首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Stable carbon isotope analysis of chlorinated aliphatic compounds was performed at an in situ biostimulation pilot test area (PTA) at a site where 1,2-dichloroethane (1,2-DCA) and trichloroethene (TCE) were present in groundwater. Chlorinated products of TCE reductive dechlorination (cis-dichloroethene (cDCE) and vinyl chloride (VC)) were present at concentrations of 17.5 to 126.4 micromol/L. Ethene, a potential degradation product of both 1,2-DCA dihaloelimination and TCE reductive dechlorination was also present in the PTA. Emulsified soybean oil and lactate were added as electron donors to stimulate anaerobic dechlorination in the PTA. Stable carbon isotope analysis provided evidence that dechlorination was occurring in the PTA during biostimulation, and a means of monitoring changes in dechlorination efficiency over the 183 day monitoring period. Stable carbon isotope analysis was also used to determine if ethene production in the PTA was due to dechlorination of TCE, 1,2-DCA, or both. Fractionation factors (alpha) were determined in the laboratory during anaerobic biotransformation of 1,2-DCA via a dihaloelimination reaction in four separate enrichment cultures. These alpha values (as well as the previously published ranges of alpha for the dechlorination of TCE, cDCE and 1,2-DCA) were used, along with isotopic values measured during the pilot test, to derive quantitative estimates of biotransformation during the pilot test. Dechlorination was found to account for 10.7 to 35.9%, 21.9 to 74.9%, and 54.4 to 67.8% of 1,2-DCA, TCE and cDCE concentration loss respectively in the PTA. Stable carbon isotope analysis indicates that dechlorination of 1,2-DCA, TCE and cDCE were all significant processes during the pilot test, while ethene production during the pilot test was dominated by 1,2-DCA dihaloelimination. This study demonstrates how stable carbon isotope analysis can provide more conservative estimates of the extent of biotransformation than do conventional protocols. In addition, in a complex mixed plume such as this, compound specific isotope analysis is shown to be one of the few methods available for clarifying dominant biotransformation pathways where breakdown products are non-exclusive (i.e. ethene).  相似文献   

2.
The widespread use of tetrachloroethene (PCE) and trichloroethene (TCE) as dry cleaning solvents and degreasing agents for military and industrial applications has resulted in significant environmental contamination worldwide. Anaerobic biotransformation of PCE and TCE through reductive dechlorination frequently lead to the accumulation of dichloroethenes (DCEs), thus limiting the use of reductive dechlorination for the biotransformation of the compounds. In this study, seven bacteria indigenous to contaminated sites in Africa were characterized for DCE degradation under aerobic conditions. The specific growth rate constants of the bacterial isolates ranged between 0.346-0.552d(-1) and 0.461-0.667d(-1) in cis-DCE and trans-DCE, respectively. Gas chromatographic analysis revealed that up to 75% of the compounds were degraded within seven days with the degradation rate constants ranging between 0.167 and 0.198d(-1). The two compounds were also observed to be significantly degraded, simultaneously, rather than sequentially, when present as a mixture. Phylogenetic analysis of the 16S rRNA gene sequences of the bacterial isolates revealed their identity as well as their relation to other environmentally-important bacteria. The observed biodegradation of DCEs may contribute to PCE and TCE removal at the aerobic fringe of groundwater plumes undergoing reductive dechlorination in contaminated sites.  相似文献   

3.
Lee W  Batchelor B 《Chemosphere》2004,56(10):999-1009
Abiotic reductive dechlorination of chlorinated ethylenes (tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinylchloride (VC)) by iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite) was characterized to obtain better understanding of the behavior of these contaminants in systems undergoing remediation by natural attenuation and redox manipulation. Batch experiments were conducted to evaluate dechlorination kinetics and some experiments were conducted with addition of Fe(II) to simulate impact of microbial iron reduction. A modified Langmuir-Hinshelwood kinetic model adequately described reductive dechlorination kinetics of target organics by the iron-bearing phyllosilicates. The rate constants stayed between 0.08 (+/-10.4%) and 0.401 (+/-8.1%) day(-1) and the specific initial reductive capacity of iron-bearing phyllosilicates for chlorinated ethylenes stayed between 0.177 (+/-6.1%) and 1.06 (+/-7.1%) microM g(-1). The rate constants for the reductive dechlorination of TCE at reactive biotite surface increased as pH (5.5-8.5) and concentration of sorbed Fe(II) (0-0.15 mM g(-1)) increased. The appropriateness of the model is supported by the fact that the rate constants were independent of solid concentration (0.0085-0.17 g g(-1)) and initial TCE concentration (0.15-0.60 mM). Biotite had the greatest rate constant among the phyllosilicates both with and without Fe(II) addition. The rate constants were increased by a factor of 1.4-2.5 by Fe(II) addition. Between 1.8% and 36% of chlorinated ethylenes removed were partitioned to the phyllosilicates. Chloride was produced as a product of degradation and no chlorinated intermediates were observed throughout the experiment.  相似文献   

