首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As low oxygen and high ultraviolet (UV) exposure might significantly affect the microbial existence in plateau, it could lead to a specialized microbial community. To determine the abundance and distribution of ammonia-oxidizing archaea (AOA) in agricultural soil of plateau, seven soil samples were collected respectively from farmlands in Tibet and Yunnan cultivating the wheat, highland-barley, and colza, which are located at altitudes of 3200-3800 m above sea level. Quantitative PCR (q-PCR) and clone library targeting on amoA gene were used to quantify the abundances of AOA and ammonia-oxidizing bacteria (AOB), and characterize the community structures of AOA in the samples. The number of AOA cells (9.34 × 10^7-2.32× 10^8 g^-1 soil) was 3.86-21.84 times greater than that of AOB cells (6.91 × 10^6-1.24 × 10^8 g^-1 soil) in most of the samples, except a soil sample cultivating highland- barley with an AOA/AOB ratio of 0.90. Based Kendall's correlation coefficient, no remarkable correlation between AOA abundance and the environmental factor was observed. Additionally, the diversities of AOA community were affected by total nitrogen and organic matter concentration in soils, suggesting that AOA was probably sensitive to several environmental factors, and could adjust its community structure to adapt to the environmental variation while maintaining its abundance.  相似文献   

2.
Nitrogen (N) loss in irrigated croplands from coupled nitrification and denitrification shows considerable differences due to differences in soil properties and agricultural management practices. Previous research has demonstrated that soil physicochemical properties strongly affect nitrification and denitrification capacities of cropland soils. However, existing research on soil nitrification and denitrification following the conversion of native desert soils to irrigated croplands lacks long-term tracking and monitoring capabilities. Therefore, six types of reclamation years of irrigated croplands and uncultivated sandy land in the Hexi Corridor marginal oasis in northwestern China were selected for study, and the differences in soil nitrification and denitrification rates and physicochemical properties were studied over 42 sites in the desert-oasis ecotone derived from seven reclamation sequences, including the years of 0, 15, 30, 50, 80, 100, and 150. The results showed that the nitrification and denitrification rates of soil first increased and then decreased with the increase in reclamation years. The highest soil nitrification rate and denitrification rate were observed at 80 years of cultivation (101.4 μg g-1 d-1) and 100 years of cultivation (0.93 μg g-1 d-1), respectively. In addition, the soil nitrification and denitrification rates in the natural sandy land were significantly lower than those in the cultivated croplands (P < 0.05). There were significant correlations among soil nutrients, soil moisture, and soil particle size composition between the nitrification and denitrification rates (P < 0.05). Regression analysis showed that environmental variables accounted for 69.7% and 75.7% of the variation in nitrification and denitrification rates, respectively. Among them, organic matter content, pH, soil moisture, and NH4+-N content were the key factors affecting the change in soil denitrification rate, while organic matter content, NO3--N, pH, and clay content were the key factors affecting the change in soil denitrification rate. © 2022 Science Press. All rights reserved.  相似文献   

