首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
不同氮浓度冲击对颗粒污泥脱氮过程中N2 O产生量的影响   总被引:2,自引:2,他引:0  
韩雪  高大文 《环境科学》2013,34(1):204-208
采用好氧-缺氧SBR污水生物处理系统,考察不同进水NH4+-N浓度冲击对同步硝化反硝化型颗粒污泥脱氮过中N2O的释放规律和脱氮效果的影响.结果表明,当进水NH4+-N浓度分别从稳定的30 mg·L-1突然提高到40、60和80 mg·L-1时,氨氮去除率从80.04%降至61.40%、39.65%和31.02%,但氨氮的去除量变化不大,都在25 mg·L-1左右;另外,N2O产生量受进水NH4+-N冲击较小,在4个不同的进水NH4+-N浓度下,典型周期N2O产生量分别为3.019、3.489、3.271和3.490 mg·m-3,而且N2O释放速率都在0.004 5 mg·(m3·min)-1左右.同步硝化反硝化型颗粒污泥系统的好氧阶段和缺氧阶段均有N2O产生.不同的NH4+-N浓度冲击下,同步硝化反硝化型颗粒污泥系统对NH4+-N的去除量没有变化,但由于进水NH4+-N浓度的提高引起系统脱氮率显著下降.  相似文献   

2.
准好氧矿化垃圾生物反应器对渗滤液具有良好的脱氮效果,但在硝化反硝化过程中有强温室气体N2O的产生.本文主要研究了不同回灌渗滤液盐度(7~30 g·L-1)对准好氧矿化垃圾生物反应器渗滤液处理及N2O产生的影响.结果表明,进水盐度的增加对COD去除效果影响较小,其去除率始终大于85%;然而盐度对氮污染物去除效果的影响较大.NH+4-N和TN的去除率由7 g·L-1时的98.23%、91.48%下降至30 g·L-1时的31.75%、34.24%.此外,盐度在30 g·L-1时,出现了显著的NO-2-N积累现象.盐度对硝化、反硝化细菌均有不同的抑制作用,其中,对硝化菌的抑制作用大于反硝化菌.随着盐度的增加,N2O产生量大幅增加,在盐度为30 g·L-1时N2O产生量最高,为1 397μg±369.88μg,占TN去除总量的8.87‰,是低盐度条件下(7~20 g·L-1)的6~117倍,单周期内N2O产生峰值随着盐度增加呈延后趋势.从上述实验结果可知,渗滤液回灌处理时,进水盐度过高会影响脱氮效果及N2O释放.可见,盐度是渗滤液回灌时重要的控制因素.  相似文献   

3.
蠡河底泥中反硝化复合菌群富集及菌群结构研究   总被引:2,自引:2,他引:0  
雍佳君  成小英 《环境科学》2015,36(6):2232-2238
从无锡市滨湖区蠡河底泥中富集培养反硝化复合菌群,研究其在不同富集培养阶段TN、NO-3-N、NO-2-N、NH+4-N和COD动态变化,分析反硝化过程中气体释放总量、释放速率和成分,通过构建全长16S r DNA克隆文库研究其菌落结构.结果表明,反硝化复合菌群富集在阶段4时脱氮效果最佳,仅在9 h内,330 mg·L-1的TN负荷下,TN去除率达90.9%,NO-3-N去除率达100%,中间产物NO-2-N和NH+4-N积累量最少,分别为3.39 mg·L-1和16.64 mg·L-1,COD去除率达85%;释放气体260m L,气体主要成分为N2,同时还有少量的CH4和CO2等.富集培养反硝化复合菌群细菌属于Pseudomonadaceae科和Rhodocyclaceae科,为Proteobacteria门,OUT丰度分别为57.8%和31.6%,Pseudomonadaceae科是优势类群.  相似文献   

