首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
用原位红外分别进行了MnOx/Al-SBA-15催化剂上NH3和NO+O2的吸附态和瞬态实验以及NH3+NO+O2反应的稳态实验。结果表明,催化剂上存在着L酸位和B酸位,NH3吸附在催化剂上形成配位态的NH3和NH4+,配位态的NH3能脱氢形成—NH2活性中间态。NO+O2在催化剂上吸附形成硝酸盐类、硝基类和亚硝酸盐类。将NO+O2通入预吸附NH3的催化剂中时,表面的配位态的NH3、NH4+和—NH2都会减少直至消失,SCR反应显著。而将NH3通入预吸附NO+O2的催化剂中时,只有硝基类和亚硝酸盐类减少,硝酸盐类基本不发生变化,SCR反应微弱。NH3+NO+O2稳态反应中,催化剂表面稳定存在着NH4+和硝酸盐类,SCR反应显著。  相似文献   

2.
研究了在120℃的反应温度下,H2O和SO2对V2O5-WO3/TiO2催化剂选择性催化氧化(SCO)NO的影响。结果表明,在H2O和SO2存在的情况下催化剂失活很快,停止通入H2O和SO2后活性不能恢复,但在加热到250℃后催化活性基本恢复。FT-IR分析表明,催化剂表面形成了金属硝酸盐和Ti的硫酸盐,对催化活性有一定影响,但不影响催化剂在250℃下催化活性的恢复。SO2、H2O和NO的竞争吸附与SO2和NO2的铅室反应是影响催化剂活性的主要原因。  相似文献   

3.
低温脱硝技术对于氮氧化物(NOx)的脱除意义深远,而NH3选择性催化还原(NH3-SCR) NO技术不仅在燃煤工厂里有应用,也在移动源的NOx的脱除上有应用的潜能.在低温NH3-SCR技术领域,很多非钒基的催化剂材料因其优异的催化性能受到重视.简述了低温SCR技术在能源、水泥、冶金行业的技术需求,并着重介绍了各种催化剂的SCR活性、不同催化剂的催化机制和抗SO2、H2O性能.并由此得出未来工业脱硝对催化剂的高SCR催化活性、高的N2选择性以及良好的抗SO2和H2O性能的要求.  相似文献   

4.
段俊  赵玲  张羽 《环境工程学报》2020,14(3):709-720
为提高C_3H_6-SCR脱硝催化剂的低温脱硝性能,采用浸渍法合成了几种由铈和Keggin型磷钨酸改性的TiO_2催化剂。在模拟烟气的实验条件下,考察了不同催化剂在150~350℃的脱硝活性,通过XRD、FT-IR和SEM对催化剂的理化性质进行了分析,并且通过原位FT-IR探究并对比了不同催化剂在吸附NO和C_3H_6时产生的吸附物种。结果表明:铈和磷钨酸的共掺杂大大提高了TiO_2催化剂在中低温区的脱硝效率;Ce和H_3PW_(12)O_(40)(HPW)成功负载于TiO_2上,负载的HPW也保留了其Keggin结构,而且负载后的催化剂表面更加光滑,形态更加规则,分散性更好;原位FT-IR结果显示:Ce和HPW的掺杂可以促进催化剂表面硝酸盐物质和丙烯吸附物种的形成;同时发现无论是在预吸附NO还是在预吸附C_3H_6的情况下,Ce-HPW-TiO_2(CM)催化剂表面发生的反应活性最高。由此提出了Ce-HPW-TiO_2(CM)催化剂的反应机理,发现其反应中间体主要为无机硝酸盐、甲酸盐、乙酸盐和有机氮化合物。  相似文献   

5.
研究了在120℃的反应温度下,H2O和SO2对V2O5-WO3TiO2催化剂选择性催化氧化(SCO)NO的影响.结果表明,在H2O和SO2存在的情况下催化剂失活很快,停止通入H2O和SO2后活性不能恢复,但在加热到250℃后催化活性基本恢复.FT-IR分析表明,催化剂表面形成了金属硝酸盐和Ti的硫酸盐,对催化活性有一定...  相似文献   