4.
In situ methods are needed to evaluate the effectiveness of chemical amendments at enhancing reductive dechlorination rates in groundwater that is contaminated with the priority pollutant, trichloroethene (TCE). In this communication, a method that utilizes single-well, “push–pull” tests to quantify the effects of chemical amendments on in situ reductive dechlorination rates is presented and demonstrated. Five push–pull tests were conducted in each of five monitoring wells located in a TCE-contaminated aquifer at the site of a former chemical manufacturing facility. Rates for the reductive dechlorination of the fluorinated TCE-surrogate, trichlorofluoroethene (TCFE), were measured before (test 1) and after (test 5) three successive additions (tests 2–4) of fumarate. Fumarate was selected to stimulate the growth and activity of indigenous microorganisms with the metabolic capability to reduce TCFE and TCE. In three wells, first-order rate constants for the reductive dechlorination of TCFE increased by 8.2–92 times following fumarate additions. In two wells, reductive dechlorination of TCFE was observed after fumarate additions but not before. The transformation behavior of fumarate was also monitored following each fumarate addition. Correlations between the reductive dechlorination of TCFE and the reduction of fumarate to succinate were observed, indicating that these reactions were supported by similar biogeochemical conditions at this site.  相似文献   

5.
A microcosm study was conducted to evaluate the need for bioaugmentation after a thermal treatment to anaerobically dechlorinate trichloroethene (TCE) to ethene. The microcosms were either: heated to 100 degrees C and slowly cooled to simulate thermal remediation while bioaugmenting when the declining temperature reached 10 degrees C; or kept at ambient groundwater temperatures (10 degrees C) and bioaugmented for comparison. Aquifer samples from three sediment locations within a TCE-polluted source zone were investigated in duplicate microcosms. In biostimulated (5 mM lactate) and heated microcosms, no conversion of TCE was observed in 4 out of 6 microcosms, and in the remaining microcosms the dechlorination of TCE was incomplete to cDCE (cis-dichloroethene). By comparison, complete TCE dechlorination to ethene was observed in 4 out of 6 heated microcosms that were bioaugmented with a highly enriched dechlorinating mixed culture, KB-1, but no electron donor, and also in 4 of 6 microcosms that were augmented with KB-1 and an electron donor (5 mM lactate). These data suggest that electron donor released during heating, was capable of promoting complete dechlorination coincident with bioaugmentation. Heated microcosms demonstrated less methanogenesis than unheated microcosms, even with elevated H2 concentrations and addition of KB-1, which contains methanogens. This suggests that the heating process suppressed the native microbial community, which can decrease competition with the bioaugmented culture and increase the effectiveness of dechlorination following a thermal treatment. Specifically, cDCE removal rates were four to six times higher in heated than unheated bioaugmented microcosms. This study confirms the need for bioaugmentation following a laboratory thermal treatment to obtain complete dechlorination of TCE.  相似文献   

6.
During reductive dechlorination of trichloroethene (TCE) by zero-valent iron, stable carbon isotopic values of residual TCE fractionate significantly and can be described by a Rayleigh model. This study investigated the effect of observed reaction rate, surface oxidation and iron type on isotopic fractionation of TCE during reductive dechlorination. Variation of observed reaction rate did not produce significant differences in isotopic fractionation in degradation experiments. However, a small influence on isotopic fractionation was observed for experiments using acid-cleaned electrolytic iron versus experiments using autoclaved electrolytic iron, acid-cleaned Peerless cast iron or autoclaved Peerless cast iron. A consistent isotopic enrichment factor of epsilon = -16.7/1000 was determined for all experiments using cast iron, and for the experiments with autoclaved electrolytic iron. Column experiments using 100% cast iron and a 28% cast iron/72% aquifer matrix mixture also resulted in an enrichment factor of -16.9/1000. The consistency in enrichment factors between batch and column systems suggests that isotopic trends observed in batch systems may be extrapolated to flowing systems such as field sites. The fact that significant isotopic fractionation was observed in all experiments implies that isotopic analysis can provide a direct qualitative indication of whether or not reductive dechlorination of TCE by Fe0 is occurring. This evidence may be useful in answering questions which arise at field sites, such as determining whether TCE observed down-gradient of an iron wall remediation scheme is the result of incomplete degradation within the wall, or of the dissolved TCE plume by passing the wall.  相似文献   

