首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A thorough understanding of past and present hydrologic responses to changes in precipitation patterns is crucial for predicting future conditions. The main objectives of this study were to determine temporal changes in rainfall‐runoff relationship and to identify significant trends and abrupt shifts in rainfall and runoff time series. Ninety‐year rainfall and runoff time series datasets from the Gasconade and Meramec watersheds in east‐central Missouri were used to develop data screening procedure to assess changes in the rainfall and runoff temporal patterns. A statistically significant change in mean and variance was detected in 1980 in the rainfall and runoff time series within both watersheds. In addition, both the rainfall and runoff time series indicated the presence of nonstationary attributes such as statistically significant monotonic trends and/or change in mean and variance, which should be taken into consideration when using the time series to predict future scenarios. The annual peak runoff and the annual low flow in the Meramec watershed showed significant temporal changes compared to that in the Gasconade watershed. Water loss in both watersheds was found to be significantly increasing which is potentially due to the increase in groundwater pumping for water supply purposes.  相似文献   

2.
The storage function model is a nonlinear rainfall-runoff model that has been developed for and applied to flood runoff analysis in Japan. This paper extends the model applicability by developing practical equations for estimating model parameters which are appropriate on a regional basis, i.e., so-called regional equations. Previously, the parameters were computed from historical data for a specific basin or from relationships that do not account for land use and topography. To develop the regionalized equations, model parameters were identified for 91 flood events from 22 watersheds in Japan by applying a mathematical optimization technique. Results from 39 of these events were statistically compared and regional relationships were determined as a function of land use, basin area and rainfall intensity. The utility of the estimated equations were tested by computing runoff hydrographs for lumped basins. The estimated parameters were also applied in a distributed watershed model formulation. Both applications showed acceptable results that validate the use of the regionalized relationships.  相似文献   

3.
The Storm Water Management Model was used to simulate runoff and nutrient export from a low impact development (LID) watershed and a watershed using traditional runoff controls. Predictions were compared to observed values. Uncalibrated simulations underpredicted weekly runoff volume and average peak flow rates from the multiple subcatchment LID watershed by over 80%; the single subcatchment traditional watershed had better predictions. Saturated hydraulic conductivity, Manning's n for swales, and initial soil moisture deficit were sensitive parameters. After calibration, prediction of total weekly runoff volume for the LID and traditional watersheds improved to within 12 and 5% of observed values, respectively. For the validation period, predicted total weekly runoff volumes for the LID and traditional watersheds were within 6 and 2% of observed values, respectively. Water quality simulation was less successful, Nash–Sutcliffe coefficients >0.5 for both calibration and validation periods were only achieved for prediction of total nitrogen export from the LID watershed. Simulation of a 100‐year, 24‐h storm resulted in a runoff coefficient of 0.46 for the LID watershed and 0.59 for the traditional watershed. Results suggest either calibration is needed to improve predictions for LID watersheds or expanded look‐up tables for Green–Ampt infiltration parameter values that account for compaction of urban soil and antecedent conditions are needed.  相似文献   

4.
ABSTRACT: A generalized unit hydrograph method is developed and evaluated for ungaged watersheds. A key component in this method is the value of a dimensionless storage coefficient. Procedures to estimate this coefficient are given using calibrated values from 142 rainfall-runoff events gaged in watershed located mainly in the Eastern US. Only limited success was obtained in predicting this storage coefficient. Thirty-seven, independent rainfall-runoff events were used to test the proposed technique. The generalized unit hydrograph predicted the observed runoff hydrographs fairly well with considerable improvement in accuracy over the SCS dimensionless unit hydrograph. Approximately one-half of test storms had percent errors in predicted peak flow rates that were less than 34 percent compared to percent error of 88 percent with the SCS method.  相似文献   

