首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 981 毫秒
1.
采用Fenton试剂氧化—曝气生物滤池组合工艺对某制药厂常规生化处理后的废水进行深度处理.实验结果表明,Fenton试剂氧化的适宜操作条件为pH=5,ρ(H2O2)∶COD=1.5、n(H2O2)∶n(Fe2+)=2,反应时间为60min.经氧化处理后的废水再进入曝气生物滤池进行生化处理,最终出水COD小于80 mg/L,色度小于10倍,处理效果良好.  相似文献   

2.
采用Fenton试剂氧化—原水调节出水pH法预处理碱性印染废水,考察了n(H2O2):n(Fe2+)、Fenton试剂加入量、反应时间和原水与Fenton试剂氧化反应后出水体积比(配水比)对COD去除率及废水pH的影响.实验结果表明,在原水COD为986 mg/L、原水pH为9.31、Fe2+加入量为12 mmol/L、n(H2O2):n(Fe2+)为2、反应时间为30 min、配水比为2的最佳条件下,COD去除率为26.9%,出水pH为6.60.药剂成本较普通Fenton试剂氧化法减少70%.  相似文献   

3.
采用分步化学沉淀法分别脱除并回收磷酸铁生产废水中的高浓度磷酸根和硫酸根。实验结果表明:在以n(Fe~(3+))∶n(PO_4~(3-))=1.0的比例加入硫酸铁、反应时间为40 min、反应温度为25℃、废水初始p H为8.17、反应30 min时二次调节废水p H至5.50的条件下,磷酸根去除率可达98%以上,所得沉淀中Fe和P的质量分数分别为36.77%和18.81%,成分简单,回收价值高;采用氢氧化钙作为沉淀剂,在n(Ca~(2+))∶n(SO_4~(2-))=1.0的条件下可将废水中硫酸根质量浓度由78.62 g/L降至2.16 g/L,硫酸根去除率为97.3%,硫酸钙回收量为120.2 g/L;最终出水的磷酸根质量浓度小于0.5 mg/L,满足GB 8978—1996《污水综合排放标准》的一级标准。  相似文献   

4.
宋扬  汪晓军 《化工环保》2008,28(1):54-58
采用絮凝沉淀-Fenton试剂氧化法处理含高浓度硫酸盐的洗涤剂生产废水(简称废水),考察了各种因素对COD去除率的影响。实验结果表明:根据实际废水的水质情况,选用聚合氯化铝(PAC)为絮凝剂,PAC最佳加入量为0.3g/L,经絮凝处理后COD去除率为42.3%;Fenton试剂氧化的最佳操作条件为:n(H2O2):n(Fe^2+)=0.5、H2O2加入量为7mmol/L、反应时间为2h,不调节废水初始pH,经Fenton试剂氧化处理后COD去除率为70%以上。经絮凝沉淀-Fenton试剂氧化法处理后,废水COD由1950mg/L降至240mg/L,总的COD去除率为87.7%,废水处理效果良好。  相似文献   

5.
以靛蓝为目标污染物,采用稀土元素Pr辅助的类Fenton试剂氧化法处理模拟染料废水。制备了双金属氧化物催化剂Fe2-xPrxO3,考察了催化剂中n(Pr)∶n(Fe)、催化剂加入量、初始靛蓝质量浓度、H2O2加入量、废水pH对废水脱色效果的影响。实验结果表明:Pr在很大程度上提高了类Fenton反应的效率,废水脱色率得到显著提高;在n(Pr)∶n(Fe)=1∶5、初始靛蓝质量浓度为30 mg/L、催化剂加入量为500 mg/L、H2O2加入量为40 mL/L、废水pH为3的最佳工艺条件下,反应50 min时废水脱色率达到92.78%。  相似文献   

6.
树脂吸附-Fenton 试剂氧化法预处理炼油碱渣废水   总被引:1,自引:0,他引:1  
采用树脂吸附-Fenton 试剂氧化组合工艺对某炼油企业炼油碱渣废水进行预处理.实验确定的最佳工艺条件为:3 种树脂串联吸附,废水流量0.33 mL/ min,H2O2加入量0.20 mol / L,n(H2O2)1 n(Fe2 +)= 12,Fenton 试剂氧化进水pH 3,Fenton 试剂氧化反应时间120 m...  相似文献   