4.
高氮城市生活垃圾渗滤液短程生物脱氮   总被引:5,自引:2,他引:5  
采用"两级UASB-缺氧-好氧系统"处理高COD与高NH4 -N的城市生活垃圾渗滤液.180天的试验结果表明:UASB1(一级UASB)与UASB2(二级UASB)最大COD去除速率分别为12.5、8.5 kg·m-3·d-1,UASB1的NOx--N的最大去除速率为3.0 kg·m-3·d-1.系统COD去除率为80%~92%,出水COD为800~1500 mg·L-1.原渗滤液的NH 4-N为1100~2000 mg·L-1,A/O工艺的最大NH4 -N去除速率为0.68kg·m-3·d-1;在17~30℃,通过NO-2-N累积率为90%~99%的短程硝化,NH4 -N的去除率在99%左右,出水NH4 -N小于15 mg·L-1.回流处理水和二沉池回流污泥中的NOx--N分别在UASB1和A/O工艺的缺氧段实现完全反硝化,使系统无机氮TIN去除率达80%~92%.同时高效的反硝化为硝化提供了充足的碱度,使A/O工艺pH大于8.5,维持较高的游离氨浓度,结果表明,高游离氨(FA)是导致短程硝化的主要因素.以pH作为控制参数调控A/O工艺的曝气时间,可以有效的抑制亚硝酸盐氧化菌(NOB)的增长,实现种群优化和稳定的短程硝化.  相似文献   

5.
同步硝化反硝化耦合除磷工艺的快速启动及其运行特征   总被引:4,自引:4,他引:0  
冷璐  信欣  鲁航  唐雅男  万利华  郭俊元  程庆锋 《环境科学》2015,36(11):4180-4188
以低COD/N生活污水(C/N为3∶1~4∶1)为进水基质,在序批式活性污泥反应器(SBR)中接种好氧颗粒污泥(AGS),通过逐步降低溶解氧(DO)浓度的方式快速实现同步硝化反硝化耦合除磷.反应器运行20 d后(DO浓度为0.50~1.0mg·L-1),系统出现同步硝化反硝化耦合除磷的现象.在随后运行的40 d里,反应器对废水COD、NH+4-N、TN和TP的平均去除率分别为84.84%、93.51%、77.06%和85.69%;出水NO-3-N和NO-2-N平均浓度分别为4.01 mg·L-1和3.17 mg·L-1.反应器启动运行后期,污泥体积指数(SVI)为55.22 m L·g-1,沉降性能良好,颗粒结构较完整.不同氮源的周期曝气阶段结果表明,对TN的去除率为NH+4-NNO-2-NNO-3-N;对TP的去除率为NO-3-NNO-2-NNH+4-N,反应器主要以同步硝化反硝化脱氮和反硝化方式除磷.  相似文献   

6.
试验采用序批式反应器(SBR)处理高氨氮废水,逐步提高废水氨氮(NH+4-N)浓度到800 mg·L-1,通过控制曝气量实现了短程硝化.SBR周期试验表明,在低溶解氧和高游离氨等共同作用下,氨氧化菌(AOB)活性较低,导致AOB以亚硝酸盐氮(NO_2~--N)作为电子受体进行好氧反硝化,氧化亚氮(N_2O)释放因子为9.8%.静态试验控制初始NH_4~+-N为100 mg·L-1且改变曝气量(0.22~0.88 L·min~(-1))条件下,溶解氧浓度的增加能够提高硝化菌活性,N2O释放因子为0.51%~0.85%.当初始NH_4~+-N浓度为100 mg·L~(-1)且曝气量控制在0.66 L·min-1时,初始NO-2-N浓度为0~100 mg·L~(-1)对硝化菌活性影响较小,N2O释放因子为0.50%~0.71%.当溶解氧和游离氨浓度控制在适宜范围内,可维持AOB较高活性,抑制AOB发生好氧反硝化作用,降低N2O释放率.  相似文献   

