首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerosol samples of PM10 and PM2.5 are collected in summertime at four monitoring sites in Guangzhou, China. The concentrations of organic and elemental carbons (OC/EC), inorganic ions, and elements in PM10 and PM2.5 are also quantified. Our study aims to: (1) characterize the particulate concentrations and associated chemical species in urban atmosphere (2) identify the potential sources and estimate their apportionment. The results show that average concentration of PM2.5 (97.54 μg m−3) in Guangzhou significantly exceeds the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg m−3. OC, EC, Sulfate, ammonium, K, V, Ni, Cu, Zn, Pb, As, Cd and Se are mainly in PM2.5 fraction of particles, while chloride, nitrate, Na, Mg, Al, Fe, Ca, Ti and Mn are mainly in PM2.5-10 fraction. The major components such as sulfate, OC and EC account for about 70–90% of the particulate mass. Enrichment factors (EF) for elements are calculated to indicate that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) are highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Ambient and source data are used in the multi-variable linearly regression analysis for source identification and apportionment, indicating that major sources and their apportionments of ambient particulate aerosols in Guangzhou are vehicle exhaust by 38.4% and coal combustion by 26.0%, respetively.  相似文献   

2.
抚顺市PM10中元素分布特征及来源分析   总被引:4,自引:2,他引:2  
为了确定抚顺市PM10中元素的浓度特征及其来源,于2006—2007年的采暖季、风沙季和非采暖季在抚顺市的6个采样点采集PM10样品,并用等离子体原子发射光谱法(ICP-AES)测定样品中Ti、Al、Mn、Mg、Ca、Na、K、Cu、Zn、As、Pb、Cr、Ni、Co、Cd、Fe、V等17种元素的含量。结果表明,Al、Mg、Ca、Na、K、Mn、Fe等地壳元素在17种元素中占有较大比重,全年平均达到97.0%。富集因子分析结果表明,Cu、Zn、Pb、Cr、Co、Cd等元素在各季和各采样点明显受到人为活动影响,是典型的污染元素。主因子分析结果显示,土壤风沙尘、建筑尘、燃煤尘、道路扬尘、机动车尾气排放、金属冶炼、锰、铜、钛工业源是抚顺市PM10中元素的主要来源。  相似文献   

3.
The chemical speciation of nine heavy metals in intertidal sediments from Quanzhou Bay was determined using a modified sequential extraction procedure, proposed by the Commission of the European Community Bureau of Reference. The results show that Mn presents the highest percentage in the acid-soluble fraction, and Pb and Cu present the highest percentages in the reducible fraction. The highest percentages of Fe, V, Cr, Ni, Zn, and Co were found in the residual fraction. The mobility order of the heavy metals studied on the basis of the nonresidual content of the elements is Mn > Pb > Cu > Co > Zn > Ni > Cr > V > Fe. The assessment on potential ecological risk indices of some heavy metals indicates that Zn, Ni, and Cr show moderate contamination, while Cu and Pb show slighter contamination. On the whole, the comprehensive potential ecological risk index of Cu, Zn, Ni, Cr, and Pb in the sediments presents moderate degree.  相似文献   

4.
To document the spatial distribution and metal contamination in the coastal sediments of the Al-Khafji area in the northern part of the Saudi Arabian Gulf, 27 samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis using inductively coupled plasma-mass spectrometer (ICP-MS). The results revealed the following descending order of the metal concentrations: Sr > Fe > Al > As > Mn > Ni > V > Zn > Cr > Cu > Pb > Co > Hg > Cd. Average levels of enrichment factor of Sr, As, Hg, Cd, Ni, V, Cu, Co, and Pb were higher than 2 (218.10, 128.50, 80.94, 41.50, 12.31, 5.66, 2.95, 2.90, and 2.85, respectively) and that means the anthropogenic sources of these metals, while Al, Zn, Cr and Mn have enrichment factor less than 2, which implies natural sources. Average values of Sr, Hg, Cd, Cr, Ni, and As in the coastal sediments of Al-Khafji area were mostly higher than the values recorded from the background shale and earth crust and from those results along coasts of the Caspian Sea and the Mediterranean Sea. The highest levels of Cu in the northern part of the studied coastline might be due to Al-Khafji desalination plant, while levels of Al, Ni, Cr, Fe, Mn, Pb, and Zn in the central part may be a result of landfilling and industrial sewage. The highest levels of As, Cd, Co, Cu, Hg, and V in the southern part seem to be due to oil pollutants from Khafji Joint Operations (KJO). The higher values of Sr in the studied sediments in general and particularly in locality 7 could relate to the hypersalinity and aragonitic composition of the scleractinian corals abundant in that area.  相似文献   