3.
Soit carbon (C) stock is the largest C pool in terrestrial ecosystems, and the emission of CO2 through soil respiration contributes to the majority of soil C expenditure and atmospheric C. Soil respiration is also one of the major processes controlling the C budget of terrestrial ecosystems. A slight change in soil CO2 emission might cause drastic variations in global C balance. Therefore, it is of great significance to investigate the characteristics of soil respiration of soils growing different types of vegetation over a long period, and determine its relationship with variables such as soil temperature and moisture. The rate of soil respiration was measured each month in the growing seasons (from April to October) of 2011, 2013, and 2014 using the Li-8100 CO2 flux measurement system in the central Loess Plateau. Four types of vegetation (Quercus liaotungensis, Platycladus orientalis, Robinia pseudoacacia, and a natural shrub) were chosen for the periodical measurements. A permanent sample plot was established for each type of vegetation, and five polyvinyl chloride (PVC) collars were placed in each plot for the measurements. The temperature and water content of the soil in the upper 12 cm near the collar were measured using a digital soil temperature probe and a TDR 200 soil moisture meter at the same time when the soil respiration was measured. The soil respiration rates were fitted to the soil temperature and moisture with an exponential function, power function, linear function, and an equation combining the two variables. The results showed that: (1) the seasonal variation in the rates of soil respiration in the soils growing the four types of vegetation were almost the same, and were lower in the earlier period and then increased to high levels in the middle and later periods; (2) the rates of soil respiration in the same month varied with the type of vegetation grown, and were in the descending order: Q. liaotungensis > P. orientalis > shrub > R. pseudoacacia; (3) the average values of the rates of soil respiration in 2011, 2013, and 2014 were 2.77, 3.48, and 5.08 μmol m-2 s-1, respectively. The variation in soil respiration was higher across the three years than the variation for the types of vegetation grown; and (4) the rate of soil respiration was positively correlated to soil temperature and moisture for all the types of vegetation. A better fit was obtained by using the equation that included both the variables, soil temperature and moisture, than by an equation that included a single factor. Our results suggested that both seasonal and inter-annual variations of soil respiration occurred in the soils growing the four types of vegetation in the region. The temperature and water content of soils are the major regulating factors, and soil respiration in the Loess Plateau is more greatly affected by environment factors than by the type of vegetation. © 2018 Science Press. All rights reserved.  相似文献   

4.
Based on observation data of daily sunshine duration from 1961 to 2020 at 175 meteorological observation stations over Qinghai-Tibet Plateau and its surrounding areas, spatial transformation analysis, climate trend analysis and M-K mutation test were used to analyze the temporal and spatial variation characteristics of the seasonal and annual sunshine duration in the region in the last 60 years. The results show that (1) annual average sunshine duration was 2 323 h, the maximum was 3 487 h in Gaer, Tibet, and the minimum was 771 h in Ya'an, Sichuan. The high-value areas were mostly located in western Tibet, northern Qinghai, western Gansu, and Xinjiang, and the low-value areas were mostly located in Nyingchi in Tibet, the mountainous area on the western edge of the Sichuan Basin, and northwestern Yunnan. The highest sunshine duration was recorded in winter (631 h), and the lowest was recorded in autumn (555 h) among the four seasons. (2) The average decrease in annual sunshine duration was 10.27 h/10 a. The largest rates of decrease were mainly in Gannan of Gansu and Ganzi of Sichuan, with the largest rate of decrease of 130 h/10 a. The areas with large rates of increase were mainly in Hotan area of Xinjiang, Liangshan of Sichuan and Lhasa of Tibet, with the largest increase of 61 h/10 a. Among the four seasons, spring exhibited an upward trend, and the remainder exhibited a downward trend. (3) Before 2017, the annual sunshine duration increased but declined after 2017. Spring sunshine duration had the largest number of mutation years, and the earliest mutation time was 1963. Winter had the fewest number of mutation years and the latest mutation time occurred in 2015. In summary, the annual and seasonal sunshine duration of Qinghai-Tibet Plateau vary greatly in space, but with the general characteristics of more sunshine in the northwest and less in the southeast, and sunshine hours were mainly decreasing, with 2017 as a mutation point of annual sunshine duration. Most areas of Qinghai-Tibet Plateau have great potential for photosynthetic production and are suitable for the development of light-loving plants and high-density planting. Shade-loving or shade-tolerant plants, including tea, are suitable for development in remote mountainous areas with low sunshine values in the western part of the basin, including Ya’an, Sichuan, and other areas, such as Medog, Tibet. © 2022 Science Press. All rights reserved.  相似文献   