7.
Parshetti GK  Doong RA 《Chemosphere》2012,86(4):392-399
In this study, the dechlorination of chlorinated hydrocarbons including trichloroethylene (TCE), tetrachloroethylene (PCE) and carbon tetrachloride (CT) by bimetallic Ni/Fe nanoparticles immobilized on four different membranes was investigated under anoxic conditions. Effects of several parameters including the nature of membrane, initial concentration, pH value, and reaction temperature on the dechlorination efficiency were examined. The scanning electron microscopic images showed that the Ni/Fe nanoparticles were successfully immobilized inside the four membranes using polyethylene glycol as the cross-linker. The agglomeration of Ni/Fe were observed in poly(vinylidene fluoride), Millex GS and mixed cellulose ester membranes, while a relatively uniform distribution of Ni/Fe was found in nylon-66 membrane because of its hydrophilic nature. The immobilized Ni/Fe nanoparticles exhibited good reactivity towards the dechlorination of chlorinated hydrocarbons, and the pseudo-first-order rate constant for TCE dechlorination by Ni/Fe in nylon-66 were 3.7-11.7 times higher than those in other membranes. In addition, the dechlorination efficiency of chlorinated hydrocarbons followed the order TCE > PCE > CT. Ethane was the only end product for TCE and PCE dechlorination, while dichloromethane and methane were found to be the major products for CT dechlorination, clearly indicating the involvement of reactive hydrogen species in dechlorination. In addition, the initial rate constant for TCE dechlorination increased upon increasing initial TCE concentrations and the activation energy for TCE dechlorination by immobilized Ni/Fe was 34.9 kJ mol−1, showing that the dechlorination of TCE by membrane-supported Ni/Fe nanoparticles is a surface-mediated reaction.  相似文献   

8.
Abiotic reductive dechlorination of chlorinated ethylenes by soil   总被引:3,自引:0,他引:3  
Lee W  Batchelor B 《Chemosphere》2004,55(5):705-713
Abiotic reductive dechlorination of chlorinated ethylenes by soil in anaerobic environments was characterized to improve knowledge of the behavior of chlorinated ethylenes in natural systems, including systems modified to promote attenuation of contaminants. Target organics in the soil suspension reached sorption equilibrium in 2 days and the sorption isotherm of target organics was properly described by the linear sorption model. A modified Langmuir-Hinshelwood model was developed to describe the kinetics of reductive dechlorination of target organics by soil. The rate constants for the reductive dechlorination of chlorinated ethylenes at the reactive surfaces of reduced soils were found in the range between 0.055 (+/- 8.9%) and 2.60 (+/- 3.2%) day(-1). The main transformation products in reduced soil suspensions were C2 hydrocarbons. No chlorinated intermediates were observed at concentrations above detection limits. Five cycles of reduction of the soil followed by oxidation of the soil with trichloroethylene (TCE) did not affect the removal of TCE. The removal was affected by the reductants used and increased in the order: Fe(II) < dithionite < Fe(II) + dithionite.  相似文献   

9.
Tetrakis-(4-sulfonatophenyl)porphyrin cobalt was identified as a highly-active reductive dechlorination catalyst for chlorinated ethylenes. Through batch reactor kinetic studies, degradation of chlorinated ethylenes proceeded in a step-wise fashion with the sequential replacement of Cl by H. For perchloroethylene (PCE) and trichloroethylene (TCE), the dechlorination products were quantified and the C2 mass was accounted for. Degradation of the chlorinated ethylenes was found to be first-order in substrate. Dechlorination trials with increasing catalyst concentration showed a linearly increasing pseudo first-order rate constant which yielded rate laws for PCE and TCE degradation that are first-order in catalyst. The dechlorination activity of this catalyst was compared to that of another water-soluble cobalt porphyrin under the same reaction conditions and found to be comparable for PCE and TCE.  相似文献   

