首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We present measurements of C1–C8 volatile organic compounds (VOCs) at four sites ranging from urban to rural areas in Hong Kong from September 2002 to August 2003. A total of 248 ambient VOC samples were collected. As expected, the urban and sub-urban sites generally gave relatively high VOC levels. In contrast, the average VOC levels were the lowest in the rural area. In general, higher mixing ratios were observed during winter/spring and lower levels during summer/fall because of seasonal variations of meteorological conditions. A variation of the air mass composition from urban to rural sites was observed. High ratios of ethyne/CO (5.6 pptv/ppbv) and propane/ethane (0.50 pptv/pptv) at the rural site suggested that the air masses over the territory were relatively fresh as compared to other remote regions. The principal component analysis (PCA) with absolute principal component scores (APCS) technique was applied to the VOC data in order to identify and quantify pollution sources at different sites. These results indicated that vehicular emissions made a significant contribution to ambient non-methane VOCs (NMVOCs) levels in urban areas (65±36%) and in sub-urban areas (50±28% and 53±41%). Other sources such as petrol evaporation, industrial emissions and solvent usage also played important roles in the VOC emissions. At the rural site, almost half of the measured total NMVOCs were due to combustion sources (vehicular and/or biomass/biofuel burning). Petrol evaporation, solvent usage, industrial and biogenic emissions also contributed to the atmospheric NMVOCs. The source apportionment results revealed a strong impact of anthropogenic VOCs to the atmosphere of Hong Kong in both urban/sub-urban and rural areas.  相似文献   

2.
The photochemical oxidation and dispersion of reduced sulfur compounds (RSCs: H2S, CH3SH, DMS, CS2, and DMDS) emitted from anthropogenic (A) and natural (N) sources were evaluated based on a numerical modeling approach. The anthropogenic emission concentrations of RSCs were measured from several sampling sites at the Donghae landfill (D-LF) (i.e., source type A) in South Korea during a series of field campaigns (May through December 2004). The emissions of natural RSCs in a coastal study area near the D-LF (i.e., source type N) were estimated from sea surface DMS concentrations and transfer velocity during the same study period. These emission data were then used as input to the CALPUFF dispersion model, revised with 34 chemical reactions for RSCs. A significant fraction of sulfur dioxide (SO2) was produced photochemically during the summer (about 34% of total SO2 concentrations) followed by fall (21%), spring (15%), and winter (5%). Photochemical production of SO2 was dominated by H2S (about 55% of total contributions) and DMS (24%). The largest impact of RSCs from source type A on SO2 concentrations occurred around the D-LF during summer. The total SO2 concentrations produced from source type N around the D-LF during the summer (a mean SO2 concentration of 7.4 ppbv) were significantly higher than those (≤0.3 ppbv) during the other seasons. This may be because of the high RSC and SO2 emissions and their photochemistry along with the wind convergence.  相似文献   

3.
In this article, numerical simulations and observational analyses have been made for the aerosol episode that occurred over the Pearl River Delta (PRD) region in China during 1–3 November 2003. An air quality modeling system that consisted of the mesoscale model MM5, chemical transport model MODELS-3/CMAQ, and air pollutant emission model SMOKE, was employed. Studies have shown that this particulate matter (PM) pollution episode was apparently associated with the activity of tropical cyclone (TC) Melor. Model simulations revealed that Melor spawned this PM episode through dynamic and thermodynamic processes. The strong compensating subsidence induced by Melor's peripheral circulations created favorable meteorological conditions that enhanced local aerosol pollution. This strong downward motion produced significant adiabatic warming (2–4 °C daily) and dramatic drying in the low-level troposphere over the PRD. As a result, the PRD region was blanketed with a dry and warm air layer that strengthened the static stability of the lower troposphere. The descending motion also tended to dramatically lower the heights of the planetary boundary layer (PBL) through its dynamic effect. The fair weather created by this synoptic pattern further intensified the nocturnal temperature inversions through enhanced radiative cooling. All of these factors promoted a stagnant local atmosphere with very light winds near the surface. The horizontal and vertical dispersions of locally emitted aerosol particles were largely suppressed, leading to the accumulation of large amounts of PMs near local emission sources in the PRD region. As Melor drew near, changes in surface winds strengthened the horizontal transport of aerosol particles from inland sources to the area of Hong Kong downstream. This horizontal advection greatly contributed to the high PM10 (particulate matters less than 10 μm in diameters) concentrations in Hong Kong.  相似文献   