7.
苯酚对厌氧氨氧化污泥脱氮效能长短期影响   总被引:5,自引:4,他引:1  
杨朋兵  李祥  黄勇  朱亮  崔剑虹  徐杉杉 《环境科学》2015,36(10):3771-3777
通过接种厌氧氨氧化(ANAMMOX)污泥,研究了苯酚浓度对ANAMMOX污泥脱氮效能长短期影响.短期结果表明,随着苯酚浓度的增大,氮去除率快速下降.当苯酚浓度大于600 mg·L-1时,NH+4-N的去除率降低到6%以下,TN的去除率只有10%左右.长期实验结果表明,当苯酚浓度小于100 mg·L-1时,NH+4-N的去除率都能达到99%以上,说明低浓度苯酚对ANAMMOX菌有一个驯化的过程.当苯酚浓度高于400 mg·L-1时,NH+4-N的去除率只有23.59%,TN去除率只有50.3%,ANAMMOX污泥抑制明显,与短期结果相同.此时反硝化菌活性明显高于ANAMMOX菌,说明苯酚可作为有机碳源诱发体系中发生反硝化反应,最终导致反硝化菌在体系中占据主导地位.但高浓度(1 000 mg·L-1)苯酚对反硝化菌也具有抑制作用.通过拟合得到苯酚对ANAMMOX半抑制有效浓度(IC50)为71.57 mg·L-1.经过18 d的恢复后,NH+4-N去除率基本恢复,但氮素之间的转化计量式发生了改变,ρ(NH+4-N)去除/ρ(NO-2-N)去除/ρ(NO-3-N)生成为1∶0.86∶0.2.研究结果表明,将苯酚控制在合理范围内可以使反应器达到同步脱氮除酚的效果.  相似文献   

8.
活性污泥低温氨氧化功能的驯化与潜力研究   总被引:1,自引:0,他引:1  
以强化低温污水生物处理系统的氨氮(NH4+-N)氧化功能为目标,采用序批式活性污泥反应器(SBR),通过逐步提高进水NH4+-N浓度的方式,在(15±1)℃的条件下对城镇污水处理厂的好氧活性污泥进行了驯化培育,并就其对生活污水和高氨氮废水的NH4+-N去除潜力进行了测试.结果表明,在(15±1)℃下,好氧活性污泥经适当驯化可获得良好的氨氧化能力.在初始NH4+-N浓度为46mg·L-1左右时,其NH4+-N去除速率和亚硝态氮(NO2--N)生成速率分别可达54.26g·kg-·1d-1(以MLSS计,下同)和29.07g·kg-·1d-1(以MLSS计,下同)左右.对NH4+-N浓度为47.19mg·L-1左右的城镇污水,其NH4+-N去除率可高达85%以上.初始NH4+-N浓度分别为91.01mg·L-1和163.37mg·L-1左右时,其最高NH4+-N去除速率分别可达52.54g·kg-·1d-1和111.97g·kg-·1d-1,具有处理高氨氮废水的潜力.  相似文献   

9.
硝酸盐连续回灌对生物反应器填埋场N2O产生的影响   总被引:1,自引:1,他引:0  
卞荣星  孙英杰  李晶晶  张欢欢 《环境科学》2014,35(11):4371-4377
异位硝化-原位反硝化是实现填埋场渗滤液脱氮处理的一种有效措施,但硝化反硝化过程中会产生强温室气体N2O.实验构建了3个新鲜垃圾生物反应器填埋场模拟装置,分别回灌NO-3-N浓度为50、100和300 mg·L-1的渗滤液,考察垃圾原位反硝化过程中N2O产生规律及其影响因素.结果表明,回灌不同浓度硝酸盐,N2O产生量均表现为初期浓度较大-下降-后期升高的规律;N2O产生量与回灌NO-3-N量正相关,其累积产生量分别为36 481、44 241、86 264μg,但反硝化消耗单位硝酸盐氮产生的N2O量(以N计)以及N2O转化率与回灌硝酸盐氮量呈负相关,N2O平均转化率分别为8.84‰、5.68‰和2.34‰.分析认为,各反应器垃圾降解后期反硝化碳源不足是N2O产生量高的主要原因.  相似文献   

10.
反硝化生物膜启动厌氧氨氧化反应器的研究   总被引:29,自引:6,他引:23  
反硝化菌的生长快于厌氧氨氧化菌 ,通过培育反硝化生物膜 ,利用反硝化菌的基质多样性和代谢多样性 ,可使生物膜由催化反硝化反应过渡到催化厌氧氨氧化反应 ,加速Anammox反应器的启动 .经过 3个月的运行 ,Anammox反应器的容积总氮负荷达 0 14 3kg·m-3 ·d-1,总氮去除率约 86 5 2 % ,出水NH 4 N和NO-2 N均低于 1mg·L-1.NH 4 N去除量、NO-2 N去除量和NO-3 N生成量之间比例的变化以及污泥颜色的变化 ,可以指示Anammox反应器的启动进程 .  相似文献   