5.
To provide scientific support for the rational development and utilization of thermal resources and avoid climate risks, the distribution of thermal resources in Qinghai-Tibet Plateau in the context of climate change was analyzed in this study. Based on meteorological data from 1961 to 2020 at 149 stations in Qinghai-Tibet Plateau, the changes in thermal resources over the past 50 years were analyzed using inclination rate analysis and Mann-Kendall inspection, combined with JAVA and Python programming. The results showed that: (1) the annual average temperature in Qinghai-Tibet Plateau shows an obvious warming trend, and the temperature increases greatly after the 1990s, with the climate tendency rate from 1961 to 2020 reaching 0.298 ℃/10 a. (2) The accumulated temperature and lasting days steadily above 0 ℃, 5 ℃ and 10 ℃ increased significantly, and the accumulated temperature increases were not entirely determined by the duration of the lasting days. (3) The beginning dates of accumulated temperature steadily above 0 ℃, 5 ℃, and 10 ℃ were generally advanced, while the deadlines were delayed, and the trend of early start dates was stronger than that of deadlines. In conclusion, this study shows that, in the context of global warming, thermal resources in Qinghai-Tibet Plateau have undergone substantial changes, which will play an important role in the introduction and extension of crops. © 2022 Science Press. All rights reserved.  相似文献   

6.
Understanding changes in soil fertility and soil environmental risks in protected agriculture with high irrigation and fertilizer inputs are of great significance for ecological protection. In this study, soil samples in the plow layer were collected from greenhouses >100 acres in the eastern Qinghai-Tibet Plateau after different durations of planting time (either ≤ 3, 3-5, 5-10, or 10-20 years) to assess the changing pattern of soil fertility indicators and the potential leaching risk of nitrogen and phosphorus. The results showed that soil organic matter (OM) and total nitrogen (TN) contents in protected agriculture were 17.1 and 1.3 g/kg, respectively, which suggests moderate content levels. Meanwhile, soil alkali-hydrolyzed nitrogen (AN), available phosphorus (Olsen-P), and available potassium (AK) contents were 160.9, 72.0, and 191.2 mg/kg, respectively, which suggests abundant content levels. As the number of planting years increased, the contents of soil OM, TN, AN, and Olsen-P increased significantly, especially after 10 years, with 41.6%, 44.2%, 26.5%, and 67.4% increases, respectively, compared to ≤ 3 years. As seen, Olsen-P had the most marked increase. In contrast, soil AK and pH decreased with planting years, and soil AK after 5 years decreased by 32% compared to ≤ 3 years. Moreover, the soil pH value in 3-5 years decreased by 2.3% compared to that of ≤ 3 years. The leaching risk of soil nitrogen and phosphorus was intensified after 10-20 years, and the probability of leaching was 0.74 and 0.84, respectively. This study indicated that, in protected agriculture, soil OM, AN, and Olsen-P contents improved, accompanied by a high risk of N and P loss, and AK and soil pH values decreased. It is recommended that the input of nitrogen and phosphorus fertilizers should be controlled, and the input of potassium fertilizer should be increased for more than 10 years of facility cultivation. This study provides a scientific basis for the rational fertilization of agricultural facilities. The findings indicate that after facility planting for 10-20 years, soil organic matter, nitrogen, and phosphorus significantly increased, yet the leaching risk of nitrogen and phosphorus increased as well, suggesting that the input of nitrogen and phosphorus fertilizer should be controlled. After 3-5 years of planting, soil AK and pH values decreased significantly, implicating that potassium and organic fertilizer should be supplemented in a timely manner. © 2022 Science Press. All rights reserved.  相似文献   