4.
An aircraft study of air quality in the Hong Kong region during the fall of 1994 has allowed for an estimation of the daytime source strengths for CO and NOy from the Hong Kong metropolitan center. Emission rate estimates for the Hong Kong urban plume for NOy and CO were 5.4×10e(25) molecules s-1 and 1.8×10e(26) molecules s-1 as determined for the case study of 18 October. All emission rate estimates have uncertainties of a factor of 2. On one occasion a distinct plume emanating from Shenzhen in the People’s Republic of China was encountered. While plume delimitation was insufficient for source strength calculations, transect integrals did allow for a CO/NOy ratio of about 16 to be determined. The CO/NOy ratio for the Hong Kong urban plume was about 3.3. The difference in these ratios indicates differences in the overall combustion processes and efficiencies taking place within Hong Kong and the PRC.  相似文献   

5.
In April 2000 atmospheric trace gas measurements were performed on the western Indian Ocean on a cruise of the Dutch research vessel Pelagia from the Seychelles (5°S, 55°E) to Djibouti (12°N, 43°E). The measurements included analysis of dimethyl sulfide (DMS), acetone and acetonitrile every 40 s using PTR-MS (proton-transfer-reaction mass spectrometry) and gas chromatographic analyses of C2–C7 hydrocarbons in air samples taken during the cruise. The measurements took place at the end of the winter monsoon season and the sampled air masses came predominantly from the Southern Hemisphere, resulting in low concentrations of some long-lived hydrocarbons, halocarbons, acetone (350 pptv) and acetonitrile (120 pptv). On three consecutive days a diurnal cycle in DMS concentration was observed, which was used to estimate the emission of DMS (1.5±0.7×1013 molecules m−2 s−1) and the 24 h averaged concentration of hydroxyl (OH) radicals (1.4±0.7×106 molecules cm−3). A strongly increased DMS concentration was found at a location where upwelling of deeper ocean waters took place, coinciding with a marked decrease in acetone and acetonitrile. In the northwestern Indian Ocean a slight increase of some trace gases was noticed showing a small influence of pollution from Asia and from northeast Africa as indicated with back trajectory calculations. The air masses from Asia had elevated acetonitrile concentrations showing some influence of biomass burning as was also found during the 1999 Indian Ocean Experiment, whereas the air masses from northeast Africa seemed to have other sources of pollution.  相似文献   

6.
In this study, the distribution characteristics of reduced sulfur compounds (RSCs) in ambient air were investigated in two coastal landfill (LF) facilities and their surrounding areas. The photochemical conversion of RSCs to sulfur dioxide (SO2) was also evaluated using a photochemical box model (PCBM). Measurements of RSCs were carried out from both in and around areas of two coastal LFs in Gunsan (G) and Donghae (D) city, Korea during several field campaigns (May through December 2004). The dominant RSCs at the Gunsan landfill (G-LF) were found to be DMS and H2S, whereas those at the Donghae landfill (D-LF) were H2S and DMDS. The concentrations of DMS at these study sites were likely to be affected not only by LF processes but also by an oceanic source, while such a pattern was more prominent at the D-LF. The chemical species of RSCs that can exert significant influences on the photochemical production of SO2 in the LF environment were identified to be H2S, DMS, or DMDS.  相似文献   