10.
由于四氯乙烯 (PCE)的大量使用和不合理的处置使其成为常见的污染物之一。PCE在好氧条件下不发生生物降解 ,只在厌氧条件下通过还原脱氯发生生物降解。本研究主要是对从不同处理厂获得的厌氧污泥进行培养 ,选出合适的厌氧污泥 ,进行降解PCE的厌氧污泥的驯化 ,为以后进行降解PCE的动力学研究和优势菌种的筛选做准备。同时 ,在实验中检测到了三氯乙烯 (TCE) ,表明PCE是通过还原脱氯发生生物降解的。  相似文献   

11.
Al-Abed SR  Fang Y 《Chemosphere》2006,64(3):462-469
Electrolytic dechlorination using a granular-graphite packed cathode is an alternative method for the remediation of chlorinated organic compounds. Its effectiveness under various conditions needs experimental investigation. Dechlorination of trichloroethylene (TCE) was conducted under various conditions in an electrolytic reactor with a platinum-gauze anode and a granular-graphite packed cathode. The higher the applied current, the more TCE was eliminated and more hydrogen and oxygen gasses were generated. Current efficiency decreased with a decrease in TCE concentration during each dechlorination experiment. But, the current efficiency concentration coefficient (CECC), which was defined as current efficiency divided by concentration, was a better indicator of current efficiency. The CECC was not significantly affected by current, but it varied with pH value. The pH effects were results of the involvement of electrolytes in the proton reduction and the electron transfer at the cathode. A lower pH value favored TCE dechlorination in potassium chloride, which is an electrolyte that was not involved in cathode reactions with protons and electrons. In ammonium acetate and potassium nitrate, which involve proton reduction and/or electron transfer, the pH value affected TCE dechlorination through proton limitation and electron competition.  相似文献   

12.
Field biogeochemical characterization and laboratory microcosm studies were performed to assess the potential for future biotransformation of trichloroethylene (TCE) and toluene in a plume containing petroleum hydrocarbons and chlorinated solvents at the former Wurtsmith Air Force Base in Oscoda, MI. In situ terminal electron accepting processes (TEAPs), contaminant composition and microbial phylogeny were studied at a plume transect 100 m downgradient of the source. The presence of reduced electron acceptors, relevant microbial communities, and elevated dissolved methane and carbon dioxide concentrations at the transect, as well as downgradient accumulation of BTEX metabolites and dechlorination products, indicated that past or current reductive dechlorination at the transect was likely driven by BTEX biodegradation in the methanogenic zone. However, TCE and toluene mineralization in sediment-groundwater microcosms without added electron acceptors did not exceed 5% during 300 days of incubation and was nearly invariant with original sediment TEAP, even following amendments of nitrogen and phosphorus. Mineralization rates were on the order of 0.0015-0.03 mumol/g day. After 8 months, microcosms showed evidence of methanogenesis, but CH4 and CO2 production arose from the degradation of contaminants other than toluene. Cis-dichloroethylene was observed in only one methanogenic microcosm after more than 500 days. It appears likely that spatially and temporally dynamic redox zonation at the plume transect will prevent future sustained reductive dehalogenation of highly chlorinated solvents, for during the course of a year, the predominant TEAP at the highly contaminated water table shifted from methanogenesis to iron- and sulfate-reduction. It is recommended that biotransformation studies combine considerations of long-term, spatially relevant changes in redox zonation with laboratory-scale studies of electron donor utilization and cometabolic substrate transformation to yield a more accurate assessment of natural bioattenuation of specific pollutants in aquifers contaminated by undefined organic waste mixtures.  相似文献   