6.
试验就碱金属钾对两种催化剂V2O5/TiO2(VT)和V2O5/TiO2-SiO2(VTS)选择性催化还原(SCR)氮氧化物的性能影响作了相关研究.运用BET比表面积、X射线衍射(XRD)谱图、傅立叶变换透射红外光谱(FT-IR)谱图对催化剂进行表征.结果表明,试验制备的TiO2-SiO2比表面积达360 m2/g,催化剂表面活性组分高度分散;NH3吸附红外谱图显示催化剂VTS具有丰富的表面酸;催化剂抗钾毒害试验发现,钾易与B酸位结合从而降低对NH3的吸附量和吸附活性,催化刺VTS具有明显优于VT的抗钾毒害性能.归因于部分钾优先与VTS表面酸结合,从而降低对钒活性物种的毒害.此外,失活程度跟钾/钒(K/V)的摩尔比密切相关.催化活性随反应进行不断降低,且24 h内难以恢复到原有水平.  相似文献   

7.
采用等体积浸渍法制备了MxOy(M表示V、Mn、Cu、Fe)/碳纳米管(CNTs)4种催化剂,用BET法、透射电子显微镜(TEM)和傅立叶红外光谱(FTIR)进行结构表征,并对其低温选择性催化还原(SCR)NO性能进行了考察和对比。结果表明,在NO为1248mg/m3、NH3为707mg/m3、O2为5%(体积分数)、气体总流量为700mL/min、反应温度为353~513K的条件下,不同催化剂存在不同的最佳活性温度,V2O5/CNTs催化剂在473K的较低温度下NO转化率达到最大,为82.9%;各催化剂活性均随着O2含量的增加先升高后降低,且变化幅度相似;在20~160min时,各催化剂活性随着反应时间的变化基本保持不变;催化剂活性均随氨氮比(NH3/NO)的增大先升高后降低,最佳NH3/NO为1.0(体积比)。  相似文献   

8.
采用溶胶凝胶法制备了Mn-Ce/Ti O2催化剂,并将其用于低温NH3选择催化还原NO的反应(NH3-SCR),考察了反应温度、空速、氧气浓度、氮氧化物浓度和氨氮比等反应条件对催化剂性能的影响。结果表明,NO入口浓度为800~1 600 mg/m3时,催化剂活性受NO初始浓度的影响较小。反应温度和氨氮比对NO转化率影响显著,100~150℃温度范围内,NO转化率随温度升高快速上升;当[NH3]/[NO]1.1时,随着[NH3]/[NO]的增加,NO转化率很快上升。反应体系中适当的O2浓度可促进NO还原为N2。空速大于10 000 h-1时,NO转化率随着空速的增大而降低。  相似文献   

9.
采用共混热解法制备系列Ce-Sn-W-Ox复合氧化物,用于NH3选择性催化还原NO。通过正交实验优化CeSn-W-Ox配方,采用环境扫描电镜(ESEM)、X-射线衍射仪(XRD)等表征分析催化剂的微观形貌和固相结构,确立Ce-Sn-WOx最佳配比及结构形貌。结果表明,以粒度为5~8 mm的堇青石瓷片担载分散Ce-Sn-W-Ox,进行NH3-SCR脱除NO,当Ce/Sn/W元素摩尔比为1∶0.8∶0.6时,Ce Sn0.8W0.6Ox/堇青石NH3-SCR脱除NO效果最好。当空速为7 200 h-1,催化剂在252~426℃内脱除NO效率均大于94%。重点考察了反应空速(GHSV)、水蒸气(H2O)、SO2等对Ce Sn0.8W0.6Ox/堇青石NH3-SCR脱除NO活性的影响。研究表明,空速低于10 000 h-1时,催化剂脱硝活性受空速影响小;单独通入5%H2O对催化剂脱硝活性基本没有影响;单独通入429 mg/m3SO2导致催化剂活性略有降低;同时通入429 mg/m3SO2和5%H2O,催化剂脱硝活性下降至85.33%,除去SO2和H2O后,催化剂活性又能明显回升。  相似文献   

