首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Chemical resistance of gorgonian corals against fungal infections   总被引:4,自引:0,他引:4  
The frequency and impact of diseases affecting corals throughout the Caribbean have been increasing but little is known about the factors promoting the emergence and outbreak of disease. A disease caused by a fungal pathogen [Aspergillus sydowii (Thom et Church)] which affects Caribbean sea fan corals provided an opportunity to examine the efficacy of coral crude extracts in disease resistance. Minimum inhibitory concentration (MIC) assays showed that of the 20 common gorgonian species in the Florida Keys, extracts from 15 species had MICs < 15 mg ml−1 against A. sydowii pathogenic to sea fans. Extracts from several species in two gorgonian genera (Pseudoplexaura and Pseudopterogorgia) were among the most active, with MICs < 10 mg ml−1. Gorgonia ventalina L., one of two sea fan species known to be hosts to A. sydowii in the field, had an MIC < 10 mg ml−1, suggesting that complete disease resistance requires more active extracts. For the antifungal compounds to be effective in situ, they must also occur in sufficiently high concentrations in living coral tissue. For example, Pseudopterogorgia americana (Gmelin) had comparatively potent extracts but did not have sufficient concentrations in the tissue to be effective. Conversely, Plexaura homomalla Esper extracts were less potent but occurred in high enough concentrations in the tissue to be effective against A. sydowii. When potency and extract concentration are considered together (i.e. potency × concentration), several other gorgonian corals emerge as likely hosts to A. sydowii. Crude extracts from the most active gorgonian species were also effective against two geographic variants of A. sydowii pathogenic to sea fans, a non-pathogenic terrestrial strain of A. sydowii, and three strains of A. flavus Link known to be human, plant, and insect pathogens (MIC range, 7.5 to > 15 mg ml−1). Although the potency in these assays did not attain a clinically significant level, the potency is comparable to a known antifungal agent, hygromycin B, which had an MIC ≤7.5 mg ml−1 in our assays, highlighting the potential of these gorgonian corals for bioprospecting. Received: 29 May 1999 / Accepted: 22 May 2000  相似文献   

2.
Summary. The scope of this work was to examine whether leaf constitutive secondary metabolites play a role in determining bacterial colonization of the phyllosphere. To this aim, we surveyed nineteen native or cultivated plant species that share a common bacterial pool in a North Mediterranean area, and estimated the size of total and ice nucleation active (INA) bacterial populations on their leaves. Large differences in the colonization of their phyllosphere were found; the population size of epiphytic bacteria ranged from 7.5 × 102 to 1 × 106 CFU/g fresh weight, in eucalypt and celery, respectively. Species native in Mediterranean-type climate areas, particularly those belonging to the group of aromatic plants, are characterized by scarce presence of INA bacteria. The antibacterial activity of essential oils, surface phenolics and leaf tissue extracts was also estimated against the INA strains P. syringae and E. herbicola, isolated from two of these plant species. E. herbicola proved more sensitive than P. syringae. Of the species examined, oregano [Origanum vulgare L. subsp. hirtum (Link.) Ietswaart], an aromatic plant, had the highest antimicrobial activity, whereas six species showed no activity at all. Further experiments were performed with oregano and bean (Phaseolus vulgaris L.) that represent two extremes in their secondary metabolite content. Both plants were inoculated with P. syringae. By the end of incubation, the bacterial population on bean plants was about 100 times higher than that on oregano leaves. Scanning electron micrographs showed that bacterial growth on oregano leaves was confined to sites away from glandular hairs. Results from the bacterial colonization survey together with those from the toxicity tests showed that all species rich in antibacterial secondary metabolites harbored low leaf bacterial populations. These results provide substantial evidence that leaf secondary metabolites function as constitutive defense chemicals against microbial invasions. However, the fact that species with non- or moderately active leaf secondary metabolites are not always highly colonized suggests mediation of other unknown factors, the contribution of which requires further investigation.  相似文献   

