sources in the Houston Ship Channel (HSC), located NE of the site. Concentrations of CO and NOx displayed large diurnal variations in keeping with their co-emission by mobile sources in the Houston Metropolitan Area (HMA). CO/NOx emission ratios of 5.81 ± 0.94 were observed in the morning rush hour. Nighttime concentrations of NOx (NOx = NO + NO2) and NOY (NOY = NO + NO2 + NO3 + HNO3 + HONO + 21N2O5 + HO2NO2 + PANs + RONO2 + p-NO3? + …) were highest in winds from the NNW-NE due to emission from mobile sources. Median ratios of NOx/NOY were approximately 0.9 overnight, reflecting the persistence and/or generation of NOZ (NOZ = NOY ? NOx) species in the nighttime Houston boundary layer, and approached unity in the morning rush hour. Daytime concentrations of NOx and NOY were highest in winds from the HSC. NOx/NOY ratios reached their minimum values (median ca 0.63) from 1300 to 1500 CST, near local solar noon, and air masses often retained enough NOx to sustain additional O3 formation farther downwind. HNO3 and PANs comprised the dominant NOZ species in the HMA, and on a median basis represented 17–20% and 12–15% of NOY, respectively, at midday. Concentrations of HNO3, PANs, and NOZ, and fractional contributions of these species to NOY, were at a maximum in NE flow, reflecting the source strength and reactivity of precursor emissions in the HSC. As a result, daytime O3 concentrations were highest in air masses with HSC influence. Overall, our findings confirm the impact of the HSC as a dominant source region within the HMA. A comparison of total NOY measurements with the sum of measured NOY species (NOYi = NOx + HNO3 + PANs + HONO + p-NO3?) yielded excellent overall agreement during both day ([NOY](ppb) = ([NOYi](ppb)11.03 ± 0.16) ? 0.42; r2 = 0.9933) and night ([NOY](ppb) = ([NOYi](ppb)11.01 ± 0.16) + 0.18; r2 = 0.9975). A similar comparison between NOY–NOx concentrations and the sum of NOZi (NOZi = HNO3 + PANs + HONO + p-NO3?) yielded good overall agreement during the day ([NOZ](ppb) = ([NOZi](ppb)11.01 ± 0.30) + 0.044 ppb; r2 = 0.8527) and at night ([NOZ](ppb) = ([NOZi](ppb)11.12 ± 0.69) + 0.16 ppb; r2 = 0.6899). Median ratios of NOZ/NOZi were near unity during daylight hours but increased to approximately 1.2 overnight, a difference of 0.15–0.50 ppb. Differences between NOZ and NOZi rarely exceeded combined measurement uncertainties, and variations in NOZ/NOZi ratios may have resulted solely from errors in conversion efficiencies of NOY species and changes in NOY composition. However, nighttime NOZ/NOZi ratios and the magnitude of NOZ ? NOZi differences were generally consistent with recent observations of ClNO2 in the nocturnal Houston boundary layer.  相似文献   

14.
As part of the 2010 Van Nuys tunnel study, researchers from the University of Denver measured on-road fuel-specific light-duty vehicle emissions from nearly 13,000 vehicles on Sherman Way (0.4 miles west of the tunnel) in Van Nuys, California, with its multispecies Fuel Efficiency Automobile Test (FEAT) remote sensor a week ahead of the tunnel measurements. The remote sensing mean gram per kilogram carbon monoxide (CO), hydrocarbon (HC), and oxide of nitrogen (NOx) measurements are 8.9% lower, 41% higher, and 24% higher than the tunnel measurements, respectively. The remote sensing CO/NOx and HC/NOx mass ratios are 28% lower and 20% higher than the comparable tunnel ratios. Comparisons with the historical tunnel measurements show large reductions in CO, HC, and NOx over the past 23 yr, but little change in the HC/NOx mass ratio since 1995. The fleet CO and HC emissions are increasingly dominated by a few gross emitters, with more than a third of the total emissions being contributed by less than 1% of the fleet. An example of this is a 1995 vehicle measured three times with an average HC emission of 419 g/kg fuel (two-stroke snowmobiles average 475 g/kg fuel), responsible for 4% of the total HC emissions. The 2008 economic downturn dramatically reduced the number of new vehicles entering the fleet, leading to an age increase (>1 model year) of the Sherman Way fleet that has increased the fleet's ammonia (NH3) emissions. The mean NH3 levels appear little changed from previous measurements collected in the Van Nuys tunnel in 1993. Comparisons between weekday and weekend data show few fleet differences, although the fraction of light-duty diesel vehicles decreased from the weekday (1.7%) to Saturday (1.2%) and Sunday (0.6%).