10.
分别考察不同沉淀剂、溶液pH、煅烧温度和煅烧时间对制备Mn Ox催化剂及其低温SCR脱除NO性能的影响,并借助XRD和BET等表征手段分析各催化剂的物相和孔隙特性。结果表明,不同沉淀剂制备的Mn Ox催化剂的低温活性依次为:Mn Ox(Na2CO3)Mn Ox((NH4)2CO3)Mn Ox(Na OH)Mn Ox(NH4OH)。表征结果表明,Mn Ox(Na2CO3)和Mn Ox((NH4)2CO3)催化剂之所以表现出突出的低温SCR活性,归因于混合氧化态的无定型结构和较大的比表面积。优选Na2CO3沉淀剂制备Mn Ox催化剂,最佳的煅烧温度和时间分别为350℃和6 h,而溶液pH对制备的Mn Ox催化剂的催化还原NO活性影响不明显。  相似文献   

11.
采用等体积浸渍法制备了MnOx/CNTs催化剂,用于低温NH3选择性催化还原(SCR)NO的实验。使用BET,FT-IR,TEM和XRD对催化剂进行表征,结果表明:碳纳米管经混酸超声分散,增加了羧基活性基团,锰氧化物颗粒分布较均匀。在模拟烟气条件下,考察了催化剂的MnOx负载量、煅烧温度及质量和烟气流速比(W/F)对NO脱除率的影响。煅烧温度为773 K,MnOx负载量为10%时,NO脱除率达到98.56%;W/F为2-3 mg/(mL·min^-1)时NO的脱除率更高。  相似文献   

12.
活性炭纤维(ACF)经硝酸处理后采用浸渍法制备了CeO2-CoO/ACF复合催化剂,测试了其在以氨气为还原剂的低温SCR过程中的催化活性,同时研究了金属氧化物浸渍顺序及负载量、催化剂煅烧温度、空速比(SV)、NH,/NO(摩尔比)、O2含量等因素对NO转化效率的影响。研究发现,负载量为10%的CeO2-CoO/ACF复合催化剂经煅烧后在120—240℃时具有很高的催化活性,并且在N0初始浓度为1000mg/m3、空速比(SV)为6000h~、NH3/NO为1.05、O:体积分数在3.0%时具有较高的NO转化效率。  相似文献   

13.
Impacts of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate), imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and lindane (1,2,3,4,5.6-hexachlorocyclohexane) treatments on ammonium, nitrate, and nitrite nitrogen and nitrate reductase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997 to 1999). Diazinon was applied for both seed- and soil-treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Diazinon residues persisted for 60 days in both the cases. Average half-lives (t1/2) of diazinon were found 29.3 and 34.8 days respectively in seed and soil treatments. In diazinon seed treatment, NH4(+), NO3(-), and NO2(-) nitrogen and nitrate reductase activity were not affected. Whereas, diazinon soil treatment indicated significant increase in NH4(+)-N in a 1-day sample, which continued until 90 days. Some declines in NO3(-)N were found from 15 to 60 days. Along with this decline, significant increases in NO2(-)N and nitrate reductase activity were found between 1 and 30 days. Imidacloprid and lindane persisted for 90 and 120 days with average half-lives (t1/2) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues lost by 73.17% to 82.49% while such losses for lindane residues were found 78.19% to 79.86 % within 120 days. In imidacloprid seed-treated field, stimulation of NO3(-)N and the decline in NH4+NO2(-)-N and nitrate reductase enzyme activity were observed between 15 to 90 days. However, lindane seed treatment indicated significant increases in NH4(+)-N, NO2(-)-N and nitrate reductase activity and some adverse effects on NO3(-)N between 15 and 90 days.  相似文献   