7.
Understanding the spatial–temporal variations of source apportionment of PM2.5 is critical to the effective control of particulate pollution. In this study, two one-year studies of PM2.5 composition were conducted at three contrasting sites in Hong Kong from November 2000 to October 2001, and from November 2004 to October 2005, respectively. A receptor model, principal component analysis (PCA) with absolute principal component scores (APCS) technique, was applied to the PM2.5 data for the identification and quantification of pollution sources at the rural, urban and roadside sites. The receptor modeling results identified that the major sources of PM2.5 in Hong Kong were vehicular emissions/road erosion, secondary sulfate, residual oil combustion, soil suspension and sea salt regardless of sampling sites and sampling periods. The secondary sulfate aerosols made the most significant contribution to the PM2.5 composition at the rural (HT) (44 ± 3%, mean ± 1σ standard error) and urban (TW) (28 ± 2%) sites, followed by vehicular emission (20 ± 3% for HT and 23 ± 4% for TW) and residual oil combustion (17 ± 2% for HT and 19 ± 1% for TW). However, at the roadside site (MK), vehicular emissions especially diesel vehicle emissions were the major source of PM2.5 composition (33 ± 1% for diesel vehicle plus 18 ± 2% for other vehicles), followed by secondary sulfate aerosols (24 ± 1%). We found that the contribution of residual oil combustion at both urban and rural sites was much higher than that at the roadside site (2 ± 0.4%), perhaps due to the marine vessel activities of the container terminal near the urban site and close distance of pathway for the marine vessels to the rural site. The large contribution of secondary sulfate aerosols at all the three sites reflected the wide influence of regional pollution. With regard to the temporal trend, the contributions of vehicular emission and secondary sulfate to PM2.5 showed higher autumn and winter values and lower summer levels at all the sites, particularly for the background site, suggesting that the seasonal variation of source apportionment in Hong Kong was mainly affected by the synoptic meteorological conditions and the long-range transport. Analysis of annual patterns indicated that the contribution of vehicular emission at the roadside was significantly reduced from 2000/01 to 2004/05 (p < 0.05, two-tail), especially the diesel vehicular emission (p < 0.001, two-tail). This is likely attributed to the implementation of the vehicular emission control programs with the tightening of diesel fuel contents and vehicular emission standards over these years by the Hong Kong government. In contrast, the contribution of secondary sulfate was remarkably increased from 2001 to 2005 (p < 0.001, two-tail), indicating a significant growth in regional sulfate pollution over the years.  相似文献   

8.
PM2.5 samples were collected at five sites in Guangzhou and Hong Kong, Pearl River Delta Region (PRDR), China in both summer and winter during 2004–2005. Elemental carbon (EC) and organic carbon (OC) in these samples were measured. The OC and EC concentrations ranked in the order of urban Guangzhou > urban Hong Kong > background Hong Kong. Total carbonaceous aerosol (TCA) contributed less to PM2.5 in urban Guangzhou (32–35%) than that in urban Hong Kong (43–57%). The reason may be that, as an major industrial city in South China, Guangzhou would receive large amount of inorganic aerosol from all kinds of industries, however, as a trade center and seaport, urban Hong Kong would mainly receive organic aerosol and EC from container vessels and heavy-duty diesel trucks. At Hong Kong background site Hok Tsui, relatively lower contribution of TCA to PM2.5 may result from contributions of marine inorganic aerosol and inland China pollutant. Strong correlation (R2=0.76–0.83) between OC and EC indicates minor fluctuation of emission and the secondary organic aerosol (SOA) formation in urban Guangzhou. Weak correlation between OC and EC in Hong Kong can be related to the impact of the long-range transported aerosol from inland China. Averagely, secondary OC (SOC) concentrations were 3.8–5.9 and 10.2–12.8 μg m−3, respectively, accounting for 21–32% and 36–42% of OC in summer and winter in Guangzhou. The average values of 4.2–6.8% for SOA/ PM2.5 indicate that SOA was minor component in PM2.5 in Guangzhou.  相似文献   