7.
Soil erosion has a critical effect on ecological security and socioeconomics, which may deteriorate ecosystem services and common human well-being. The revised universal soil loss equation (RUSLE) was applied to assess soil erosion from 1984 to 2013 in the Tibetan Plateau and analyzed the temporal and spatial variation of soil erosion intensity. Furthermore, the temporal and spatial variation rates of soil erosion were explored across different ecosystems. The results indicated that the annual soil erosion fuctuated in the Tibetan Plateau, the soil erosion intensity decreased from south to north, and the most serious soil erosion was mainly distributed in the southern Tibetan Plateau (Xigaze and Changdu regions, Lhasa, and north of the Shannan region). The soil erosion intensity was higher in shrub, alpine meadow, and sparse vegetation ecosystems. The highest soil erosion was found in alpine meadow (2.17 × 1010 t), followed by alpine grassland (1.59 × 1010 t) and sparse vegetation (1.30 × 1010 t) ecosystems. Meanwhile, although the most serious soil erosion intensity was found in the regions of 3 000-4 000 m altitude, the soil erosion was mainly observed in the regions of 4 000-5 000 m altitude. In the three most recent decades, annual soil erosion decreased at a rate of-1.78 × 108 t/a. Additionally, soil erosion mainly increased in south of the Qiangtang Plateau and in the periphery of the Qaidam basin. Decreased soil erosion was mainly found along the Hengduan Mountains, central Himalayas. Although the increased annual normalized difference vegetation index (NDVI) had positive effects for soil protection, changes in soil erosion was mainly controlled by the change of annual precipitation. Thus, the fragility of ecological systems and increased rainfall erosivity accounted for the obviously increased soil erosion in the alpine grassland ecosystem (1.19 × 10 t/a). However, increased ecosystem stability and decreased rainfall erosivity contributed to the decreased soil erosion in forest and shrub ecosystems, by-0.77 × 10 t/a and-1.65 × 10 t/a, respectively. The slightly decreased rainfall erosivity accounted for a decrease of soil erosion in the sparse vegetation ecosystem (-0.44 × 10 t/a). Meanwhile, soil erosion has decreased in the alpine meadow ecosystem over the past 30 years, which may owing to the relatively higher NDVI that neutralized the increase of rainfall erosivity to some extent. This study revealed serious soil erosion regions and ecosystems in the Tibetan Plateau and explored possible reasons for variations in soil erosion in different ecosystems, which may provide a scientific reference for soil erosion conservation and control in the near future. © 2018 Science Press. All rights reserved.  相似文献   

8.
Polychlorinated biphenyls (PCBs) were removed by low-temperature plasma technique (dielectric barrier discharge) from heavily polluted soil and their intermediate products were analyzed. The removal rate ranged from 40.1 to 84.6% by different treatments, and they were also influenced significantly (P 〈 0.01) by soil particle-size, electric power, gas flow rate and reaction time. The optimal reaction conditions of PCB removal from the soil were obtained experimentally when soil particle-size, electrical power, flow rate and reaction time were 5-10mm, 21w, 120mL. rain and 90rain, respectively. However, decreasing electrical power, flow rate and reaction time to 18 w, 60 mL. min- and 60 min respectively were also acceptable in view of the cost of remediation. This technique was characterized by the additional advantage of thorough oxidation of PCBs in the soil, with no formation of intermediate products after reaction. The technique therefore shows some promise for application in the remediation of soils contaminated with persistent organic pollutants in brown field sites in urban areas.  相似文献   

9.
The selection and use of low-Cd-accumulating cultivar (LCAC) has been proposed as one of the promising approaches in minimizing the entry of Cd in the human food chain. This study suggests a screening criterion of LCACs focusing on food safety. Pot culture and plot experiments were conducted to screen out LCACs from 35 pakchoi cultivars and to identify the crucial soil factors that affect Cd accumulation in LCACs. Results of the pot culture experiment showed that shoot Cd concentrations under the three Cd treatments significantly varied across cultivars. Two cultivars, Hualv 2 and Huajun 2, were identified as LCACs because their shoot Cd concentrations were lower than 0.2 mg. kg-1 under low Cd treatment and high Cd exposure did not affect the biomass of their shoots. The plot experiment further confirmed the consistency and genotypic stability of the low-Cd- accumulating traits of the two LCACs under various soil conditions. Results also showed that soil phosphorus availability was the most important soil factor in the Cd accumulation of pakchoi, which related negatively not only to Cd uptake by root but also to Cd translocation from root to shoot. The total Cd accumulation and translocation rates were lower in the LCACs than in the high-Cd cultivar, suggesting that Cd accumulation in different cultivars is associated with the Cd uptake by root as well as translocation from root to shoot. This study proves the feasibility of the application of the LCAC strategy in pakchoi cultivation to cope with Cd contamination in agricultural soils.  相似文献   