5.
北京灰霾天气PM10中微量元素的分布特征   总被引:5,自引:1,他引:4       下载免费PDF全文
采用电感耦合等离子体质谱法(ICP-MS)对北京市2008年4月和5月不同采样点采集的灰霾天PM10样品中的15种微量元素进行了分析,得出了Ti、Fe、Zn、Sn、Pb为全样样品中相对含量较高元素;Ti、Mn、Ni、Cu、Zn、Pb是水溶样样品中相对含量较高元素。与晴天相比,灰霾天样品中微量元素可溶性增强,对人体危害更严重。与2002年分析数据进行对比,因2002年缺少Cr、Cd元素的测试值,全样样品中除了Co、Ni、Cu、Mo元素外,其余测试元素的浓度均有不同程度的升高,Fe和Sn元素的增幅最大。水溶样品中,参与对比元素的含量均下降。文中对含量相对较高的Cr、Mn、Fe、Cu、Zn、Cd、Sn和Pb元素进行了源解析,分析得出采样点附近的交通源及地面扬尘是这些元素的主要来源。  相似文献   

6.
Forty-two soil and apple samples from central Greece were collected and analyzed with regards to the content in major (Ca, Fe, K, Mg, Na, P, and S) and trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Sc, Se, Sr, Ti, and Zn). Soil samples were analyzed by inductively coupled plasma atomic emission spectrometry, while for the apples inductively coupled plasma mass spectrometry was implemented. Several elements such as As, B, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, Ti, and Zn, represent high concentrations in apples from the study area. These relatively high concentrations may be a consequence of the local geology, along with the excessive application of agricultural products such as fertilizers and agrochemicals.  相似文献   

7.
A sequential extraction procedure was carried out to determinate the concentrations of 11 elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in different geochemical phases of sediments collected along the Hugli (Ganges) River Estuary and in the Sundarban mangrove wetland, eastern coastal part of India. The chemical speciation of elements was determined using the three-step sequential extraction procedure described by the European Community Bureau of Reference. Total metal concentration was determined using a microwave-assisted acid digestion procedure. Metal concentrations were near the background level except for As for which a moderate pollution can be hypothesized. The mobility order of the metals was: Cd?>?Mn?>?Cu?>?Zn?>?As?>?Co?>?Pb?>?Ni?>?Fe?>?Cr?>?Al. The highest percentage of Cd (>60%) was found in the most labile phase. Residual fraction was prevailing for Fe, Cr and Al, while Pb was mainly associated with the reducible fraction. Data were compared with Sediment Quality Guidelines to estimate the relationship between element concentrations and adverse biological effects on benthic community, finding the possibility of some toxic effects due to the presence of As in the entire studied area and Cd, only in Calcutta.  相似文献   

8.
The aim of this paper is to evaluate total and bioavailable concentration of heavy metals in agricultural soils in order to estimate their distribution, to identify the possible correlations among toxic elements and the pollution sources, to distinguish the samples in relation to sampling site or to sampling depth, and to evaluate the available fraction providing information about the risky for plants. In particular, we reinvestigated total concentrations of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V, and Zn and available concentrations of As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, and Zn in soil from Apulia (Southern Italy). Analytical results showed that total concentrations, for all soils, are in the range permitted by regulations in force in Italy, but some soils evidence slight enrichment of Cd, Cr, Cu, Pb, and Zn. All the heavy metals in the available fraction were below the detection limits of the analytical techniques used except Cu, Ni, Pb, and Zn.  相似文献   