3.
Study of marine organisms for their bioactive potential, being an important part of marine ecosystem, has picked up the rhythm in recent years with the growing recognition of their importance in human life. Investigation was carried out to isolate 32 strains of endo and epiphytic bacteria in 2 seagrass species viz., Syringodium isoetifolium and Cymodocea serrulata. Morphologically different bacterial strains were tested against 5 antibiotic resistant human bacterial pathogens, of which 10 associated bacteria shown inhibitory activity against one or more bacterial pathogens. Minimum inhibitory concentration (MIC) and Minimum bacterial concentration (MBC) determination with extracellular bioactive compounds from the associated bacteria reveals that, the strain ENC 5 showed inhibitory activity against all the bacterial pathogens with the maximum sensitivity against Pseudomonas aeruginosa at the MIC value of 500 microg ml(-1).  相似文献   

4.
Molecular phylogenetic analyses of shallow-water Caribbean octocorals   总被引:7,自引:0,他引:7  
Octocorals, especially gorgonians, are conspicuous on Caribbean coral reefs, but there is no consensus regarding species relationships. Mitochondrial protein-coding genes [NADH-dehydrogenase subunits 2 (ND2) and 6 (ND6), and mutS homolog (msh1), 1633 bp] from 28 shallow-water species were sequenced to develop the first molecular phylogeny for Caribbean octocorals. The specimens were collected primarily in the Caribbean or off Brazil in 1999-2001. Morphological characters (sclerites and axial ultrastructure) were also examined in order to map them onto the molecular phylogeny. Analyses of both nucleotide and amino acid substitutions using maximum parsimony and likelihood (including maximum-likelihood and Bayesian analysis) generated very similar results, with most nodes having high levels of support. These molecular results were significantly different from the generally accepted classification. Neither Plexauridae nor Gorgoniidae were monophyletic. Plexaurella spp., nominal plexaurids, were basal to the gorgoniids, sharing many morphological characters with them. This corroborates previous findings using secondary metabolites and biosynthetic pathways. The sea fans, Gorgonia spp. and Pacifigorgia spp., as well as the pinnate gorgonians, Muriceopsis flavida and Pseudopterogorgia spp., did not have sea fan or pinnate relatives, suggesting there has been convergent evolution of colony form. Caribbean plexaurids appeared more derived and/or recently evolved according to both morphological and molecular data (e.g. Eunicea spp. and Plexaura spp.). Molecular phylogenetics is a promising approach for reconstructing phylogenetic relationships among octocorals as well as to understand their complex morphology. Electronic Supplementary Material is available if you access this article at http://dx.doi.org/10.1007/s00227-003-1018-7. On that page (frame on the left side), a link takes you directly to the supplementary material.  相似文献   

5.
During 1969 and 1970, the antibacterial activity of North Sea water was investigated at Helgoland (southern North Sea). Tests were performed with resting cells of Escherichia coli, Staphylococous aureus and Serratia marinorubra, inoculated in freshly sampled sea water used raw or after filter sterilization. Simultaneously, growth of indigenous bacterial populations which occurred in the presence, as well as in the absence (only 1970), of test bacteria was controlled. Seasonal changes in inactivation of test cells and multiplication of marine bacteria were correlated with the life cycles of several diatom species. Breakdown of phytoplankton flowerings produced the most pronounced influence on antibacterial activity of sea water. Sometimes, enhancement of kill rate could be established during growth periods of various algal species, too. From the results obtained, it is concluded that the inactivation capacity of sea water depends, to a considerable degree, on the availability of nutritive organic matter, the concentration of which changes according to phytoplankton development. Strain-specific differences in resistance to inimical action of sea water are, in part, correlated with the ability of test cells to use, and to compete with, marine bacteria for nutrients from the sea. A somewhat modified interpretation of antibacterial activity of sea water is presented.  相似文献   

6.
Larval lysate (four-armed stage) exerts a lysozyme-like and antibacterial activity directed against Vibrio alginolyticus and other bacterial strains. This lysozyme activity is dependent on the pH and ionic strength of the reacting medium and sample. The other larval stages (six-armed, eight-armed and a stage approaching metamorphosis) possess protection against bacteria as well. The highest antibacterial activity is present in the six-armed stage. These antibacterial compounds avoid exploitation by bacteria. Paracentrotus lividus larvae used in our experiments were laboratory-reared from specimens collected in 1993 in Porto Cesareo (Lecce, Italy).  相似文献   