10.
A novel hybrid anaerobic-contact oxidation biofilm baffled reactor (HAOBR) was developed to simultaneously remove nitrogenous and carbonaceous organic pollutants from decentralized molasses wastewater in the study. The study was based on the inoculation of anaerobic granule sludge in anaerobic compartments and the installation of combination filler in aerobic compartments. The performance of reactor system was studied regarding the hydraulic retention time (HRT), microbial characteristics and the gas water ratio (GWR). When the HRT was 24h and the GWR was 20:1, total ammonia and chemical oxygen demand (COD) of the effluent were reduced by 99% and 91.8%, respectively. The reactor performed stably for treating decentralized molasses wastewater. The good performance of the reactor can be attributed to the high resistance of COD and hydraulic shock loads. In addition, the high solid retention time of contact oxidation biofilm contributed to stable performance of the reactor.  相似文献   

11.
Warming and nitrogen deposition directly or indirectly affect the plant-soil element cycle under global change. To examine the effects of warming and nitrogen deposition on leaf and soil carbon (C), nitrogen (N), phosphorus (P) contents, and their stoichiometric ratios in Cunninghamia lanceolata saplings, four types of treatments were assigned: control (CT), warming (W, + 4 ºC), nitrogen deposition (N, 40 kg ha-1 a-1), and warming + nitrogen deposition (WN) treatments. The results showed that: (1) compared with CT, W treatment significantly decreased leaf P content by 54.54% and increased leaf C/P and N/P by 85.26% and 83.39%, respectively; WN treatment significantly decreased leaf C content and P content by 1.99% and 51.03%, respectively, but increased the leaf C/P by 68.01% with no significant differences in leaf N content among treatments. The leaf N/P ratio of each treatment was less than 10, but that of the W and WN treatments were closer to 10 than that of the CT treatment. Meanwhile, W and WN treatments significantly increased tree height. (2) No significant differences were observed in soil total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents among treatments. Compared with CT, W treatment significantly decreased soil C/N by 4.09%, while neither W nor WN treatment affected soil C/P and N/P. W treatment increased the available soil content compared to CT treatment. (3) The correlation analysis showed that leaf N content was significantly negatively correlated with soil C/N in the CT treatment; in the W treatment leaf N content and N/P were significantly positively correlated with soil TN and TP content, respectively. Leaf N content was significantly negatively correlated with soil TC and TN in the N treatment, and leaf contents had no significant correlation with soil C, N, and P contents or their stoichiometric characteristics in the WN treatment. This study showed that N limitation still exists in C. lanceolata saplings. Warming and the interaction between warming and nitrogen deposition could alleviate N limitation and promote the growth of C. lanceolata. © 2022 Authors. All rights reserved.  相似文献   

12.
To reveal the response of non-structural carbohydrates (NSC) and carbon and nitrogen isotopes in plant leaves to global warming, we conducted soil warming experiments in the Fujian Sanming Forest Ecosystem and Global Change National Observation and Research Station of China. We designed two treatments: control (CT) and warming (W; cable heating, +4 ℃). Heating cables were installed 20 cm from each other at a depth of 10 cm and were heated in March 2016. In this study, Cunninghamia lanceolata saplings were used to analyze seasonal changes in leaf non-structural carbohydrates, and carbon and nitrogen isotopes. The results showed that (1) warming significantly reduced the soluble sugar, starch, and NSC content of leaves in spring but without any significant difference during other seasons. (2) Leaf δ13C increased significantly in spring and winter after warming, whereas leaf δ15N did not change significantly. (3) No significant correlation was observed between leaf δ13C, δ15N, or NSC content during the warming treatment, but a negative correlation was observed between leaf δ15N, δ13C, and sugar to starch ratio. A positive correlation between leaf δ15N and starch content was identified. In summary, when temperature increases, plants adjust the NSC content during different seasons for osmotic regulation, change the characteristics of the nutrient cycle, and alter the plant water and nutrient use strategies to maintain plant growth. In the future, we should further study the seasonal variation characteristics of NSC content and isotopes and the relationship between NSC content and the carbon and nitrogen cycles in plants under the context of long-term warming. © 2022 Science Press. All rights reserved.  相似文献   