9.
Rapid urbanization and industrialization in South China has placed great strain on the environment and on human health. In the present study, the total suspended particulate matter (TSP) in the urban and suburban areas of Hong Kong and Guangzhou, the two largest urban centres in South China, was sampled from December 2003 to January 2005. The samples were analysed for the concentrations of major elements (Al, Fe, Mg and Mn) and trace metals (Cd, Cr, Cu, Pb, V and Zn), and for Pb isotopic composition. Elevated concentrations of metals, especially Cd, Pb, V and Zn, were observed in the urban and suburban areas of Guangzhou, showing significant atmospheric trace element pollution. Distinct seasonal patterns were observed in the heavy metal concentrations of aerosols in Hong Kong, with higher metal concentrations during the winter monsoon period, and lower concentrations during summertime. The seasonal variations in the metal concentrations of the aerosols in Guangzhou were less distinct, suggesting the dominance of local sources of pollution around the city. The Pb isotopic composition in the aerosols of Hong Kong had higher 206Pb/207Pb and 208Pb/207Pb ratios in winter, showing the influence of Pb from the northern inland areas of China and the Pearl River Delta (PRD) region, and lower 206Pb/207Pb and 208Pb/207Pb ratios in summer, indicating the influence of Pb from the South Asian region and from marine sources. The back trajectory analysis showed that the enrichment of heavy metals in Hong Kong and Guangzhou was closely associated with the air mass from the north and northeast that originated from northern China, reflecting the long-range transport of heavy metal contaminants from the northern inland areas of China to the South China coast.  相似文献   

10.
Recent research has highlighted the substantial health-related costs of air pollution in the Hong Kong Special Administrative Region (HKSAR) and the potential threat from air pollution to HKSARs economic competitiveness. In order to address the air pollution problems, this paper seeks to analyse the individual contributions of major sulphur dioxide (SO2) sources in the Pearl River Delta Region (PRDR) (Pearl River Delta + HKSAR) on the air quality in the HKSAR. This study employed the coupling of the MM5/CALMET system with the CALPUFF, the multi-layer, non-steady-state puff dispersion model, where major power plants, marine vessels and vehicles, all in the PRDR, are taken into account. The observation data and simulation results at 11 Hong Kong Environmental Protection Department (HKEPD) general (non-road-side) stations are analyzed. Urban (in-zone) and Rural (out-zone) stations are defined in order to examine the SO2 contribution of different emission sources in different regions of the HKSAR. The model results show that the contribution of the HKSAR marine sources is significant both in summer and in winter, especially for the locations around the in-zone stations (in general 60%, and 55% in summer and winter respectively). In addition, the contribution of the HKSAR power plants is slightly higher than that of the PRD power plants in early summer, with a contribution difference of up to 20% when the prevailing wind is from the south. However, in late summer, this situation reverses. In winter, the contribution of the PRD power plants is two to three times greater than that of the HKSAR power plants. Moreover, Yantian port affects the northern part of the HKSAR when a northeasterly wind dominates the HKSAR. In order to solve these air pollution problems, the main implication of these results suggests that the HKSAR government, in close co-operation with the Guangdong government, needs to take immediate action.  相似文献   

11.
The impact of ship emissions on air quality in Alaska National Parks and Wilderness Areas was investigated using the Weather Research and Forecasting model inline coupled with chemistry (WRF/Chem). The visibility and deposition of atmospheric contaminants was analyzed for the length of the 2006 tourist season. WRF/Chem reproduced the meteorological situation well. It seems to have captured the temporal behavior of aerosol concentrations when compared with the few data available. Air quality follows certain predetermined patterns associated with local meteorological conditions and ship emissions. Ship emissions have maximum impacts in Prince William Sound where topography and decaying lows trap pollutants. Along sea-lanes and adjacent coastal areas, NOx, SO2, O3, PAN, HNO3, and PM2.5 increase up to 650 pptv, 325 pptv, 900 pptv, 18 pptv, 10 pptv, and 100 ng m?3. Some of these increases are significant (95% confidence). Enhanced particulate matter concentrations from ship emissions reduce visibility up to 30% in Prince William Sound and 5–25% along sea-lanes.  相似文献   