11.
杨玉兵  杨庆  李洋  周薛扬  李健敏  刘秀红 《环境科学》2018,39(11):5051-5057
在常温条件下,采用批次试验结合同位素分析技术,研究不同溶解氧(DO)浓度下短程硝化过程N_2O的释放量及产生途径.结果表明,不同溶解氧条件下,N_2O的释放量与NO_2~--N浓度显著相关,当NO_2~--N浓度大于3 mg·L~(-1),短程硝化过程开始出现N_2O的释放,且随着NO_2~--N浓度的增加而增加.当溶解氧浓度分别为0. 5、1. 5和2. 5 mg·L~(-1)时,N_2O的释放量占进水总氮的比例分别为4. 35%、3. 27%和2. 63%,随着溶解氧的升高,N_2O的释放量占进水总氮的比例降低.短程硝化过程控制溶解氧在2. 5 mg·L~(-1),既可以提高比氨氧化速率,又可以减少N_2O的产生.同位素测定结果表明,当溶解氧为0. 5 mg·L~(-1)时,只有AOB反硝化过程生成N_2O.但当溶解氧升至1. 5 mg·L~(-1)时,有4. 52%的N_2O通过NH_2OH氧化过程生成,AOB反硝化过程生成的N_2O占95. 48%.继续升高溶解氧到2. 5 mg·L~(-1)时,NH_2OH氧化过程生成的N_2O比例增加至9. 11%,AOB反硝化过程生成的N_2O占90. 89%,溶解氧浓度的改变会影响短程硝化过程N_2O的产生途径,避免过高的NO_2~--N积累,可以减少N_2O的产生.  相似文献   

12.
生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响   总被引:2,自引:0,他引:2  
王宁  黄磊  罗星  梁岩  王燕  陈玉成 《环境科学》2018,39(10):4505-4511
尽管增加曝气会提升潜流人工湿地中溶解氧(DO)浓度,改善污染物去除效果,但由于湿地中氧扩散条件差,易引起DO分布不均,导致氧化亚氮(N_2O)的排放.生物炭由于孔隙率大、比表面积大,近年来逐渐被应用于传统湿地系统,实现强化脱氮和温室气体减排.为了探讨生物炭对曝气潜流湿地的影响,本实验在温室内构建曝气生物炭潜流湿地(SW),以常规曝气潜流湿地(CW)作为参照,探究生物炭投加对湿地系统脱氮性能及N_2O排放的影响.结果表明,SW系统曝气段平均DO浓度为2.66 mg·L~(-1),较CW提高了0.42 mg·L~(-1).SW系统平均出水NH_4~+-N和总氮(TN)浓度为0.17 mg·L~(-1)和1.98 mg·L~(-1),去除率分别达到99.5%和95.0%,较CW提高了5.1%和6.9%.生物炭的投加对湿地系统有机物污染去除效果无显著影响(P0.05),出水化学需氧量(COD)稳定在25 mg·L~(-1),去除率达到94.0%.SW系统中N_2O的平均释放速率为0.27 mg·(m~2·h)~(-1),较CW系统降低了70.7%.因此,生物炭投加可作为一种有效的控制手段来强化曝气湿地系统脱氮,实现N_2O气体减排.  相似文献   

13.
许静怡  杜俊  杨一烽  吕锋  夏四清 《环境科学》2018,39(8):3767-3774
分别采用SBR反应器和MBR反应器驯化培养亚硝化污泥和厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)污泥,并通过微生物包埋技术将两类污泥分别包埋,构建亚硝化-厌氧氨氧化(partial nitrification-ANAMMOX,PN/A)双菌层系统.短期实验证明该系统中亚硝化菌(ammonia oxidizing bacteria,AOB)和ANAMMOX菌在不同阶段分别起主导作用,维持系统的酸碱平衡,并实现NH+4-N的高效去除(98.8%).长期实验表明,在溶解氧受限时,PN/A双菌层系统能够有效提高系统对溶解氧的利用效率,并增强系统的稳定性和脱氮效能.在溶解氧为1.0 mg·L~(-1),进水NH+4-N质量浓度分别为200 mg·L~(-1)和400 mg·L~(-1)时,对照组脱氮效率仅为58.1%和61.4%,而PN/A双菌层系统脱氮效率均稳定在80%左右;溶解氧为3.0mg·L~(-1),进水NH+4-N质量浓度为400 mg·L~(-1)时,PN/A双菌层系统总氮去除率达87.9%,总氮积累负荷(NLR)为0.4kg·(m3·d)-1,总氮去除负荷(NRR)为12.8 mg·(g·h)-1.  相似文献   