13.
Subtropical climatic conditions can contribute to the death of the aerial parts of constructed wetland plants in winter. This presents a barrier to the widespread application of constructed wetland and is an issue that urgently needs to be solved. Three contrasting experi- ments, the plant-intercropping model (A), the warm- seasonal plant model (B), and the non-plant model (C), were studied in terms of their efficiency in removing pollutants, and the change in root structure of plants in the plant-intercropping model within the vertical-flow con- structed wetlands. The results indicate that model A was able to solve the aforementioned problem. Overall, average removal rates of three pollutants (CODcr, total nitrogen (TN) and total phosphorous (TP)) using model A were significantly higher than those obtained using models B and C (P 〈 0.01). Moreover, no significant differences in removal rates of the three pollutants were detected between A and B during the higher temperature part of the year (P〉 0.05). Conversely, removal rates of the three pollutants were found to be significantly higher using model A than those observed using model B during the lower temperature part of the year (P 〈 0.01). Furthermore, the morphologies and internal structures of plant roots further demonstrate that numerous white roots, whose distribution in soil was generally shallow, extend further under model A. The roots of these aquatic plants have an aerenchyma structure composed of parenchyma cells, therefore, roots of the cold-seasonal plants with major growth advantages used in A were capable of creating a more favorable vertical-flow constructed wetlands media- microenvironment. In conclusion, the plant-intercropping model (A) is more suitable for use in the cold environment experienced by constructed wetland during winter.  相似文献   

14.
To protect the ecosystem of barren mountains, massive Cupressus funebris plantations were allowed in hilly areas of the central Sichuan Basin in the late 1980s. In recent years, Cupressus funebris plantations have faced problems such as biodiversity decline and soil erosion. To study the effects of different forest densities on understory species diversity and soil anti-scourability of Cupressus funebris plantations in Yunding Mountain, a typical sampling method was used to investigate the five different forest densities (1 100, 950, 800, 650, and 500 trees/hm2) and to analyze the correlation between the species diversity index, soil anti-scourability, and root index. In total, 176 species from 128 genera and 69 families were recorded in this area. The number of species in the herb layer was higher than that in the shrub layer. The species diversity index of the shrub layer first increased and then decreased with the decrease in stand density; and the species richness index D and Shannon–Wiener diversity index H showed peak values at a density of 650 trees/hm2. The species richness index D, Shannon–Wiener diversity index H, and Simpson dominance index H’ in the herb layer showed a bimodal trend of increasing, then decreasing, increasing again, and finally decreasing with the decrease in stand density; and the peak values were found at the densities of 650 and 950 trees/hm2. When soil anti-scourability decreased with stand density, it showed a trend of increasing and then decreasing, reaching a peak at a density of 650 trees/hm2. The positive correlation between the species richness index and soil anti-scourability was evident. Thus, 650 trees/hm2 is relatively more conducive to the stability of species diversity and soil anti-scourability in cypress plantations. © 2022 Authors. All rights reserved.  相似文献   

15.
Heart rot is a common soil-borne disease in the pineapple industry, but the situation can be alleviated by the application of bio-fertilizers with beneficial microbiomes. Clarifying the controlling mechanism of bio-organic fertilizer on the high incidence of heart rot is critical in monocultural pineapple cropping patterns. In our study, the soil of continuous cropping pineapple orchards was collected. Three types of carriers (rapeseed cake, peat soil, and coconut bran), biocontrol strains (Bacillus subtilis HL2 and Streptomyces strain HL3), and organic fertilizer (YJ) were composted into different bio-fertilizers (KC, KN, KY, LC, LN, and LY), which were used in pot experiments. The controlling effect of the bio-fertilizer was determined based on the response of pineapple heart rot and bacterial communities to different fertilizing methods. Our results revealed that the incidence of heart rot in bio-fertilizer KC was the lowest, which decreased by 20% and 13.3%, respectively, compared to HF (chemical fertilizer, 16-16-16) and YJ (organic fertilizer). The richness and diversity of soil bacterial communities in all biofertilized treatments (KC, KN, KY, LC, LN, and LY) were significantly higher than those in HF. However, the α-diversity indices of the bio-fertilizers (KC, KN, and KY) were higher than those of LC, LN, and LY, and the bacterial community composition was significantly different. The bacteria GP4, GP6, Bacillus, and Azohydromonas were enriched in KC, KN, and KY, while the relative abundance of Streptomyces increased significantly in LC, LN, and LY. Furthermore, Spearman correlation analysis showed that the relative abundance of these bacterial groups was significantly negatively correlated with the incidence of pineapple heart rot. In summary, the application of bio-organic fertilizers can decrease the incidence of pineapple heart rot by altering the soil bacterial community structure and stimulating beneficial soil microorganisms, which is important for reconstructing the ecological balance in continuous pineapple orchards. © 2022 Authors. All rights reserved.  相似文献   