12.
Using the Global Biosphere Emissions and Interactions System model (GloBEIS), 3 × 3 km gridded and hourly biogenic volatile organic compound (BVOC) emissions in the Pearl River Delta (PRD) were estimated for the year 2006. The study used newly available land cover database, observed meteorological data, and recent measurements of emission rates for tree species in China. The results show that the total BVOC emission in the PRD region in 2006 was 296 kt (2.2 × 1011 gC), of which isoprene contributes about 25% (73 kt, 6.4 × 1010 gC), monoterpenes about 34% (102 kt, 8.9 × 1010 gC), and other VOCs (OVOC) about 41% (121 kt, 6.8 × 1010 gC). BVOC emissions in the PRD region exhibit a marked seasonal pattern with the peak emission in July and the lowest emission in January, and are mainly distributed over the outlying areas of the PRD region, where the economy and land use are less developed. The uncertainties in BVOC emission estimates were quantified using Monte Carlo simulation; the results indicate high uncertainties in isoprene emission estimates, with a relative error of ?82 to +177%, ranging from 12.4 to 186.4 kt; ?41 to +58% uncertainty for monoterpenes emissions, ranging from 67.7 to 181.9 kt; and ?26 to +30% uncertainty in OVOC emissions, ranging from 88.8 to 156.2 kt on the 95% confidence intervals. The key uncertainty sources include emission factors and the model empirical coefficients α, CT1, CL, and Eopt for estimating isoprene emission, and emission factors and foliar density for estimating monoterpenes and OVOC emissions. This implies that determining these empirical coefficient values properly and conducting more field measurements of emission rates of tree species are key approaches for reducing uncertainties in BVOC emission estimates. Improving future BVOC emission inventory work in the PRD region requires giving priority to research on shrub land, coniferous forests, and irrigated cropland and pasture.  相似文献   

13.
Shon ZH  Kim KH 《Chemosphere》2006,63(11):1859-1869
This study examines the oxidation of reduced sulfur compounds (RSCs) in urban ambient air. The photochemical conversions of RSC (such as DMS, CS2, H2S, DMDS, and CH3SH) to a further oxidized form (e.g., SO2, MSA, and H2SO4) were assessed using a photochemical box model. For our model simulation of RSC oxidation, measurements were taken at an urban monitoring station in Seoul, Korea (37.6° N, 127° E) during three separate time periods (e.g., Sept. 17–18, Oct. 23, and Oct. 27–28, 2003). The results indicate that DMS and H2S were the dominant RSCs with concentrations of 370 ± 140 and 110 ± 60 pptv, respectively. The photochemical conversion of DMDS to SO2 was found to occur more efficiently than other RSCs. The overall results of our study suggest that photochemical conversion of RSCs accounted for less than 15% of the observed SO2 during the measurement period. The SO2 production from DMS oxidation (mainly by the reaction with OH) was found to be affected primarily by the abstraction channel due to high NOx levels during the experimental conditions.  相似文献   