7.
K. Moebus 《Marine Biology》1972,13(4):346-351
Three sea-water samples of about 25 l each, stored at 18°C in the dark, were examined for antibacterial activity and bacterial content. Serratia marinorubra mainly was used as test bacterium. During storage for 197 to 454 days, bactericidal capacity varied considerably. In raw sea water, extreme log (N 3N 0) values (N: number of colony-forming test bacteria/ml after 0 and 3 days of any test) were higher than-1 and lower than-4. Antibacterial activity of filtersterilized and autoclaved, stored, sea water likewise varied, but to a lesser degree. The number of colony-forming marine bacteria fluctuated about 3 orders of magnitude. Variations in bacterial content and in bactericidal action of stored sea water were positively correlated during the first months of storage; later, this correlation became negative. From these results it is concluded that variations in nutrient concentration — due to successive periods of growth and autolysis of marine bacteria — were the primary reason for the changes observed in antibacterial activity of stored sea-water samples.  相似文献   

8.
The culturability of heterotrophic marine bacteria obtained from the surfaces of two species of marine algae (Lobophora variegata andHalimeda copiosa) was assessed by comparing total DAPI-stained cell counts to colony-forming bacterial counts on two agar media. The colony-forming bacterial counts on a low-nutrient medium (LN) consisting of seawater and agar were significantly greater for both algal species than counts obtained on a high-nutrient medium (HN) similar in composition to that typically used for the isolation of heterotrophic marine bacteria. On average, 14 and 58%, respectively, of the total bacteria fromL. variegata andH. copiosa were culturable on LN. These recovery rates far exceed those typically reported for marine bacteria. Of 119 LN strains obtained in pure culture, 55% failed to grow on HN. The yeast extract component of HN (1.5 gl-1) was responsible for the majority of the observed inhibition, suggesting that this nutrient can be highly toxic to marine bacteria. Eighty-nine percent of the strains inhibited by HN were capable of growth when the nutrients in this medium were diluted by a factor of 100 with seawater. Of 66 epiphytic strains, 30 (45%) initially inhibited by HN showed the ability to adapt to this medium after a period of laboratory handling. The initial inability of low-nutrient-adapted bacteria to grow on high-nutrient media may be due to nutrient shock. The results presented here indicate that the culturability of specific populations of marine bacteria can be dramatically improved by the use of low-nutrient media. Further, the importance of developing new medium formulations that eliminate traditional nutrients, some of which are clearly toxic to bacteria, is demonstrated.  相似文献   

9.
Studies investigating disease resistance in marine plants have indicated that secondary metabolites may have important defensive functions against harmful marine microorganisms. The goal of this study was to systematically screen extracts from marine plants for antimicrobial effects against marine pathogens and saprophytes. Lipophilic and hydrophilic extracts from species of 49 marine algae and 3 seagrasses collected in the tropical Atlantic were screened for antimicrobial activity against five ecologically relevant marine microorganisms from three separate kingdoms. These assay microbes consisted of the pathogenic fungus Lindra thalassiae, the saprophytic fungus Dendryphiella salina, the saprophytic stramenopiles, Halophytophthora spinosa and Schizochytrium aggregatum, and the pathogenic bacterium Pseudoaltermonas bacteriolytica. Overall, 90% of all species surveyed yielded extracts that were active against one or more, and 77% yielded extracts that were active against two or more assay microorganisms. Broad-spectrum activity against three or four assay microorganisms was observed in the extracts from 48 and 27% of all species, respectively. The green algae Halimeda copiosa and Penicillus capitatus (Chlorophyta) were the only species to yield extracts active against all assay microorganisms. Among all assay microorganisms, both fungi were the most resistant to the extracts tested, with less than 21% of all extracts inhibiting the growth of either L. thalassiae or D. salina. In contrast, over half of all lipophylic extracts were active against the stramenopiles H. spinosa and S. aggregatum, and the bacterium P. bacteriolytica. Growth sensitivity to hydrophilic extracts varied considerably between individual assay microorganisms. While 48% of all hydrophilic extracts were active against H. spinosa, 27% were active against P. bacteriolytica, and only 14% were active against S. aggregatum. Overall, more lipophilic extracts inhibited microbial growth than hydrophilic extracts. The variability observed in the antimicrobial effects of individual extracts against each assay microorganism reflects the importance of choosing appropriate test microbes in assays from which ecologically relevant information is sought. Results from this survey demonstrate that antimicrobial activities are prevalent among extracts from marine algae and seagrasses, suggesting that antimicrobial chemical defenses are widespread among marine plants.  相似文献   