5.
ABSTRACT: Since the trend in infiltration modeling is currently toward process-based approaches such as the Green-Ampt equation, more emphasis is being placed on methods of determining appropriate parameters for this approach. The SCS curve number method is an accepted and commonly used empirical approach for estimating surface runoff, and is based on numerous data from a variety of sources. The time and expense of calibrating process-based infiltration parameters to measured data are often prohibitive. This study uses curve number predictions of runoff to develop equations to estimate the “baseline” hydraulic conductivities (Kb) for use in the Green-Ampt equation. Curve number predictions of runoff were made for 43 soils. Kb values in the Water Erosion Prediction Project (WEPP) model were then calibrated so that the annual runoff predicted by WEPP was equal to the curve number predictions. These calibrated values were used to derive an equation that estimated Kb based on the percent sand, percent clay, and cation exchange capacity of the soil. Estimated values of Kb from this equation compared favorably with measured values and values calibrated to measured natural runoff plot data. WEPP predictions of runoff using both optimized and estimated values of Kb were compared to curve number predictions of runoff and the measured values. The WEPP predictions using the optimized values of Kb were the best in terms of both average error and model efficiency. WEPP predictions using estimated values of Kb were shown to be superior to predictions obtained from the curve number method. The runoff predictions all tended to be biased high for small events and low for larger events when compared to the measured data. Confidence intervals for runoff predictions on both an annual and event basis were also developed for the WEPP model.  相似文献   

6.
ABSTRACT: A loading function methodology is presented for predicting runoff, sediment, and nutrient losses from complex watersheds. Separate models are defined for cropland, forest, urban and barnyard sources, and procedures for estimating baseflow nutrients are provided. The loading functions are designed for use as a preliminary screening tool to isolate the major contributors in a watershed. Input data sources are readily available and the functions do not require costly calibrations. Data requirements include watershed land use and soil information, daily precipitation and temperature records and rainfall erosivities. Comparison of predicted and measured water, sediment, and nutrient runoff fluxes for the West Branch Deleware River in New York, indicated that runoff was underpredicted by about 14 percent while dissolved nutrients were within 30 percent of observed values. Sediment and solid-phase nutrients were overpredicted by about 50 percent. An annual nutrient budget for the West Branch Delaware River showed that cornland was the major source of sediment, solid phase nutrients, and total phosphorus. Waste water treatment plants and ground water discharge contributed the most dissolved phosphorus and dissolved nitrogen, respectively.  相似文献   

7.
8.
ABSTRACT: Mean monthly runoff from ungaged drainage basins that have significant snowpacks each year can be estimated quite well by assuming that the time duration between snowfall and snowmelt is the predominant factor in temporal runoff distribution. That time span is related to basin temperatures which are, in turn, functions of basin elevation and latitude. Regional hydrologic analyses of gaged basin data create regression equations for estimating runoff distribution by month. These equations then can be applied to ungaged basins. Basin latitude and mean elevation are two independent variables that can be used in estimating monthly runoff distributions.  相似文献   

9.
ABSTRACT: The purpose of this study was to evaluate the performance of Spatially Integrated Models for Phosphorus Loading and Erosion (SIMPLE) in predicting runoff volume, sediment loss, and phosphorus loading from two watersheds. The modeling system was applied to the 334 ha QOD subwatershed, part of the Owl Run watershed, located in Fauquier County, Virginia, and to the 2240 ha watershed, Battle Branch, located in Delaware County, Oklahoma. Simulation runs were conducted at cell and field scales, and simulation results were compared with observed data. Runoff volume and dissolved phosphorus loading were measured at the Battle Branch watershed. Runoff volume, sediment yield, and total phosphorus loading were measured at the QOD site. SIMPLE tended to underestimate runoff volumes during the dormant period, from November to March. The comparison between observed and predicted dissolved phosphorus showed better correlation than for observed and predicted total phosphorus loading. Cell level simulations provided similar estimates of runoff volume and phosphorus loading when compared to field level simulations for both watersheds. However, observed sediment yields better compared with the values predicted from the cell level simulation when compared to field level simulation. Finally, results of model evaluation indicated that SIMPLE's predictive ability is acceptable for screening applications but not for site-specific quantitative predictions.  相似文献   