Implications: On-road remote sensing emission measurements of light-duty vehicles on Sherman Way in Van Nuys, California, show large historical emission reductions for CO and HC emissions despite an older fleet arising from the 2008 economic downturn. Fleet CO and HC emissions are increasingly dominated by a few gross emitters, with a single 1995 vehicle measured being responsible for 4% of the entire fleet's HC emissions. Finding and repairing and/or scrapping as little as 2% of the fleet would reduce on-road tailpipe emissions by as much as 50%. Ammonia emissions have locally increased with the increasing fleet age.  相似文献   

15.
NO2 vertical column densities (VCDs) over East Asia in June and December 2007 were simulated by the Community Multi-scale Air Quality (CMAQ) version 4.7.1 using an updated and more elaborate version of the Regional Emission Inventory in Asia (REAS) version 2. The modeling system could reasonably capture observed spatiotemporal changes of NO2 VCDs by satellite sensors, the Global Ozone Monitoring Experiment-2 (GOME-2), the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), and the Ozone Monitoring Instrument (OMI), even at the coarsest horizontal resolution of 80 km. The CMAQ simulations were performed in a sequence of three horizontal resolutions (80 km, 40 km, and 20 km) for June and December 2007 to investigate the influence of changes of horizontal resolution on the obtained NO2 VCDs. CMAQ-simulated NO2 VCDs generally increased with improvements in resolution from 80 km to 40 km and then to 20 km. Increases in the CMAQ-simulated NO2 VCDs were greater for the change from 80 km to 40 km than for those from 40 km and 20 km, in which the increases of NO2 VCDs due to the improvement of horizontal resolution were approached convergence at the horizontal resolution of approximately 20 km. Conversely, no clear convergences in NO2 VCDs changes were found at near Tokyo and over the East China Sea. The biases of the NO2 VCDs simulated at a resolution of 20 km against the satellite retrievals were ~36% near Beijing (CHN1) and ~78% near Shanghai (CHN2) in summer; these errors were found to be comparable to the horizontal resolution-dependent errors, which were 18–25% at CHN1 and 44–58% at CHN2 from 80 km to 40 km. Conversely, the influence of changes of horizontal resolution in winter was relatively less compared to that in summer.
Implications: NO2 VCDs over East Asia in June and December 2007 were simulated using CMAQ version 4.7.1 and REAS version 2. The modeling system could reasonably capture observed spatiotemporal changes of NO2 VCDs by satellite sensors. The CMAQ simulations were performed in a sequence of three horizontal resolutions, 80, 40, and 20 km, to investigate the influence of changes of horizontal resolution on the obtained NO2 VCDs. The results suggested that the influence of changes of horizontal resolution was larger in summer compared to that in winter. The magnitude of the influence was comparable to the biases of the NO2 VCDs simulated at a resolution of 20 km against the satellite retrievals.  相似文献   

16.
Measurements of NO and NO2 were made at a surface site (55.28 °N, 77.77 °W) near Kuujjuarapik, Canada during February and March 2008. NOx mixing ratios ranged from near zero to 350 pptv with emission from snow believed to be the dominant source. The amount of NOx was observed to be dependent on the terrain over which the airmass has passed before reaching the measurement site. The 24 h average NOx emission rates necessary to reproduce observations were calculated using a zero-dimensional box model giving rates ranging from 6.9 × 108 molecule cm?2 s?1 to 1.2 × 109 molecule cm?2 s?1 for trajectories over land and from 3.8 × 108 molecule cm?2 s?1 to 6.6 × 108 molecule cm?2 s?1 for trajectories over sea ice. These emissions are higher than those suggested by previous studies and indicate the importance of lower latitude snowpack emissions. The difference in emission rate for the two types of snow cover shows the importance of snow depth and underlying surface type for the emission potential of snow-covered areas.  相似文献   