10.
The potency of free-living and animal-associated marine bacteria to produce antimicrobial substances has been studied in 491 strains isolated from northern and southern parts of the Pacific Ocean. A total of 26% (126 out of 491) of the strains examined produced antimicrobial compounds against 11 test bacterial strains (TBS) including the fish pathogens Aeromonas hydrophila and Vibrio anquillarum. Antimicrobial substances (AS) produced by marine bacteria were especially active against Staphylococcus epidermidis, Proteus vulgaris, Enterococcus faecalis, and Candida albicans. Twelve strains, isolated from different sources, were chosen as promising candidates, producing a number of AS. Production of AS varied within 24 to 72 h, increasing in a culture medium based on natural sea water with Br-ions, and after attachment to polymeric surfaces. In order to study the influence of adsorption, selected strains with a high potential for antimicrobial production were cultivated on polymeric surfaces with different hydrophobicities and chemical functionalities. These parameters of the surface hydrophobicity (measured by means of water contact angles) and chemical functionality of the surfaces were manipulated using the photo- and thermochemistry of a polymeric system (diazo-naphto-quinone/novolak) commonly used as a photoresistant material in semiconducto-manufacturing. The highest antimicrobial activities occurred on hydrophilic surfaces (standard exposed photoresistant films), whereas the number of attached cells was greater on hydrophobic surfaces, characterized as unexposed resistant films. These results suggest that the chemical nature of induced hydrophilicity may also be a major factor in controlling antimicrobial activity of adsorbed bacteria. Received: 5 March 1997 / Accepted: 24 August 1997  相似文献   

11.
Thirty species of temperate-zone sponges representative of all orders of the Demospongiae have been tested for antibacterial activity. The results indicate the following: that a higher percentage of temperate than tropical species produced active extracts (87% as opposed to 58%); that sponge extracts more frequently inhibited the growth of marine bacteria than they did non-marine bacteria (76.5% compared to 56%); that 46.5% of the extracts tested inhibited growth of Gram-negative bacteria while only 6.5% inhibited growth of Gram-positive bacteria. There is no obvious correlation between incidence of antibacterial activity and latitude of occurrence, systematic group or growth form of the sponge. It is suggested that antibacterial agents produced by sponges may have a role in enhancing the efficiency with which sponges retain bacterial food.  相似文献   

12.
Larval settlement in the marine polychaete Hydroides elegans (Haswell) is induced by certain bacteria in marine biofilms. The exact nature of the settlement cue that larvae of H. elegans receive from these bacteria remains unknown. In this study, we revealed some properties of the bacterially derived larval settlement cue by investigating the larval settlement inductive activity of two bacterial strains after various treatments. These two bacterial strains, Roseobacter sp. and an α-subclass Proteobacteria, are highly inductive to larval settlement of H. elegans. The larvae responded similarly to Roseobacter and Proteobacteria in all the larval settlement bioassays, suggesting that the larval settlement-inducing substances produced by these bacteria may share common characteristics. First of all, the larvae did not settle in the seawater conditioned by the bacteria attached as a film or by the bacteria that were freely suspended in seawater. The results suggest that the putative larval settlement cue is not released into seawater and, therefore, should be associated with the surface of the bacteria. Secondly, formaldehyde treatment entirely eliminated the larval settlement induction activity of the bacterial films, and streptomycin treatment reduced the percentage of larval settlement on the bacterial films in a concentration-dependent manner. Since both treatments can kill bacteria with little damage to the surface chemistry of bacterial cells, the decline in larval settlement is suggested be due to a reduction of the viable bacterial population in the bacterial films. In fact, the reduction of larval settlement in the streptomycin treatments coincided with the decrease in viable bacterial populations in broth cultures containing respective concentrations of streptomycin. These results suggest that the viability of Roseobacter and Proteobacteria is important to their settlement induction effect. Since the larval settlement induction activity of the bacterial strains appears to correlate with their viability, we suggest that the putative larval settlement cue is derived from a metabolic pathway in the bacteria and that the cue is exported to and concentrated at the extracellular polymer matrix of the bacterial cell, at which the larvae establish contact with the bacteria. The larval settlement cue may be highly susceptible to degradation so that a metabolically active bacterial film is needed to maintain the putative cue at a concentration that surpasses the threshold for induction of larval settlement. Received: 14 October 1998 / Accepted: 5 September 2000  相似文献   