7.
pH调节-Fenton试剂氧化法预处理间甲酚生产氧化废水   总被引:15,自引:2,他引:13  
采用pH调节结合Fenton试剂氧化的方法对间甲酚生产氧化废水进行预处理,探讨了pH调节条件及Fenton试剂氧化条件对废水处理效果的影响。结果表明,在室温下将废水pH调节至4.0时,由于其中的部分有机污染物析出,COD可以从78000mg/L下降至61000mg/L,COD去除率达20%以上;接着在H2O2质量浓度与COD的比值为0.18、Fe^2+与H2O2质量浓度的比值为0.267、反应时间为20min的条件下对废水进行Fenton试剂氧化处理,COD可以进一步下降至26000mg/L,COD去除率接近70%。  相似文献   

8.
Fenton试剂降解选矿废水中残余黄药   总被引:2,自引:0,他引:2  
徐劲  孙水裕  张萍  蔡河山 《化工环保》2005,25(2):125-127
采用Fenton试剂处理选矿废水中残余的黄药,分别考察了氧化时间、反应初始pH、Fe^2 浓度及H2O2用量对黄药降解效果的影响;用正交实验确定了4个因素的最佳条件。结果表明,反应初始pH和H2O2用量是影响黄药去除效果的主要因素。氧化时间为60min、反应初始pH为4、Fe^2 质量浓度为20mg/L、H2O2质量浓度为20mg/L、黄药质量浓度为:125mg/L时,黄药的去除率达到99.5%,COD去除率为87.5%。  相似文献   

9.
采用大孔树脂吸附—Fenton试剂氧化法预处理含邻苯二甲酸二异丁酯(DIBP)废水。大孔树脂吸附工段的最佳实验条件为:以树脂NDA88为吸附剂,废水pH为2。NDA88经过10批次的连续使用,COD去除率基本稳定在58%左右,脱附率可达96%以上,吸附后废水COD为12 000 mg/L左右。Fenton试剂氧化工段的最佳实验条件为:H2O2加入量70 mL/L,n(H2O2):n(Fe2+)=4,废水pH 4。在此最佳条件下进行实验,Fenton试剂氧化工段COD去除率达65%,处理后废水COD为4 200 mg/L。  相似文献   

10.
采用实验室自制的K2Fe O4对焦化废水进行氧化-混凝深度处理。考察了K2Fe O4加入量、初始废水p H、反应温度等因素对废水处理效果的影响。采用紫外光谱和GC-MS技术对处理前后的焦化废水进行表征。实验结果表明,在K2Fe O4加入量为8.8 mg/L、初始废水p H为4、反应温度为20℃、反应时间为30 min的条件下处理COD为252 mg/L、TOC为159.24 mg/L、浊度为24.90 NTU的焦化废水,处理后废水COD为78 mg/L、TOC为62.10 mg/L、浊度为9.46 NTU,去除率均可达60%以上。表征结果显示,高铁酸盐的氧化-混凝耦合作用对焦化废水中的有机物去除效果明显,处理后废水中的有机物种类和浓度大幅下降。  相似文献   

11.
采用Fenton氧化—好氧活性污泥法处理邻苯二甲酸二丁酯(DBP)废水,优化了Fenton氧化反应的工艺条件。实验结果表明:在H2O2加入量4 g/L、Fe2+加入量200 mg/L、反应温度60 ℃、废水pH 4、反应时间60 min的最佳工艺条件下,Fenton氧化出水COD为200~250 mg/L,DBP质量浓度约为0.10 mg/L;在污泥质量浓度2 000 mg/L、DO 2~3 mg/L、水力停留时间8 h的条件下,好氧活性污泥法处理出水的COD基本低于50 mg/L,DBP质量浓度约为0.05 mg/L,均满足GB 8978—1996《污水综合排放标准》,可达标排放。  相似文献   