10.
ABSTRACT: Regression models were developed for estimating stream concentrations of the herbicides alachlor, atrazine, cyanazine, metolachior, and trilluralin from use‐intensity data and watershed characteristics. Concentrations were determined from samples collected from 45 streams throughout the United States during 1993 to 1995 as part of the U.S. Geological Survey's National Water‐Quality Assessment (NAWQA). Separate regression models were developed for each of six percentiles (10th, 25th, 50th, 75th, 90th, 95th) of the annual distribution of stream concentrations and for the annual time‐weighted mean concentration. Estimates for the individual percentiles can be combined to provide an estimate of the annual distribution of concentrations for a given stream. Agricultural use of the herbicide in the watershed was a significant predictor in nearly all of the models. Several hydrologic and soil parameters also were useful in explaining the variability in concentrations of herbicides among the streams. Most of the regression models developed for estimation of concentration percentiles and annual mean concentrations accounted for 50 percent to 90 percent of the variability among streams. Predicted concentrations were nearly always within an order of magnitude of the measured concentrations for the model‐development streams, and predicted concentration distributions reasonably matched the actual distributions in most cases. Results from application of the models to streams not included in the model development data set are encouraging, but further validation of the regression approach described in this paper is needed.  相似文献   

11.
Abstract: In efforts to control the degradation of water quality in Lake Tahoe, public agencies have monitored surface water discharge and concentrations of nitrogen, phosphorus, and suspended sediment in two separate sampling programs. The first program focuses on 20 watersheds varying in size from 162 to 14,000 ha, with continuous stream gaging and periodic sampling; the second focuses on small urbanized catchments, with automated sampling during runoff events. Using data from both programs, we addressed the questions (1) what are the fluxes and concentrations of nitrogen and phosphorus entering the lake from surface runoff; (2) how do the fluxes and concentrations vary in space and time; and (3) how are they related to land use and watershed characteristics? To answer these questions, we calculated discharge‐weighted average concentrations and annual fluxes and used multiple regression to relate those variable to a suite of GIS‐derived explanatory variables. The final selected regression models explain 47‐62% of the variance in constituent concentrations in the stormwater monitoring catchments, and 45‐72% of the variance in mean annual yields in the larger watersheds. The results emphasize the importance of impervious surface and residential density as factors in water quality degradation, and well‐developed soil as a factor in water quality maintenance.  相似文献   

12.
ABSTRACT: To alleviate serious flooding problems brought upon by rapid urbanization in the Beargrass Creek watershed, located in Louisville, Kentucky, the U.S. Army Corps of Engineers undertook a major flood study in 1973. In order to predict flood conditions in 1990, the year when the watershed was expected to undergo complete urbanization, trends in the Clark Instantaneous Unit Hydrograph (Clark IUH) parameters were utilized to determine the 1990 unit hydrograph and flood conditions. Based on the results from this flood study, this paper demonstrates the applicability of using projected Clark IUH parameters for modeling future runoff conditions in an urbanizing watershed. Values of these parameters, as estimated from maximum annual historical flood data, are used to develop regression models for predicting future Clark IUH parameters. Using the projected parameters, selected annual flood events since 1973 are simulated in order to verify the accuracy of these projections. Results show a close correspondence between the simulated and observed flood characteristics. Hence, the use of projected Clark IUH parameters is an appropriate procedure for modeling future runoff conditions in an urbanizing watershed.  相似文献   