16.
The oxidation of aqueous monochlorobenzene (MCB) solutions using thermally- activated persulfate has been investigated. The influence of reaction temperature on the kinetics of MCB oxidation was examined, and the Arrenhius Equation rate constants at 20℃, 30℃, 40℃, 50℃, and 60℃ for MCB oxidation performance were calculated as 0, 0.001, 0.002, 0.015, 0.057 min-1, which indicates that elevated temperature accelerated the rate. The most efficient molar ratio ofpersulfate/MCB for MCB oxidation was determined to be 200 to 1 and an increase in the rate constants suggests that the oxidation process proceeded more rapidly with increasing persulfate/MCB molar ratios. In addition, the reactivity of persulfate in contaminated water is partly influenced by the presence of background ions such as CI-, HCO3, SO2 , and NO3. Importantly, a scavenging effect in rate constant was observed for both C1 and CO2- but not for other ions. The effective thermally activated persulfate oxidation of MCB in groundwater from a real contaminated site was achieved using both elevated reaction temperature and increased persulfate/MCB molar ratio.  相似文献   

17.
Oil pollution is one of the major factors causing environmental deterioration. Bioremediation of oil contaminated environments by microorganisms attracts much research attention. This study aimed to screen efficient oil-degrading bacteria from oil contaminated soil and analyze their characteristics and catabolic genes. Oil-degrading bacteria were screened from oil contaminated soil in minimal medium containing crude oil and identified by morphological, physiological and biochemical characteristics and 16S rDNA sequence analysis. Their growth and degradation characteristics were studied with ultraviolet spectroscopy and GC-MS analysis. The surfactant production was studied by adopting culture method. The major oil-degrading related genes were detected by t he PCR a mplification. As a result, t hree oil-degrading bacteria strains named KB1, 2182 and JC3-47 were isolated from the oil contaminated soil samples. The strains could use crude oil as the sole carbon source to degrade oil with a degrading rate of 41.02%, 32.26% and 55.90%, respectively, when cultured in minimal medium containing crude oil for 3 days. The bacteria were identified to belong to genus Rhodococcus. With 100% similarity of 16S rDNA sequences of the three strains with known ones of Rhodococcus, KB1 was preliminarily identified as Rhodococcus erythropolis, 2182 as Rhodococcus equi, and JC3-47 as Rhodococcus qingshengii. They grew well at 10-50 °C, with the initial pH of 3-9 and the NaCl concentration of 0-5%. The optimal temperature for bacterial growth was 35 °C, 35 °C and 30 °C respectively. KB1 and 2182 could grow at pH 2 and 9.0% of NaCl. The bacteria grew well in broth containing different organic substrates as sole carbon source, such as n-dodecane, n-octadecane, benzene, methylbenzene, xylene and naphthaline. KB1 and JC3-47 could grow well in broth containing pyrene. GC-MS analysis revealed that the bacteria could effectively degrade medium- and long-chain alkane components in crude oil. The bacteria produced biosurfactants and decreased the surface tension of the culture broth. They also showed adhesion activities to n-hexadecane. The oil-degrading related genes such as alkane monooxygenase, aromatic-ring-hydroxylating dioxygenase and catechol dioxygenase genes were detected in all the three strains. Besides, biphenyl dioxygenase genes were detected in KB1 and 2182. The isolated Rhodococcus spp. strains could effectively degrade petroleum hydrocarbons with high adaptabilities to extreme environments such as high salt and low temperature. They are supposed to be applied broadly in the bioremediation of oil contaminated soil in such environments.  相似文献   