13.
The influence of added organic nutrients on the bactericidal capacity of natural and synthetic sea water was investigated, with special reference to levels below the normal concentration of orgnnic matter in natural sea water. Resting cells of Escherichia coli, Staphylococcus aureus and Serratia marinorubra were used as test organisms. The inactivation of test bacteria in synthetic and filter-sterilized natural sea water could be increased by addition of ZoBell's 2216E-broth (containing peptone and yeast extract), peptone or glucose. This effect of the nutrients depended on chemical nature and concentration as well as on specific properties of the test strains. In regard to peptone, less than 10-4 mg/ml must be added to induce bacterial kill exceeding that observed with unsupplemented controls. With raw sea water, no fundamentally different results were obtained; however, the influence of marine bacteria was clearly discernible. All findings support a previously offered hypothesis of nutrient-dependent antibacterial activity of sea water which is discussed in detail.  相似文献   

14.
The Caribbean sponge, Plakortis simplex, is known to contain a large array of secondary metabolites, including the antimalarial polyketide plakortin, several unusual glycolipids, and some hopanoids, which closely resemble typical bacterial metabolites. The hypothesis that they could be products of bacterial metabolism was tested by localizing specific metabolites in cells using physical separation of sponge cells, bacterial symbionts and supernatant by differential centrifugation. The obtained fractions were analysed separately for the typical P. simplex metabolites by NMR and mass spectrometry, and most of them were shown to be present in the bacterial cells but not in the sponge cells. In addition, PCR screening showed that the biosynthetic pathway for glycosphingolipids was present in the bacterial cells. Isolation of a Sphingomonas strain PS193 from P. simplex and subsequent glycosphingolipid analysis resulted in the detection of a known glycosphingolipid, GSL-1, that did, however, not match the glycosphingolipid profile of P. simplex. Therefore, it is unlikely that Sphingomonas strain PS193 is an abundant member of the microbial community associated with P. simplex. Other glycosphingolipid producing bacteria in P. simplex remain to be identified. In conclusion, this study provides experimental evidence that the glycolipids and hopanoids and possibly also the polyketide plakortin are produced by microbial symbionts rather than the sponge from which the metabolites were originally isolated.  相似文献   

15.
Axial skeletons of two closely related, sympatric species of gorgonians were examined for details of gross morphology, internal organization and fine structure. Banded fibers with a periodicity of 430 Å and oriented circum-axially to the longitudinal axis of the skeleton (i.e., lying on the plane perpendicular to the axis), were revealed by electron microscopy in the axial skeleton of Muricea californica; they indicate the presence of a collagen-like protein in the gorgoin of this species. No circum-axial fibers were found in the axial skeleton of M. fruticosa. Differences in fine structure are related to gross morphological differences in the skeletons. A sequence of events for the addition of new material to the axial skeleton (growth) is described based on histological observation. Iodine-125 is used as a tracer for the deposition of new skeletal material, and is suggested as a new method for studying gorgonian growth rates.  相似文献   

16.
It was observed in vitro that some bacteria from different origins, including the sea, are capable of inhibiting the growth of several marine algae. However, there is too much difference between in vitro experiments and in situ environmental conditions to assume that bacterial poisons may rule a great deal of algac-bacteria relationships in the sea as a whole. In the author's opinion the importance of bacterial poison is limited to special and rare instances.  相似文献   

17.
Some bacteria strains have been isolated from marine algae cultures and assigned tentative genera and species. Observations and tests were conducted using Bergey's manual and specific papers on marine bacteria as taxonomic keys. The genera Pseudomonas, Flavobacterium and Achromobacter appear to be the most important, as far as the number of species is concerned.  相似文献   