12.
分别采用传统沉淀法和并流加料沉淀法处理含铜锌废水,考察了废水进样速率、废水pH、搅拌速率对重金属离子残留质量浓度的影响。采用FTIR、XRD和SEM表征了所得污泥的物相和形貌。实验结果表明:并流加料沉淀法所得滤液中Zn~(2+)、Cu~(2+)和Al3+的质量浓度远低于传统沉淀法;在废水进样速率1.0 mL/min、废水pH 9、搅拌速率500 r/min的最佳工艺条件下,滤液中Cu~(2+)和Zn~(2+)基本没有残留,Al3+质量浓度仅为0.2 mg/L,达到工业排放标准;所得污泥结晶度良好,为类水滑石Cu_3Zn_3Al_2(OH)_(16)CO_3·4H_2O(PDF#37-0629)结构。  相似文献   

13.
谭克峰 《化工环保》2018,38(2):191-195
采用混凝—光催化氧化(UV-NaClO或UV-H_2O_2)组合工艺处理某石化企业煤制氢生产中排放的含氰废水,并在实验室研究(小试)的基础上进行了放大规模试验(中试)。小试结果表明:混凝工段的适宜工艺条件为不调节混凝pH、混凝剂投加量200 mg/L;相同氧化剂投加量下H_2O_2溶液氧化降解氰化物的能力较NaClO溶液强,后者虽可将总氰化物质量浓度降至1 mg/L以下,但氧化剂消耗量过大。经反复试验和综合分析,将中试工艺改进为沉降—UV-H_2O_2工艺。中试结果表明:采用沉降—UV-H_2O_2工艺处理含氰废水,处理效果显著且稳定,处理成本低廉(约为8元/m3),值得推广。  相似文献   

14.
二甲基二硫代氨基甲酸钠处理锌冶炼含镉废水   总被引:1,自引:0,他引:1       下载免费PDF全文
何厚华  朱挺健  刘泽  陈曼  王檑 《化工环保》2015,35(3):293-296
以二甲基二硫代氨基甲酸钠(福美钠)作为脱镉螯合剂,以聚合氯化铝作为絮凝剂,脱除含镉废水中的Cd2+。在考察福美钠加入量、搅拌时间、聚合氯化铝加入量、沉淀时间等工艺条件对Cd2+脱除效果影响的单因素实验的基础上,采用正交实验对工艺参数进行进一步优化。实验结果表明:在福美钠加入量为1.0 g/L、搅拌时间为20 min、聚合氯化铝加入量为0.2 g/L、沉淀时间为5 h的最佳工艺条件下,采用福美钠处理初始Cd2+质量浓度为100 mg/L的锌冶炼含镉废水,剩余Cd2+质量浓度降至0.008 mg/L,Cd2+去除率为99.99%,处理后的废水达到GB8978—1996《污水综合排放标准》。  相似文献   

15.
采用Fenton氧化法处理石化含油废水生化出水,通过正交实验和单因素实验优化了反应工艺条件。正交实验得到各因素对COD去除率的影响大小顺序为:溶液初始pHH_2O_2投加量n(H_2O_2)∶n(Fe~(2+))反应温度。实验最佳工艺条件为:初始溶液pH 4.0,H_2O_2投加量3.00 mL/L,n(H_2O_2)∶n(Fe~(2+))=10,反应温度35℃,反应时间60 min。在此最佳工艺条件下COD可降至60.33 mg/L,COD去除率达61.33%。在最佳工艺条件下,分别采用超声(US)-Fenton氧化和紫外光(UV)-Fenton氧化技术处理含油废水生化出水,COD去除率分别达76.77%和80.23%。但单一Fenton氧化、US-Fenton氧化和UV-Fenton氧化工艺对NH_3-N的去除效果均并不明显。  相似文献   