18.
The relationship between the chemical con- taminants and soil microbial toxicity of waste foundry sand (WFS) was investigated. Five different types of WFS from typical ferrous, aluminum, and steel foundries in China were examined for total metals, leachable metals, and organic contaminants. The soil microbial toxicity of each WFS was evaluated by measuring the dehydrogenase activity (DHA) of a blended soil and WFS mixture and then comparing it to that of unblended soil. The results show that the five WFSs had very different compositions of metal and organic contaminants and thus exhibited very different levels of soil microbial inhibition when blended with soil. For a given WFS blended with soil in the range of 10wt.%-50wt.% WFS, the DHA decreased almost linearly with increased blending ratio. Furthermore, for a given blending ratio, the WFSs with higher concentrations of metal and organic contaminants exhibited greater microbial toxicity. Correlation analysis shows that the relationship between ecotoxicity and metal and organic contaminants of WFSs can be described by an empirical logarithmic linear model. This model may be used to control WFS blending ratios in soil-related applications based on chemical analysis results to prevent significant inhibition of soil microbial activity.  相似文献   

19.
Subcellular distributions and chemical forms of cadmium (Cd) in the leaves, stems and roots were investigated in low-Cd accumulation cultivars and high-Cd accumulation cultivars ofpakchoi (Brassica chinensis L.). Root cell wall played a key role in limiting soil Cd from entering the protoplast, especially in the low-Cd cultivars. The high-Cd cultivars had significantly higher leaf and stem Cd concentrations than the low-Cd cultivars in cell wall fraction, chloroplast/trophoplast fraction, organelle fraction and soluble fraction. In low-Cd cultivars, which were more sensitive and thus had greater physiological needs of Cd detoxification than high-Cd cultivars, leaf vacuole sequestrated higher proportions of Cd. Cd in the form of pectate/protein complexes (extracted by 1 tool. L~ NaC1) played a decisive role in Cd translocation from root to shoot, which might be one of the mechanisms that led to the differences in shoot Cd accumulation between the two types of cultivars. Furthermore, the formation of Cd- phosphate complexes (extracted by 2% HAc) was also involved in Cd detoxification within the roots of pakchoi under high Cd stress, suggesting that the mechanisms of Cd detoxification might be different between low- and high-Cd cultivars.  相似文献   

20.
The white rot fungi are members of Basidiomycota, which can degrade lignin and form white rot. They are high producers of extracellular laccases. In the present study, pure culture strain of high-temperature and high-laccase production types (numbered as BUA-01) was isolated from the fruiting bodies of a white rot fungus collected in the campus of Beijing University of Agriculture. The taxonomic characteristic was determined based on morphological and ITS sequence analysis. Furthermore, the optimal culture conditions for the mycelia were determined, including carbon source, nitrogen source, C/N ratio, growth factors, temperature, and pH. Extracellular laccase production was investigated in liquid fermentation with different concentrations of Cu (CuSO4) as inducer. Decolorizing activity of the fermentation broth was assayed using three azo dyes: Evans blue, methyl orange, and eriochrome black T. The results showed that the strain possessed the highest homology toward Trametes hirsuta, with the homology ratio of 100% and the genetic distance of 0, suggesting that the strain BUA-01 belonged to the genus Trametes. The culture condition investigated revealed that the optimal condition for mycelia growth included the following: carbon source, starch; nitrogen source, soybean powder and yeast extract; C/N ratio, 40/1 and 10/1; temperature, 37 °C; and pH, 6.0-7.0. The assayed growth factors had no significant effect on mycelial growth. It demonstrated high laccase activity in liquid fermentation. The highest extracellular laccase activity of 1 081.33 ± 6.3 U/mL was observed in the broth with a Cu adjunction concentration of 0.25 mmol/L after a 96-h culture period. It was about 26-fold higher than that of the control group. The isolated strain exhibited significant decolorizing activity toward the azo dyes Evans blue, methyl orange, and eriochrome black T, with the decolorization rate at 12 h of 93.31% ± 0.16%, 92.37% ± 0.42%, 79.25% ± 0.64%, respectively. This suggests that the strain possesses potential applications in laccase production and dye degradation. © 2018 Science Press. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号