13.
Several groups of bacteria such as Dehalococcoides spp., Dehalobacter spp., Desulfomonile spp., Desulfuromonas spp., or Desulfitobacterium spp. are able to dehalogenate chlorinated pollutants such as chloroethenes, chlorobenzenes, or polychlorinated biphenyls under anaerobic conditions. In order to assess the dechlorination potential in Yangtze sediment samples, the presence and activity of the reductively dechlorinating bacteria were studied in anaerobic batch tests. Eighteen sediment samples were taken in the Three Gorges Reservoir catchment area of the Yangtze River, including the tributaries Jialing River, Daning River, and Xiangxi River. Polymerase chain reaction analysis indicated the presence of dechlorinating bacteria in most samples, with varying dechlorinating microbial community compositions at different sampling locations. Subsequently, anaerobic reductive dechlorination of tetrachloroethene (PCE) was tested after the addition of electron donors. Most cultures dechlorinated PCE completely to ethene via cis-dichloroethene (cis-DCE) or trans-dichloroethene. Dehalogenating activity corresponded to increasing numbers of Dehalobacter spp., Desulfomonile spp., Desulfitobacterium spp., or Dehalococcoides spp. If no bacteria of the genus Dehalococcoides spp. were present in the sediment, reductive dechlorination stopped at cis-DCE. Our results demonstrate the presence of viable dechlorinating bacteria in Yangtze samples, indicating their relevance for pollutant turnover.  相似文献   

14.
Stable carbon isotopic analysis, in combination with compositional analysis, was used to evaluate the performance of an iron permeable reactive barrier (PRB) for the remediation of ground water contaminated with trichloroethene (TCE) at Spill Site 7 (SS7), F.E. Warren Air Force Base, Wyoming. Compositional data indicated that although the PRB appeared to be reducing TCE to concentrations below treatment goals within and immediately downgradient of the PRB, concentrations remained higher than expected at wells further downgradient (i.e. >9 m) of the PRB. At two wells downgradient of the PRB, TCE concentrations were comparable to upgradient values, and delta13C values of TCE at these wells were not significantly different than upgradient values. Since the process of sorption/desorption does not significantly fractionate carbon isotope values, this suggests that the TCE observed at these wells is desorbing from local aquifer materials and was present before the PRB was installed. In contrast, three other downgradient wells show significantly more enriched delta13C values compared to the upgradient mean. In addition, delta13C values for the degradation products of TCE, cis-dichloroethene and vinyl chloride, show fractionation patterns expected for the products of the reductive dechlorination of TCE. Since concentrations of both TCE and degradation products drop to below detection limit in wells within the PRB and directly below it, these downgradient chlorinated hydrocarbon concentrations are attributed to desorption from local aquifer material. The carbon isotope values indicate that this dissolved contaminant is subject to local degradation, likely due to in situ microbial activity.  相似文献   

15.
Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0   总被引:9,自引:0,他引:9  
Choe S  Lee SH  Chang YY  Hwang KY  Khim J 《Chemosphere》2001,42(4):367-372
Fe0-mediated reductive destruction of hazardous organic compounds such as chlorinated organic compounds (COCs) and nitroaromatic compounds (NACs) in the aqueous phase is one of the latest innovative technologies. In this paper, rapid reductive degradation of COCs and NACs by synthesized nanoscale Fe0 in anaerobic batch systems was presented. The nanoscale Fe0, characterized by high specific surface area and high reactivity, rapidly transformed trichloroethylene (TCE), chloroform (CF), nitrobenzene (NB), nitrotoluene (NT), dinitrobenzene (DNB) and dinitrotoluene (DNT) under ambient conditions, which results in complete disappearance of the parent compounds from the aqueous phase within a few minutes. GC analysis reported that the main products of the dechlorination of TCE and CF were ethane and methane as well as that most of the nitro groups in NACs were reductively transformed to amine groups. These results suggest that the rapid reductive destruction by nanoscale Fe0 is potentially a viable in situ or aboveground treatment of groundwater contaminated with hazardous organic compounds including COCs and NACs.  相似文献   