13.
ABSTRACT: Water resource management in West Africa is often a complicated process due to inadequate resources, climatic extremes, and insufficient hydrological information. Insufficient data hinder sustainable watershed management practices, one of the top priorities in the Volta River Basin. This research properly fills in missing data by modeling the hydrological distribution in the Volta River Basin. On average, discharge gages across the basin are missing 20 percent of their monthly data over 20 years. Two methods were used to supplement missing data: a statistically linear model and a conceptual hydrological model. A linear equation, developed from the regression of precipitation and runoff, was used to evaluate the quality of existing data. The hydrological model separates the system into root and groundwater zones. Measured values were used to calibrate the hydrological model and to validate the statistical model. The quality of existing data was analyzed and organized for usability. Accuracy of the hydrological model was also evaluated for its effectiveness using R2 and standard error. It was found that the hydrological model was an improvement from the linear model on a monthly basis; R2 values improved by as much as 0.5 and monthly error decreased. Monthly predictions of the hydrological model were used to fill gaps of measured data sets.  相似文献   

14.
ABSTRACT: In this study, remotely sensed data and geographic information system (GIS) tools were used to estimate storm runoff response for Simms Creek watershed in the Etonia basin in northeast Florida. Land cover information from digital orthophoto quarter quadrangles (DOQQ), and enhanced thematic mapper plus (ETM+) were analyzed for the years 1990, 1995, and 2000. The corresponding infiltration excess runoff response of the study area was estimated using the U.S. Department of Agriculture (USDA), Natural Resources Conservation Service Curve Number (NRCS‐CN) method. A digital elevation model (DEM)/GIS technique was developed to predict stream response to runoff events based on the travel time from each grid cell to the watershed outlet. A comparison of predicted to observed stream response shows that the model predicts the total runoff volume with an efficiency of 0.98, the peak flow rate at an efficiency of 0.85, and the full direct runoff hydrograph with an average efficiency of 0.65. The DEM/GIS travel time model can be used to predict the runoff response of ungaged watersheds and is useful for predicting runoff hydrographs resulting from proposed large scale changes in the land use.  相似文献   

15.
Environmental assessments of golf courses and other turf systems must often rely on mathematical modeling. However, in the case of pesticide runoff, successful modeling applications are rare. Available models were developed for agricultural applications and have seen very limited testing for turf. TurfPQ is a pesticide runoff model developed exclusively for turf. The model is based on a curve number calculation for runoff volume and linear partitioning of pesticide into adsorbed and dissolved components during a precipitation or irrigation event. Calibration is optional, so the model can be applied, using default parameter values, to situations where runoff and chemical loss data are unavailable. TurfPQ was tested with default parameter values for 52 pesticide runoff events involving six pesticides measured in plot studies in four states. The model typically produced conservative overpredictions of pesticide runoff, particularly with strongly adsorbed pesticides. Mean predicted pesticide runoff was 2.9% [corrected] of application, compared with an observed mean of 2.1%. TurfPQ captured the dynamics of the pesticide runoff events well with R2 = 0.65 [corrected]. Sensitivity analyses indicated that prediction errors could be reduced by better estimates of adsorption parameters and runoff curve numbers. However, even with default parameters, TurfPQ predictions are at least as accurate as those produced by more complex models.  相似文献   

16.
Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.  相似文献   

17.
ABSTRACT: Loading functions are proposed as a general model for estimating monthly nitrogen and phosphorus fluxes in stream flow. The functions have a simple mathematical structure, describe a wide range of rural and urban nonpoint sources, and couple surface runoff and ground water discharge. Rural runoff loads are computed from daily runoff and erosion and monthly sediment yield calculations. Urban runoff loads are based on daily nutrient accumulation rates and exponential wash off functions. Ground water discharge is determined by lumped parameter unsaturated and saturated zone soil moisture balances. Default values for model chemical parameters were estimated from literature values. Validation studies over a three-year period for an 850 km2 watershed showed that the loading functions explained at least 90 percent of the observed monthly variation in dissolved and total nitrogen and phosphorus fluxes in stream flow. Errors in model predictions of mean monthly fluxes were: dissolved phosphorus - 4 percent; total phosphorus - 2 percent; dissolved nitrogen - 18 percent; and total nitrogen - 28 percent. These results were obtained without model calibration.  相似文献   