14.
Photocatalytic oxidation of gaseous DMF using thin film TiO2 photocatalyst   总被引:2,自引:0,他引:2  
Chang CP  Chen JN  Lu MC  Yang HY 《Chemosphere》2005,58(8):1071-1078
The heterogeneous photocatalytic oxidation of gaseous N,N'-dimethylformamide (DMF) widely used in the manufacture of synthetic leather and synthetic textile was investigated. The experiments were carried out in a plug flow annular photoreactor coated with Degussa P-25 TiO2. The oxidation rate was dependent on DMF concentration, reaction temperature, water vapor, and oxygen content. Photocatalytic deactivation was observed in these reactions. The Levenspiel deactivation kinetic model was used to describe the decay of catalyst activity. Fourier transform infrared (FTIR) was used to characterize the surface and the deactivation mechanism of the photocatalyst. Results revealed that carbonylic acids, aldehydes, amines, carbonate and nitrate were adsorbed on the TiO2 surface during the photocatalytic reaction. The ions, NH4+ and NO3-, causing the deactivation of catalysts were detected on the TiO2 surface. Several treatment processes were applied to find a suitable procedure for the regeneration of catalytic activity. Among these procedures, the best one was found to be the H2O2/UV process.  相似文献   

15.
This work considers the oxidation of ammonia (NH3) by selective catalytic oxidation (SCO) over a copper (Cu)-cerium (Ce) composite catalyst at temperatures between 150 and 400 degrees C. A Cu-Ce composite catalyst was prepared by coprecipitation of copper nitrate and cerium nitrate at various molar concentrations. This study also considers how the concentration of influent NH3 (500-1000 ppm), the space velocity (72,000-110,000 hr(-1)), the relative humidity (12-18%) and the concentration of oxygen (4-20%) affect the operational stability and the capacity for removing NH3. The effects of the O2 and NH3 content of the carrier gas on the catalyst's reaction rate also are considered. The experimental results show that the extent of conversion of NH3 by SCO in the presence of the Cu-Ce composite catalyst was a function of the molar ratio. The NH3 was removed by oxidation in the absence of Cu-Ce composite catalyst, and approximately 99.2% NH3 reduction was achieved during catalytic oxidation over the Cu-Ce (6:4, molar/molar) catalyst at 400 degrees C with an O2 content of 4%. Moreover, the effect of the initial concentration and reaction temperature on the removal of NH3 in the gaseous phase was also monitored at a gas hourly space velocity of less than 92,000 hr(-1).  相似文献   

16.
Lee JY  Kim SB  Hong SC 《Chemosphere》2003,50(8):1115-1122
Natural manganese ore (NMO) catalysts were characterized and tested in the selective catalytic oxidation of ammonia to nitrogen oxides under dilute conditions. Also, the oxidation of ammonia (NH(3)) was carried out using pure MnO(2), Mn(2)O(3) for comparing with the activity. It is found that the activity of NMO was similar to that of MnO(2) at low temperature below 150 degrees C but above this temperature, the activity of these catalysts showed the difference. In the course of NH(3) oxidation, N(2), NO, N(2)O and H(2)O were produced. But the quantity of NO(2) produced in this experiment was negligible. At temperature below 250 degrees C, selectivity into N(2) from NH(3) oxidation was in the order, NMO > MnO(2) > Mn(2)O(3). This is the reverse of activity of these manganese oxides. Also the characterization of NH(3) oxidation was proposed and supported by the effect of space velocity, inlet O(2) and NH(3) concentration. The increase of space velocity remarkably influenced not only the conversion but also selectivity into N(2). The higher the reaction temperature was, the higher the effect of inlet O(2) and NH(3) concentration on the reaction rate was. By introducing NO during NH(3) oxidation reaction, the possibility of NMO as selective catalytic reduction catalyst at low temperature was studied and showed positive results.  相似文献   