14.
Multiyear (2000–2006) seasonal measurements of carbon monoxide, hydrocarbons, halogenated species, dimethyl sulfide, carbonyl sulfide and C1–C4 alkyl nitrates at the South Pole are presented for the first time. At the South Pole, short-lived species (such as the alkenes) typically were not observed above their limits of detection because of long transit times from source regions. Peak mixing ratios of the longer lived species with anthropogenic sources were measured in late winter (August and September) with decreasing mixing ratios throughout the spring. In comparison, compounds with a strong oceanic source, such as bromoform and methyl iodide, had peak mixing ratios earlier in the winter (June and July) because of decreased oceanic production during the winter months. Dimethyl sulfide (DMS), which is also oceanically emitted but has a short lifetime, was rarely measured above 5 pptv. This is in contrast to high DMS mixing ratios at coastal locations and shows the importance of photochemical removal during transport to the pole. Alkyl nitrate mixing ratios peaked during April and then decreased throughout the winter. The dominant source of the alkyl nitrates in the region is believed to be oceanic emissions rather than photochemical production due to low alkane levels.Sampling of other tropospheric environments via a Twin Otter aircraft included the west coast of the Ross Sea and large stretches of the Antarctic Plateau. In the coastal atmosphere, a vertical gradient was found with the highest mixing ratios of marine emitted compounds at low altitudes. Conversely, for anthropogenically produced species the highest mixing ratios were measured at the highest altitudes, suggesting long-range transport to the continent. Flights flown through the plume of Mount Erebus, an active volcano, revealed that both carbon monoxide and carbonyl sulfide are emitted with an OCS/CO molar ratio of 3.3 × 10?3 consistent with direct observations by other investigators within the crater rim.  相似文献   

15.
There is increasing concern that agricultural intensification in China has greatly increased N2O emissions due to rapidly increased fertilizer use. By linking a spatial database of precipitation, synthetic fertilizer N input, cropping rotation and area via GIS, a precipitation-rectified emission factor of N2O for upland croplands and water regime-specific emission factors for irrigated rice paddies were adopted to estimate annual synthetic fertilizer N-induced direct N2O emissions (FIE-N2O) from Chinese croplands during 1980-2000. Annual FIE-N2O was estimated to be 115.7 Gg N2O-N year−1 in the 1980s and 210.5 Gg N2O-N year−1 in the 1990s, with an annual increasing rate of 9.14 Gg N2O-N year−1 over the period 1980-2000. Upland croplands contributed most to the national total of FIE-N2O, accounting for 79% in 1980 and 92% in 2000. Approximately 65% of the FIE-N2O emitted in eastern and southern central China.  相似文献   

16.
The ambient air quality monitoring data of 2006 and 2007 from a recently established Pearl River Delta (PRD) regional air quality monitoring network are analyzed to investigate the characteristics of ground-level ozone in the region. Four sites covering urban, suburban, rural and coastal areas are selected as representatives for detailed analysis in this paper. The results show that there are distinct seasonal and diurnal cycles in ground-level ozone across the PRD region. Low ozone concentrations are generally observed in summer, while high O3 levels are typically found in autumn. The O3 diurnal variations in the urban areas are larger than those at the rural sites. The O3 concentrations showed no statistically significant difference between weekend and weekdays in contrast to the findings in many other urban areas in the world. The average ozone concentrations are lower in urban areas compared to the sites outside urban centers. Back trajectories are used to show the major air-mass transport patterns and to examine the changes in ozone from the respective upwind sites to a site in the center of the PRD (Wanqingsha). The results show higher average ozone concentrations at the upwind sites in the continental and coastal air masses, but higher 1 h-max O3 concentrations (by 8–16 ppbv) at the center PRD site under each of air-mass category, suggesting that the ozone pollution in the PRD region exhibits both regional and super-regional characteristics.  相似文献   

17.
Summer pollution episodes in Hong Kong are related to the passage of tropical storms close to the territory. Between 1994 and 1999, there were six territory-wide ozone episodes in Hong Kong during which the Hong Kong Air Quality Objective for ozone (240 μg m−3, 1 h) was violated. The maximum O3 concentration for the period was 334 μg m−3 recorded in August 1999. Synoptically, tropical storms were in the vicinity on all the episode days. Northwesterly/westerly winds induced by the storms are believed to cause ozone precursor emissions from local power plants in the western part of Hong Kong to impact the territory, and at the same time allowing the import of emissions from upwind sources along the mainland coast. Other important meteorological factors that contribute to the occurrence of the episode events include: stable atmospheres, morning break-up of nocturnal inversions, low winds, strong solar radiation and high temperatures. Trajectory analysis of airflows at 850 hPa confirms the long-range pollutant transport. The strong correlation between non-sea-salt sulphate (NS-SO4) and selenium for the summer of 1999 indicates that the main source of high levels of NS-SO4 in summer in Hong Kong is coal combustion. The correlation between arsenic (As) and vanadium (V) for the summers of 1996–1999 suggests a concomitant influence of coal and residual oil combustion in the region.  相似文献   