14.
为了解不同进水C/P条件下同步硝化内源反硝化除磷(SNEDPR)的脱氮除磷特性.以实际城市污水为处理对象,采用延时厌氧(180 min)/低氧(溶解氧0.5~1.0 mg·L~(-1))运行的序批式反应器(SBR),考察了进水C/P(分别为60、30、20、15、10)对系统C、N、P去除特性的影响.结果表明:适当降低进水C/P(由60降至30)有利于提高系统内PAOs竞争优势.当C/P为30时系统除磷性能最高,厌氧段释磷速率(PRR)和好氧段吸磷速率(PUR,以P/MLSS计,下同)分别高达3.5mg·(g·h)-1和4.2 mg·(g·h)-1,出水PO3-4-P浓度均低于0.3 mg·L~(-1),且PPAO,An高达88.1%;但进一步降低进水C/P至10时,PO3-4-P去除率和PPAO,An分别由38.1%和82.4%降低至3.1%和5.3%,PRR和PUR分别仅为0.2 mg·(g·h)-1和0.24mg·(g·h)-1,系统表现出较差的除磷性能.降低C/P对系统COD去除性能没有影响,COD去除率稳定在85%左右.此外,当C/P由60降低至20时,系统硝化性能变差,表现为出水NH+4-N和NO-2-N浓度分别由0和6.9 mg·L~(-1)升高至5.1 mg·L~(-1)和16.2 mg·L~(-1);而当C/P进一步降低至10时,系统硝化性能得以恢复,但亚硝积累特性遭到破坏,表现为出水NH+4-N和NO-2-N浓度逐渐降低为0,但出水NO-3-N浓度由0.08 mg·L~(-1)升高至14.1 mg·L~(-1).SNED率先由62.1%降低为36.4%后又逐渐提高至56.4%.C/P低于15时,有利于提高GAOs的竞争优势,且C/P由20降至10时系统脱氮性能得以恢复,原因在于GAOs内源反硝化作用的增强.  相似文献   

15.
为了解厌氧/好氧/缺氧(A/O/A)运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步短程硝化反硝化(SPND)耦合,并后置短程反硝化的脱氮除磷特性,以低C/N(≤4)城市污水为处理对象,通过优化曝气量和缺氧时间,实现了低C/N城市污水的深度脱氮除磷.结果表明,当好氧段曝气量由1.0 L·min-1降至0.6 L·min-1,缺氧时间为180 min时,出水PO3-4-P浓度由0.06 mg·L~(-1)降至0,出水NH+4-N、NO-2-N和NO-3-N浓度分别由0.18、18.79和0.08 mg·L~(-1)逐渐降低至0、16.46和0.05 mg·L~(-1),TN去除率由72.69%提高至77.97%;随着曝气量的降低,SPND现象愈加明显,SND率由19.18%提高至31.20%;此后,当缺氧段时间由180 min逐渐延长至420 min,出水PO3-4-P、NH+4-N和NO-3-N浓度分别维持在0、0和0.03 mg·L~(-1)左右,出水NO-2-N低至3.06 mg·L~(-1),SND率达32.21%,TN去除性能逐渐提高,TN去除率高达99.42%,实现了系统的深度脱氮除磷.  相似文献   