9.
Heavy Metal Pollution of Surface Soil in the Thrace Region, Turkey   总被引:1,自引:0,他引:1  
Abstact Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 35 elements in the soil samples. Concentrations of As, Cd, Co, Cu, Mn, Ni, Pb and Zn were determined using AAS and GF AAS, and ENAA was used for the remaining 27 elements. Results for As, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu Eu, Fe, Hf, I, In, K, La, Mn, Mo, Na, Nd, Ni, Pb, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, V and Zn are reported for the first time for soils from this region. The results show that concentrations of most elements were little affected by the industrial and other anthropogenic activities performed in region. Except for distinctly higher levels of Pb, Cu, Cd and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. Spatial distributions of As, Cd, Cr, Cu, Ni, Pb and Zn were plotted in relation to the concentration values in soil using Geographic Information System (GIS) technology  相似文献   

10.
Metal contents (Al, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Ti, and Zn) have been measured in 30 surface soils on Fildes Peninsula, King George Island, Antarctica, yielding values (in milligrams kilogram(-1)) of 41.57-80.65 (Zn), 2.76-60.52 (Pb), 0.04-0.34 (Cd), 7.18-25.03 (Ni), 43,255-70,534 (Fe), 449-1,401 (Mn), 17.10-64.90 (Cr), 1,440-25,684 (Mg), 10,941-49,354 (Ca), 51.10-176.50 (Cu), 4,388-12,707 (Ti), 28,038-83,849 (Al), and for Hg (in nanograms gram(-1)) 0.01-0.06. Relative cumulative frequency analysis was used to determine the baseline values for the 13 metals. Compared with adjacent areas in Antarctica, Mg and Ni are significantly lower, but Cu is significantly higher than that of McMurdo Station. Enrichment factor analysis and the geo-accumulation index method were applied in order to determine the extent of anthropogenic contamination, and both show that Pb, Cd, and Hg have been significantly increased by human activities. Principal component analysis was used to identify the sources of metals in these soil samples.  相似文献   

11.
Airborne particulate trace metals have important health implications. As a consequence, their concentrations are increasingly monitored in many urban locations worldwide. In this study, fine atmospheric particles (PM(2.5)) were collected in Singapore over a period of 83 consecutive days during 2000, and analysed to determine the concentration of trace elements using ICP-MS. Altogether, eighteen airborne trace metals were quantified: Al, Ag, Ba, Cd, Cr, Co, Cu, Fe, Ga, Li, Mn, Ni, Pb, Sr, Zn, V, Si, and Ti. While Li was the least abundant trace metal with a mean concentration of 0.2 ng m(-3), Zn showed the maximum mean concentration of 279.1 ng m(-3). Calculation of enrichment factors indicated that the elements Pb, Zn, Cd, V, Ni, Cr, and Cu were enriched by factors of 30 to 5000 relative to their natural abundance in crustal soil. The extent of metal pollution in the study area was assessed by comparing the measured concentrations to those reported in the literature for a selected number of urban sites in other parts of the world. Factor analysis was used to identify the major sources affecting particulate air pollution in Singapore. The sources that contribute to the loading of trace metal-bearing aerosols in the Singapore urban atmosphere include fuel oil-fired power plants, metal processing industry, land reclamation and construction activities, municipal solid waste incinerators, and traffic emissions.  相似文献   

12.
Multi-elemental profiles in bark of green ash trees collected in three representative areas of Buenos Aires, Argentina and Montevideo, Uruguay, were assessed as potential air pollution indicators. Ten elements: Al, Ba, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn, were measured using inductively coupled plasma optical emissions spectrometry from 70 samples collected in different environments: central, residential and rural (reference site), in order to compare spatial patterns of metal concentration. The samples used as a control were collected from a nature reserve situated far away from any significant influences, not even a nearby road. The reference site (RF) exhibited the lowest concentrations of Al, Cr, Fe, Ni, Pb, and Zn. However, Ba and Mn showed similar concentrations in all measured sites. Magnesium is the only element that had a greater concentration in RF than at the other sites. Copper did not show any clear pattern. The Centre of Montevideo (MVD) showed higher concentrations of Al, Ba, Cr, Fe, Pb and Zn than the Centre of Buenos Aires (BA). In the A sectors, Montevideo (SAMVD) showed higher concentrations of Al, Cu, Mg, Ni, and Zn and lower concentrations of Ba, Cr, Fe, Mn, and Pb than Buenos Aires (SABA). In the B sectors, Montevideo (SBMVD) showed higher concentrations of Al, Ba, Cu, Fe, Pb, and Zn and lower concentrations of Cr and Mg than Buenos Aires (SBBA), but similar concentrations of Mn and Ni. The use of bark for biomonitoring metals allowed us to detect concentration differences related to the urban fabric and the different kinds of vehicles and their fuels. In the cities, the differences in metal concentrations detected in bark were more striking between the sectors than between centers, despite CBA being much larger than CMVD in population, extension and vehicular traffic.  相似文献   