18.
Bromine chemistry in the marine boundary layer is recognized to play an important role through catalytic ozone destruction, changes to the atmospheric oxidising capacity (by changing the OH/HO2 and NO/NO2 ratio) and oxidation of compounds such as dimethyl sulphide (DMS). However, the chemistry of bromine in polluted environments is not well understood and its effects are thought to be inhibited by reactions involving NOx (NO2 & NO). This paper describes long-path Differential Optical Absorption Spectroscopy (DOAS) observations of bromine oxide (BrO) at a semi-polluted coastal site in Roscoff, France. Significant concentrations of BrO (up to 7.5 ± 1.0 pptv) were measured during daytime, indicating the presence of unknown sources or efficient recycling of reactive bromine from bromine nitrate (BrONO2), which should be the major reservoir for bromine in a high NOx environment. These measurements indicate that bromine chemistry can play an important role in polluted environments.  相似文献   

19.
The products of the OH radical-initiated oxidation of dimethyl sulphide (DMS) have been investigated as a function of temperature (284, 295, and 306 K) and different initial NOx (NO+NO2) concentrations: initial NO was varied between 434 and 2821 ppb and NO2 between 135 and 739 ppb. The experiments were performed at 1000 mbar total pressure in synthetic air using the photolysis of H2O2 as the OH-radical source and FT-IR spectroscopy to monitor reactants and products. The major sulphur-containing products identified were SO2, dimethyl sulphoxide (DMSO), dimethyl sulphone (DMSO2), methane sulphonic acid (MSA), methane sulphonyl peroxynitrate (MSPN) and OCS. The variation of the product yields with temperature and NOx concentration are consistent with the occurrence of both addition and abstraction channels in OH radical-initiated oxidation of DMS. Distinct trends in the yields of the various products have been observed as a function of temperature, initial NOx conditions and also reaction time as NO is consumed in the system. Increasing the initial NO concentration was found to depress the DMSO, SO2 and OCS formation yields and enhance those of DMSO2, MSA and MSPN. The yield–time behaviour of DMSO2 is supportive of a formation mechanism involving addition of O2 to a (CH3)2SOH adduct, formed via the addition channel, followed by sequential reactions with NO and O2. The mechanisms controlling the concentration–time profiles of the individual products under the present experimental conditions are discussed in detail and consideration is given to possible implications for the photo-oxidation of DMS under ambient conditions.  相似文献   

20.
The concentrations of C1–C8 carbonyl compounds were measured at two urban sites in Hong Kong from October 1997 to September 2000. The daily total carbonyl concentrations were found to range from 2.4 to 37 μg m−3. Formaldehyde was the most abundant species, which comprised from 36 to 43% of the total detected carbonyls, followed by acetaldehyde (18–21%) and acetone (8–20%). The highest 24-hour average concentrations measured were 10 and 7.7 μg m−3 for formaldehyde and acetaldehyde, respectively. Seasonal and temporal variations in the concentrations of formaldehyde and acetaldehyde were not obvious, but lowest concentrations often occurred from June to August. The mean formaldehyde/acetaldehyde molar ratios at the two sites in summer (2.8±1.1 and 2.5±1.2) were significantly higher (p⩽0.01) than those in winter periods (1.9±0.6 and 2.0±0.6). The phenomena were explained by influences of both photochemical reactions and local meteorological conditions. Better correlations between formaldehyde and acetaldehyde, and between NOx and each of the two major carbonyls were obtained in winter periods indicating direct vehicular emissions were the principal sources. The ambient formaldehyde and acetaldehyde concentrations in the urban atmosphere of Hong Kong were within the normal ranges reported in the literature for other urban sites world-wide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号