16.
曹国民  孙霄  盛梅  沈晓强  金磊 《化工环保》2015,35(6):609-613
针对江苏省某化工园区集中式污水处理厂出水COD和TP高于DB32/939—2006《江苏省化学工业主要水污染物排放标准》规定的排放限值的情况,采用Fenton氧化工艺对该污水处理厂装置进行升级改造。小试最佳工艺条件为:初始污水pH 3.0~3.5,H_2O_2(质量分数30%)加入量0.8 m L/L,FeSO_4·H_2O加入量0.8 g/L,反应时间120min,Fenton氧化反应结束后中和反应的适宜pH约为7.0。升级改造工程包括2套并联运行的处理能力各为10 km~3/d的Fenton氧化系统,装置稳定运行后最终控制H_2O_2加入量为150 L/h,FeSO_4·7H_2O溶液加入量为700 L/h,相应的处理后出水COD和TP分别稳定在60 mg/L和0.4 mg/L以下,可达标排放。每吨污水的处理药剂成本约为0.9元。  相似文献   

17.
采用水力空化-Fenton氧化联合超声吸附处理煤气化废水,考察了单独Fenton氧化及单独水力空化工艺条件,并对Fenton氧化、水力空化和水力空化-Fenton氧化工艺处理过程进行了动力学初探。实验结果表明:在反应时间60 min、废水pH 3.0、Fe~(2+)加入量900 mg/L、H_2O_2加入量3 600 mg/L、空化压力0.4 MPa的条件下,水力空化-Fenton处理煤气化含酚废水的COD和苯酚去除率分别为93.05%和90.29%;进一步采用超声吸附处理后,出水COD和苯酚质量浓度分别为92.9 mg/L和4.5 mg/L,达到GB 8978—1996《污水综合排放标准》三级指标。  相似文献   

18.
采用Na BH4还原法将羟基乙叉二膦酸(HEDP)镀铜废液中的Cu~(2+)制备成纳米铜粉,并采用聚丙烯酰胺(PAM)对还原反应后的废液进行絮凝处理。研究了n(Cu~(2+))∶n(Na BH4)、还原反应温度、还原反应时间及PAM添加量对废液中剩余Cu~(2+)质量浓度的影响,并对回收的纳米铜粉进行了XRD和TEM表征。实验结果表明:当n(Cu~(2+))∶n(Na BH4)=4∶6、还原反应温度为50℃、还原反应时间为2 h时,废液中剩余Cu~(2+)质量浓度降低至1.1 mg/L,Cu~(2+)还原率达99.99%;可获得粒径为20~45 nm的近球型、高纯度、由多晶组成的纳米铜粉;当PAM添加量为10 mg/L时,废液中剩余Cu~(2+)质量浓度降至0.35 mg/L以下,达到GB 21900—2008《电镀污染物排放标准》(小于0.5 mg/L)的要求。  相似文献   

19.
分别采用臭氧氧化和Fenton氧化两种高级氧化法对毛皮加工工业园区集中废水处理厂的进水进行了预处理,考察了各工艺条件对废水COD去除效果的影响,并比较了两种方法对废水可生化性的改善情况。实验结果表明:在初始废水pH为8、臭氧投加速率为1.2 g/h的最适宜条件下,臭氧氧化法的COD去除率最高达72.7%,废水的可生化性显著提高,废水BOD5/COD由初始的0.06提高至0.12;在,n(Fe~(2+)):月(H_2O_2)=1:10、H_2O_2投加量为1.5 mL/L,、初始废水pH为2.5的最适宜条件下,Fenton氧化的COD去除率最高达33.4%,但废水可生化性不大;经臭氧氧化和Fenton氧化处理后,废水中的不饱和结构物质均得到了有效降解。  相似文献   

20.
研究了苯酚在新型臭氧氧化体系O_3-Ca(OH)_2体系中的降解与矿化效果。实验结果表明:苯酚及TOC的去除率都随着Ca(OH)_2用量(小于2 g/L)、进气臭氧质量浓度(小于75 mg/L)、进气流量(小于3.0 L/min)的增大以及初始苯酚质量浓度的减小而增加,但受反应压力和液相温度的影响较小;当Ca(OH)_2用量大于3 g/L时,苯酚和TOC的去除率在30 min和55 min时分别达到了100%左右;Ca~(2+)的存在实现了羟基自由基清除剂CO_3~(2-)的实时分离去除,从而强化了臭氧氧化过程中苯酚的降解与矿化。这表明,O_3-Ca(OH)_2体系是一种处理难降解有机废水的高效臭氧氧化新体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号