13.
Lichens and cryoconite (rounded or granular, brownish-black debris occurring in holes on the glacier surface) from Ny-Ålesund were used for understanding the elemental deposition pattern in the area. Lichen samples collected from low-lying coastal region and cryoconite samples from high altitudinal glacier area were processed and analysed for elements such as aluminium (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V) and zinc (Zn) through inductively coupled plasma mass spectrometry. Results showed that heavy metals, Al and Fe, are present in high concentration in the cryoconite samples. Al was also present in high amounts in seven of the eight lichen samples studied. The general scheme of elements in the decreasing order of their concentrations for most of the cryoconite samples was Al?>?Fe?>?Mn?>?Zn?>?V?>?Pb?>?Cr?>?Ni?>?Cu?>?Co?>?As?>?Cs?>?Cd while that for the lichen samples was Al?>?Fe?>?Zn?>?Mn?>?Pb?>?Cu?>?Cs?>?Cr?>?Ni?>?V?>?Co?>?As?>?Cd. Similarity in trends in the two sample types confirms that the environment indeed contains these elements in that order of concentration which overtime got accumulated in the samples. Overall comparison showed most elements to be present in high concentrations in the cryoconite samples as compared to the lichen samples. Within the lichens, elemental accumulation data suggests that the low-lying site (L-2) from where Cladonia mediterranea sample was collected was the most polluted accumulating a number of elements at high concentrations. The probable reasons for such deposition patterns in the region could be natural (crustal contribution and sea salt spray) and anthropogenic (local and long-distance transmission of dust particles). In the future, this data can form a baseline for monitoring quantum of atmospheric heavy metal deposition in lichens and cryoconite of Svalbard, Arctic.  相似文献   

14.
Concentrations of trace elements (Cd, Cu, Ni, Pb, V, and Zn) were determined in the soft tissues (adductor muscle and gills) of the pearl oyster Pinctada radiata and surficial sediments from two sampling sites located in the northern part of the Persian Gulf by Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS). Moreover, the levels of Li, Mg, Al, Mn, Fe, Cu, Sr, Ba, Pb, and Zn were measured in two shell layers (prismatic and nacreous) using Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). There were significant differences between the sampling sites with regard to mean concentrations of Cu, Mn, and Al in the prismatic layers of the shells. But in terms of the soft tissues, only in the case of Ni accumulation in the muscle significant differences between the sites could be observed. No significant differences could be found between the sites from the elements concentrations in the sediments point of view. The levels of Cd, Cu, Ni, and Zn in the gills were markedly higher than those in the muscle. Concentrations of Mn, Mg, Li, and Cu in the prismatic layer were significantly higher than in the nacreous but the reverse case could be found for Sr. The patterns of metal occurrence in the selected tissues, shell layers, and sediments exhibited the following descending order: Zn, Ni?>?Cd, Cu?>?V, and Pb and Zn, Ni, Cd?>?Cu, V, and Pb for muscle and gills, respectively; Zn?>?Cu, Ni, Pb, Cd, and V for sediments; Mg?>?Sr, Mn, Li, Al, Fe, Ba, Cu, Pb, and Zn for the prismatic layer; and Sr, Mg?>?Mn, Al, Fe, Li, Ba, Cu, Pb, and Zn for the nacreous layer. In most cases, the temporal variations of the elements levels in the prismatic layer were clearer than those in the nacreous layer (especially for Li, Mg, Mn, Pb, and Fe). Comparison of the gained data from this study with the other relevant researches shows that in most cases the levels of the elements in this investigation either fell within the range for other world areas or were lower. Generally, it can be concluded that the shell (especially prismatic layer) of P. radiata can be considered as a suitable proxy for temporal and spatial variations of the trace elements (and probably some environmental parameters) in the study area.  相似文献   