17.
Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.  相似文献   

18.
This paper introduces a predictive mechanism for elemental mercury (Hg(o)) oxidation on selective catalytic reduction (SCR) catalysts in coal-fired utility gas cleaning systems, given the ammonia (NH3)/nitric oxide (NO) ratio and concentrations of Hg(o) and HCl at the monolith inlet, the monolith pitch and channel shape, and the SCR temperature and space velocity. A simple premise connects the established mechanism for catalytic NO reduction to the Hg(o) oxidation behavior on SCRs: that hydrochloric acid (HCl) competes for surface sites with NH3 and that Hg(o) contacts these chlorinated sites either from the gas phase or as a weakly adsorbed species. This mechanism explicitly accounts for the inhibition of Hg(o) oxidation by NH3, so that the monolith sustains two chemically distinct regions. In the inlet region, strong NH3 adsorption minimizes the coverage of chlorinated surface sites, so NO reduction inhibits Hg(o) oxidation. But once NH3 has been consumed, the Hg(o) oxidation rate rapidly accelerates, even while the HCl concentration in the gas phase is uniform. Factors that shorten the length of the NO reduction region, such as smaller channel pitches and converting from square to circular channels, and factors that enhance surface chlorination, such as higher inlet HCl concentrations and lower NH3/NO ratios, promote Hg(o) oxidation. This mechanism accurately interprets the reported tendencies for greater extents of Hg(o) oxidation on honeycomb monoliths with smaller channel pitches and hotter temperatures and the tendency for lower extents of Hg(o) oxidation for hotter temperatures on plate monoliths. The mechanism also depicts the inhibition of Hg(o) oxidation by NH3 for NH3/NO ratios from zero to 0.9. Perhaps most important for practical applications, the mechanism reproduces the reported extents of Hg(o) oxidation on a single catalyst for four coals that generated HCl concentrations from 8 to 241 ppm, which covers the entire range encountered in the U.S. utility industry. Similar performance is also demonstrated for full-scale SCRs with diverse coal types and operating conditions.  相似文献   

19.
This work describes the nitration of aromatics upon near-UV photolysis of nitrate and nitrite in aqueous solution and upon photocatalytic oxidation of nitrite in TiO2 suspensions. Phenol is used in this work as a model aromatic molecule and as a probe for *NO2/N2O4. The photoinduced nitration of phenol in aqueous systems occurs upon the reaction between phenol and *NO2 or N2O4, and is enhanced by the photocatalytic oxidation of nitrite to *NO2 by TiO2. Aromatic photonitration in the liquid phase can play a relevant role in the formation of nitroaromatics in natural waters and atmospheric hydrometeors, thus being a potential pathway for the condensed-phase nitration of aromatics. Furthermore, the photoinduced oxidation of nitrite to nitrogen dioxide suggests a completely new role for nitrite in natural waters and atmospheric aerosols.  相似文献   

20.
Lee DK  Cho JS  Yoon WL 《Chemosphere》2005,61(4):573-578
The role of catalyst and the reason for the preferential formation of N(2) in the catalytic oxidation reaction of ammonia in water over a Ru (3wt.%)/TiO(2) catalyst were elucidated. It was verified that the catalyst in the reaction had no direct relevance to the selective formation of N(2), but was responsible only for the oxidation of aqueous ammonia, NH(3)(aq), finally giving a molecule of nitrous acid. The preferential production of N(2) was experimentally demonstrated due to the homogeneous aqueous phase reaction of the nitrous acid-dissociated NO(2)(-) with NH(4)(+) ions. Even under the highly oxidizing condition, NO(2)(-) was much more likely to react with NH(4)(+) to form N(2) than being oxidized over the catalyst to NO(3)(-) as long as NH(4)(+) was available in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号