18.
Pressures on water resources due to changing climate, increasing demands, and enhanced recognition of environmental flow needs result in the need for hydrology information to support informed water allocation decisions. However, the absence of hydrometric measurements and limited access to hydrology information in many areas impairs water allocation decision‐making. This paper describes a water balance‐based modeling approach and an innovative web‐based decision‐support hydrology tool developed to address this need. Using high‐resolution climate, vegetation, and watershed data, a simple gridded water balance model, adjusted to account for locational variability, was developed and calibrated against gauged watersheds, to model mean annual runoff. Mean monthly runoff was modeled empirically, using multivariate regression. The modeled annual runoff results are within 20% of the observed mean annual discharge for 78% of the calibration watersheds, with a mean absolute error of 16%. Modeled monthly runoff corresponds well to observed monthly runoff, with a median Nash–Sutcliffe statistic of 0.92 and a median Spearman rank correlation statistic of 0.98. Monthly and annual flow estimates produced from the model are incorporated into a map‐ and watershed‐based decision‐support system referred to as the Northeast Water Tool, to provide critical information to decision makers and others on natural water supply, existing allocations, and the needs of the environment.  相似文献   

19.
ABSTRACT: A monthly water‐balance (WB) model was tested in 44 river basins from diverse physiographic and climatic regions across the conterminous United States (U.S.). The WB model includes the concepts of climatic water supply and climatic water demand, seasonality in climatic water supply and demand, and soil‐moisture storage. Exhaustive search techniques were employed to determine the optimal set of precipitation and temperature stations, and the optimal set of WB model parameters to use for each basin. It was found that the WB model worked best for basins with: (1) a mean elevation less than 450 meters or greater than 2000 meters, and/or (2) monthly runoff that is greater than 5 millimeters (mm) more than 80 percent of the time. In a separate analysis, a multiple linear regression (MLR) was computed using the adjusted R‐square values obtained by comparing measured and estimated monthly runoff of the original 44 river basins as the dependent variable, and combinations of various independent variables [streamflow gauge latitude, longitude, and elevation; basin area, the long‐term mean and standard deviation of annual precipitation; temperature and runoff; and low‐flow statistics (i.e., the percentage of months with monthly runoff that is less than 5 mm)]. Results from the MLR study showed that the reliability of a WB model for application in a specific region can be estimated from mean basin elevation and the percentage of months with gauged runoff less than 5 mm. The MLR equations were subsequently used to estimate adjusted R‐square values for 1,646 gauging stations across the conterminous U.S. Results of this study indicate that WB models can be used reliably to estimate monthly runoff in the eastern U.S., mountainous areas of the western U.S., and the Pacific Northwest. Applications of monthly WB models in the central U.S. can lead to uncertain estimates of runoff.  相似文献   

20.
ABSTRACT: This study tests the hypothesis that climatic data can be used to develop a watershed model so that stream flow changes following forest harvest can be determined. Measured independent variables were precipitation, daily maximum and minimum temperature, and concurrent relative humidity. Computed variables were humidity deficit, saturated vapor pressure, and ambient vapor pressure. These climatic variables were combined to compute a monthly evaporation index. Finally, the evaporation index and monthly precipitation were regressed with measured monthly stream flow and the monthly estimates of stream flow were combined for the hydrologic year. A regression of predicted versus measured annual stream flow had a standard error of 1.5 inches (within 6.1 percent of the measured value). When 10, 15, and 20 years of data were used to develop the regression equations, predicted minus measured stream flow for the last 7 years of record (1972–1978) were within 16.8, 11.5, and 9.7 percent of the measured mean, respectively. Although single watershed calibration can be used in special conditions, the paired watershed approach is expected to remain the preferred method for determining the effects of forest management on the water resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号