17.
Multi-year inventories of biomass burning emissions were established in the Pearl River Delta (PRD) region for the period 2003–2007 based on the collected activity data and emission factors. The results indicated that emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), ammonia (NH3), methane (CH4), organic carbon (OC), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and fine particulate matter (PM2.5) presented clear declining trends. Domestic biofuel burning was the major contributor, accounting for more than 60% of the total emissions. The preliminary temporal profiles were established with MODIS fire count information, showing that higher emissions were observed in winter (from November to March) than other seasons. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3  km, using GIS-based land use data as spatial surrogates. Large amount of emissions were observed mostly in the less developed areas in the PRD region. The uncertainties in biomass burning emission estimates were quantified using Monte Carlo simulation; the results showed that there were higher uncertainties in organic carbon (OC) and elemental carbon (EC) emission estimates, ranging from ?71% to 133% and ?70% to 128%, and relatively lower uncertainties in SO2, NOx and CO emission estimates. The key uncertainty sources of the developed inventory included emission factors and parameters used for estimating biomass burning amounts.  相似文献   

18.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

19.

Excessive doses of toxic metals such as cobalt may cause detrimental hazards to exposed organisms. Six groups of onion bulbs were formed to investigate the therapeutic effects of grape seed extract (GSE) against cobalt(II) nitrate (Co(NO3)2) exposure in Allium cepa L. root tips. Control group was irrigated with tap water, while the latter groups were exposed to 150 mg/L GSE, 300 mg/L GSE, 5.5 ppm Co(NO3)2, 5.5 ppm Co(NO3)2 + 150 mg/L GSE and 5.5 ppm Co(NO3)2 + 300 mg/L GSE, respectively. Co(NO3)2 treatment seriously inhibited the root growth, germination and weight gain of the bulbs. Mitotic index was significantly decreased, whereas the chromosomal aberrations and micronuclei incidence exhibited a remarkable increase. In addition, Co(NO3)2 induced a variety of anatomical disorders in onion roots. Lipid peroxidation levels of the cellular membranes were assessed measuring the malondialdehyde content (MDA). MDA amount in Co(NO3)2-treated group reached the highest level among all groups. Co(NO3)2 treatment enhanced the activity of superoxide dismutase and catalase. The addition of GSE to Co(NO3)2 solution substantially suppressed the negative effects of Co(NO3)2 in a dose-dependent manner by strengthening the antioxidant defence system and reducing the cytotoxicity. Moreover, there was a significant recovery in growth parameters following the grape seed addition to Co(NO3)2. GSE had a remarkable reduction in genotoxicity when treated as a mixture with Co(NO3)2. Overall data obtained from this investigation proved that GSE, as a promising functional by-product, had a protective effect on Allium cepa L. against the toxic effects of Co(NO3)2.

  相似文献   

20.
It is difficult to estimate vehicular emission factors at traffic junctions for use in dispersion modelling studies. Firstly, because the vehicles are in various modes of operation and secondly, it is difficult to delineate the effects of other contributing sources, mainly the effects of road dust and deposited constituents, which are very prominent at traffic junctions in India. Factor analysis-multiple regression (FA-MR), a receptor modelling technique has been used in this study for apportioning the contributing sources. The measurement data consist of one year's temporal variation of suspended particulate matter (SPM), analysed for its trace metal constituents, and two gaseous components NO2 and SO2 at two traffic junctions in Mumbai (India). FA-MR apportioned 40% of the observed SPM to road dust and 15% to vehicular sources. Of the total Pb observed in the SPM, FA-MR apportioned 60% to vehicular sources and 20% to road dust. The field-observed vehicular counts, meteorological parameters and road geometry were used in California line source dispersion model to estimate the effective vehicular emission factor for Pb at one traffic junction. This derived emission factor was used to predict the Pb concentration at second (independent observation) traffic junction. The result was found to be more satisfactory than using default emission factors obtained from literature. Similarly, effective vehicular emission factor for NO2 was also evaluated for one site and tested for predicting concentrations at the other site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号