15.
Aerosol samples were collected in 1994 in Singapore on two occasions: once in June during the normal meteorological conditions and later in October during a long haze period caused by the heavy forest fire in Indonesia. Filtration and impaction collection methods were used simultaneously so that detailed elemental analysis of bulk as well as of different size fractions could be performed. Accelerator based nuclear analytical techniques such as Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering (RBS) and Nuclear Microscopy (NM) were used for analysis. These techniques are fast, truly multielemental and perfectly suited for routine analysis of a large number of aerosol samples. Typically all samples were analysed for the following 24 elements: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Mn, Cr, Fe, Co, Ni, Cu, Zn, Ga, As, Br, Rb, Sr and Pb. Detection limits for bulk analysis were generally below ng/m3 and for single particle analysis absolute detectable mass was approximately 10-17 g. Additionally, trace elements such as Cd, Sn, Sb and Ba whose characteristic X-ray lines were normally "obscured" by the lines of other more abundant elements, were detected when analysing by nuclear microscope in single particle mode.Judging by the average concentrations of lead and sulphur which are good indicators of industrial component of air pollution the situation in Singapore is satisfactory. Pb was typically found in concentrations of 5 to 50 ng/m3 and sulphur in concentrations of 1 to 2 µg/m3. These concentrations are well below limits set by the World Health Organisation (1500 ng/m3 and 40 µg/m3, respectively). On the other hand during the haze period the average concentrations of elements like S, K, Ti, V, Mn, Ni, As and Pb were found to be 3 to 6 times higher than usual. Results are presented and discussed.  相似文献   

16.
The geochemistry of coastal sediments of southern India was altered after the tsunami in 2004. A five-step sequential extraction procedure was applied to assess the effects of tsunami on mobility and redistribution of selected elements (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). Ten surface sediments and three cores were analyzed for different metal fractions (exchangeable, carbonate, reduced, oxidized, and residual). Total metal concentrations increased in mangrove sediments after the tsunami, but their spatial distribution did not show significant variation (except Mn). The sediments were mixed by the tsunami, and there was lack of variation in metal concentrations in different fractions with depth (except Pb and Mn). High concentrations of Pb and Zn occurred in the oxide fractions, whereas Cu, Cr, Cd, and Ni were high in the organic and sulfide-rich fractions. Metals in the residual fraction (lattice bound) had the highest concentration suggesting their non-availability and limited biological uptake in the system. Most of the metals (except Mn) do not constitute a risk based on the different geochemical indices.  相似文献   

17.
In this study, the concentrations of 13 elements (Al, Fe, Mn, Cr, Ni, Zn, Co, As, Pb, Cu, Mo, Hg, and Cd) were determined in the sediments of three different sites in the Kapulukaya Dam Lake between May 2007 and November 2008. They ranged from 1.47 to 4.64 for Al, 0.92 to 3.48 for Fe (in percent), 326.60 to 1053.00 for Mn, 98.00 to 1,116.00 for Cr, 24.70 to 127.10 for Ni, 14.80 to 124.20 for Zn, 11.0 to 43.20 for Co, 5.00 to 29.30 for Cu, 9.10 to 69.70 for As, 8.60 to 34.00 for Pb, 2.50 to 5.20 for Mo, 1.00 to 1.60 for Hg, and 0.50 to1.80 for Cd in microgram per gram dry weight sediment. The contamination degree of the sediment was assessed on the basis of enrichment factor and corresponding sediment quality guideline. The calculated enrichment factors (EF, measured metal vs. background concentrations) indicated that the effect of man-made activities on the occurrence of concentrations could be accounted for the majority of heavy metals namely Mn, As, Ni, Cu, Zn, Cr, Co, Mo, and Cd, whereas such affect was not detected for Hg and Pb. The maximum values of the EF were represented by As, minimum values by Hg at all sites. Mean EF values were 36.60 and 0.70 for As and Hg, respectively. This study has clearly assessed a certain level of heavy metal pollution in the region, based particularly on the findings from sediment.  相似文献   