18.
Films of bacteria on solid substrata can positively or negatively influence the attachment of marine invertebrate larvae. Effects of marine bacteria on the attachment of cypris larvae of the barnacle Balanus amphitrite Darwin were examined in the laboratory. Bacteria, grown to mid-exponential phase and allowed to adsorb irreversibly to polystyrene petri dishes, attached in densities of 107 cells cm-2. Assays (22h) were used to compare the effects of adsorbed cells of 18 different bacterial species on larval barnacle attachment. Most of the adsorbed bacteria either inhibited or had no effect on larval attachment compared to clean surfaces. Experiments testing the effect of larval age on barnacle attachment were conducted with six species of bacteria and showed that older larvae attached in higher percentages to clean surfaces and that bacterial films generally inhibited larval attaschment. Both the species of bacteria and the in situ age of the adsorbed bacteria affected barnacle attachment response: older films of Deleya (Pseudomonas) marina were more inhibitory. Bacterial extracellular materials may be involved in the inhibitory process.  相似文献   

19.
Linares C  Doak DF  Coma R  Díaz D  Zabala M 《Ecology》2007,88(4):918-928
The red gorgonian Paramuricea clavata is a long-lived, slow-growing sessile invertebrate of ecological and conservation importance in the northwestern Mediterranean Sea. We develop a series of size-based matrix models for two Paramuricea clavata populations. These models were used to estimate basic life history traits for this species and to evaluate the viability of the red gorgonian populations we studied. As for many other slow-growing species, sensitivity and elasticity analysis demonstrate that gorgonian population growth is far more sensitive to changes in survival rates than to growth, shrinkage, or reproductive rates. The slow growth and low mortality of red gorgonians results in low damping ratios, indicating slow convergence to stable size structures (at least 50 years). The stable distributions predicted by the model did not differ from the observed ones. However, our simulations point out the fragility of this species, showing both populations in decline and high risk of extinction over moderate time horizons. These declines appear to be related to a recent increase in anthropogenic disturbances. Relative to their life span, the values of recruitment elasticity for Paramuricea clavata are lower than those reported for other marine organisms but are similar to those reported for some long-lived plants. These values and the delayed age of sexual maturity, in combination with the longevity of the species, show a clear fecundity/mortality trade-off. Full demographic studies of sessile marine species are quite scarce but can provide insight into population dynamics and life history patterns for these difficult and under-studied species. While our work shows clear results for the red gorgonian, the variability in some of our estimates suggest that future work should include data collection over longer temporal and spatial scales to better understand the long-term effects of natural and anthropogenic disturbances on red gorgonian populations.  相似文献   

20.
Paramuricea clavata (Risso, 1826) and Eunicella singularis (Esper, 1794) are the most representative gorgonian species in hard bottoms sublittoral communities in the Western Mediterranean Sea. Reproductive cycles of two populations of both species were studied in two distinct locations approximately 600 km apart (Medes Islands and Cape of Palos), in order to assess interpopulation variability on a relevant geographic scale. Seasonal variation of lipid concentration levels in the gorgonian tissue was used as a tool to quantify energy storage by each studied population in order to explain possible interpopulation differences in gonadal output. Sex ratio in Medes Islands populations of both species was 1:1, while in Cape of Palos sex ratio was significantly male biased (1:7) in P. clavata, and female biased (1.7:1) in E. singularis populations. Spawning timing occurred in all cases coinciding with a marked increase in sea-water temperature in spring, and after the most successful feeding season, but comparing localities there was a clear temporal shift in the time of gametes release, appearing well linked to the shift in sea-water temperature rising in spring in both sites at the depth where populations are placed. Therefore, in this study the temperature appears as the main synchronizing factor of gonadal development within these populations. Significant differences in gonadal volume per polyp were found in both species owing mainly to differences in the number of gonads per polyp between populations, with Cape of Palos populations displaying higher values in both studied species, suggesting that the exposition to different local conditions may be reverted in a different gonadal output. But the observed patterns in lipid concentrations levels in gorgonians disable us to conclude that lipid concentration levels explain the observed differences in gonadal output found in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号