16.
周同  于德爽  李津  吴国栋  王骁静 《环境科学》2017,38(12):5162-5168
采用ASBR反应器通过改变单一基质浓度分别研究了NH_4~+-N和NO_2~--N对海洋厌氧氨氧化菌脱氮效能的影响及其动力学特性.结果表明,保持进水NO_2~--N为105.6 mg·L~(-1),当进水NH_4~+-N浓度提高至1 200 mg·L~(-1)时,海洋厌氧氨氧化反应器仍保持较好的脱氮能力,未受到明显的抑制作用,NO_2~--N的去除率稳定在80.70%左右;当进水NO_2~--N浓度提高至265.6mg·L~(-1)时,反应器开始受到明显的抑制作用,NH_4~+-N的去除率下降至63.01%左右,随着进水NO_2~--N浓度继续提高至305.6mg·L~(-1)时,NH_4~+-N的去除率进一步下降至43.93%左右.利用Haldane模型和Aiba模型拟合NH_4~+-N和NO_2~--N抑制作用的动力学特性,得到了NRRmax、KS、Ki这3个动力学参数及出水基质浓度与总氮容积负荷(TNRR)之间的关系,根据进一步分析可知,Haldane模型更适合描述NH_4~+-N抑制作用下的动力学特性,Aiba模型更适合描述NO_2~--N抑制作用下的动力学特性,并得到NH_4~+-N和NO_2~--N的出水抑制浓度分别为3 893.625 mg·L~(-1)和287.208 mg·L~(-1),为海洋厌氧氨氧化菌处理含海水污水提供了理论依据.  相似文献   

17.
微膨胀对好氧颗粒污泥脱氮过程中N2O产生量的研究   总被引:2,自引:1,他引:1  
陈丽丽  高大文 《环境科学》2013,34(9):3532-3537
采用控制低溶解氧(DO)在SBR反应器内,研究了好氧颗粒污泥微膨胀的实现;考察了微膨胀颗粒污泥对COD和氨氮去除效能以及温室气体N2O产生量.结果表明,在低DO条件下可以获得微膨胀颗粒污泥,污泥容积指数(SVI)大都在150~250 mL.g-1之间.微膨胀颗粒污泥对COD和氨氮去除量影响不大,COD去除率从89.45%上升到90.99%;氨氮去除率从77.29%降至68.29%;硝化速率从38.95×10-3 mg.(g.min)-1降至33.46×10-3 mg.(g.min)-1.微膨胀颗粒污泥对N2O产生量影响很大,微膨胀颗粒污泥N2O产生量为2.42 mg.m-3是没有发生微膨胀颗粒污泥N2O产生量的1.26倍.微膨胀颗粒污泥N2O释放速率由3.63×10-3mg.(L.min)-1上升到4.72×10-3mg.(L.min)-1.  相似文献   

18.
代伟  赵剑强  丁家志  刘双 《环境科学》2019,40(8):3730-3737
采用稳定运行在高盐高碱环境厌氧/好氧/缺氧(A_n/O/A)模式下的序批式生物膜反应器(SBBR),考察在不同碳氮比(C/N)条件下,硝化反硝化过程及N_2O产生特征.结果表明,在C/N为5、2和对照组(C/N=0)时,总氮去除率分别为(98. 17±0. 42)%、(65. 78±2. 47)%和(44. 08±0. 27)%; N_2O的产生量分别为(32. 07±2. 03)、(21. 81±0. 85)和(17. 32±0. 95) mg·L~(-1); N_2O转化率(N_2O产生量在去除总氮中的比例)分别为(29. 75±0. 93)%、(30. 04±2. 17)%和(41. 69±0. 80)%.高盐高碱条件下,亚硝酸盐氧化菌(NOB)受到很强的抑制作用,硝化过程基本停留在亚硝酸盐阶段.由于高盐高碱环境对N_2O还原酶活性的抑制,使得异养反硝化过程产生了大量N_2O,随着碳氮比的增大,有更多的碳源用于反硝化过程,因而总氮去除率和N_2O产生量均随之增加.随着碳氮比的增大,N_2O转化率随之降低,这可能是由于异养反硝化过程氮素还原酶对电子的竞争所形成的,碳氮比越高,电子竞争越弱.高通量测序表明:在SBBR中,氨氧化细菌(AOB)被富集,而几乎不存在NOB;优势异养反硝化菌属主要是Thauera、Azoarcus和Gemmobacter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号