18.
Transplants of the mosses Hypnum cupressiforme and Pseudoscleropodium purum used as active biomonitors of airborne trace elements were compared in a survey carried out at Trieste (NE Italy). Twelve elements were considered: Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Ti, V, Zn. Water-washed materials of H. cupressiforme and P. purum, collected in a remote area to prepare transplants, showed comparable content of all elements, excluding Pb. Transplants of P. purum showed a significantly higher accumulation of Al, Fe, Pb and Ti; higher levels of Cu and V were accumulated in H. cupressiforme. Losses of some elements occurred in some samples of both species; the most consistent losses regarded Cr and Mn. Accumulation data of Al, As, Cd, Hg, Zn found in the two transplanted sets were not correlated. Differences in element uptake in the two mosses are likely to depend mainly on morphology, and probably on the different forms of emission and deposition types of the elements. The two mosses showed an overall accordance in discriminating sites highly and scarcely affected by trace element depositions, although they accumulated some elements, in particular Hg and Zn, in different ways. P. purum proved to be a better accumulator than H. cupressiforme, showing similar or higher accumulation and lower loss of almost all elements, especially those related to particulate, dry depositions; H. cupressiforme could be effective in detecting large-scale patterns, related to wet depositions. These results indicate that these mosses cannot be used interchangeably for monitoring particular elements, and are able to provide complementary information on different, local and long-range deposition patterns.  相似文献   

19.
First cross-border atmospheric pollution of 11 heavy metals and toxic elements assessed by Hypnum cupressiforme was reported for a part of Southeastern Europe (Southeastern Bulgaria and European Turkey). Moss monitoring technique followed the main requirements of European Moss Survey. Moss samples were collected in April 2006 both in Bulgaria and Turkey. Concentration of Al, As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, and Zn were determined by ICP-AES. Interlaboratory parallel calibration (exchanged four moss samples from each country), standard reference moss materials (M2 and M3) results ensured the study. ANOVA showed no differences between measured results in both laboratories at the 99% confidence level. Principle Component Analyze proved two factors: F1 group of Al, As, Cd, Cr, Fe, Ni, and V and F2 of Cu, Pb, and Zn as main atmospheric pollutants. Results obtained showed approximately Cu and Pb high concentrations around Istanbul and Burgas and Zn pollution in Istanbul district. Arsenic cross-border atmospheric pollution in the study area of Southeastern Europe was found.  相似文献   

20.
Chemical fractionation of heavy metals in urban soils of Guangzhou, China   总被引:5,自引:0,他引:5  
Knowledge of the total concentration of heavy metals is not enough to fully assess the environmental impact of urban soils. For this reason, the determination of metal speciation is important to evaluate their environment and the mobilization capacity. Sequential extraction technique proposed by the former European Community Bureau of Reference (BCR) was used to speciate Cd, Cu, Fe, Mn, Ni, Pb, and Zn in urban soils from Guangzhou into four operationally defined fractions: HOAc extractable, reducible, oxidizable, and residual. The Cu, Fe, Ni, and Zn were predominately located in the residual fraction, Pb in the reducible fraction, and Cd and Mn within the HOAc extractable fraction. The order of Cd in each fraction was generally HOAc extractable > reducible > residual > oxidizable; Cu and Fe were residual > reducible > oxidizable > HOAc extractable; Mn was HOAc extractable > residual > reducible > oxidizable; Ni and Zn were residual > reducible > HOAc extractable > oxidizable; and Pb was reducible > residual > oxidizable > HOAc extractable. Cadmium was identified as being the most mobile of the elements, followed by Mn, Zn, Ni, Cu, Pb and Fe. Iron–Mn oxides can play an important role in binding Cd, Cu, Ni, Pb, and Zn and in decreasing their proportion associated with the residual fraction in the soils. With total concentrations of Cd, Cu, Ni, Pb, Zn, and Mn increase, these metals more easily release and may produce more negative effects on the urban environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号