16.
This study is believed to be one of the first to assess the impact of urban VOC-(volatile organic compound) contaminated groundwater on river-water quality at the city scale. A network of riverbed piezometers was used to study the 7.4-km urbanised reach of the River Tame that flows across the groundwater-effluent unconfined Triassic sandstone aquifer underlying the city of Birmingham (UK). Aquifer groundwater contained significant chlorinated VOC contamination due to the city's industrial heritage. Chlorinated VOC-contaminated baseflow was widespread along the reach with trichloroethene (TCE) dominant. VOC concentrations in riverbed piezometers were in the range 0.1-100 microg/l with typical regulatory limits occasionally exceeded by an order of magnitude. Although anaerobic biodegradation products such as cis-dichloroethene were widespread, they were unlikely to have formed in the generally aerobic riverbed. The lack of anaerobic conditions was ascribed to insufficient accumulation of low-permeability, organic-carbon rich riverbed sediments in this medium-high energy river. Assumptions a priori that natural attenuation of chlorinated VOCs will occur via reductive dechlorination in urban riverbeds are likely in error, particularly where deposits of medium-high permeability exist transmitting much of the baseflow. Surface-water quality impacts were nevertheless still low with in-river TCE increasing by just 2 microg/l over the 7.4-km reach. Agreement of baseflow contaminant flux estimates based on five flow-concentration product methods was achieved to within an order of magnitude with 22-200 kg/yr of TCE estimated to discharge to the 7.4-km reach (equivalent to 0.8-7.5 mg/d/m2 of riverbed). Such uncertainty was not regarded as unreasonable when the large measurement scale and geological and chemical heterogeneities are considered. Improved flux estimation methods and greater monitoring densities are nevertheless warranted. Considering Birmingham's long industrial history and known incidence of VOC-contaminated groundwater, the city-scale impact of VOC-contaminated groundwater upon surface-water quality was judged to be relatively modest.  相似文献   

17.
Che H  Lee W 《Chemosphere》2011,82(8):1103-1108
Selective redox degradation of chlorinated aliphatics by Fenton reaction in pyrite suspension was investigated in a closed system. Carbon tetrachloride (CT) was used as a representative target of perchlorinated alkanes and trichloroethylene (TCE) was used as one of highly chlorinated alkenes. Degradation of CT in Fenton reaction was significantly enhanced by pyrite used as an iron source instead of soluble Fe. Pyrite Fenton showed 93% of CT removal in 140 min, while Fenton reaction with soluble Fe(II) showed 52% and that with Fe(III) 15%. Addition of 2-propanol to the pyrite Fenton system significantly inhibited degradation of TCE (99% to 44% of TCE removal), while degradation of CT was slightly improved by the 2-propanol addition (80-91% of CT removal). The result suggests that, unlike oxidative degradation of TCE by hydroxyl radical in pyrite Fenton system, an oxidation by the hydroxyl radical is not a main degradation mechanism for the degradation of CT in pyrite Fenton system but a reductive dechlorination by superoxide can rather be the one for the CT degradation. The degradation kinetics of CT in the pyrite Fenton system was decelerated (0.13-0.03 min−1), as initial suspension pH decreased from 3 to 2. The formation of superoxide during the CT degradation in the pyrite Fenton system was observed by electron spin resonance spectroscopy. The formation at initial pH 3 was greater than that at initial pH 2, which supported that superoxide was a main reductant for degradation of CT in the pyrite Fenton system.  相似文献   

18.
The microbial dechlorination of seven kinds of polychlorinated biphenyls (PCBs) by anaerobic microorganisms from river sediment was investigated. Dechlorination rates were found to be affected by the chlorine level of PCB congeners; dechlorination rates decreased as chlorine levels increased. Dechlorination rates were fastest under methanogenic conditions and slowest under nitrate-reducing conditions. The addition of individual electron donors (acetate, pyruvate, and lactate) enhanced the dechlorination of PCB congeners under methanogenic and sulfate-reducing conditions but delayed the dechlorination of PCB congeners under nitrate-reducing conditions. PCB congener dechlorination also was delayed by the addition of various polycyclic aromatic hydrocarbons (PAHs) under three reducing conditions and by surfactants, such as brij30, triton SN70, and triton N101. The results suggest that methanogen, sulfate-reducing bacteria, and nitrate-reducing bacteria all are involved in the dechlorination of PCB congeners.  相似文献   

19.
Costanza J  Pennell KD 《Chemosphere》2008,71(11):2060-2067
The rates of hydrolysis reported for tetrachloroethylene (PCE) and trichloroethylene (TCE) at elevated temperatures range over two orders-of-magnitude, where some of the variability may be due to the presence of a gas phase. Recent studies suggest that volatile organic analysis (VOA) vials provide a low-cost and readily available zero headspace system for measuring aqueous-phase hydrolysis rates. This work involved measuring rates of PCE and TCE disappearance and the corresponding appearance of dechlorination products in water-filled VOA vials and flame-sealed ampules incubated at 21 and 55 °C for up to 95.5 days. While PCE and TCE concentrations readily decreased in the VOA vials to yield first-order half lives of 11.2 days for PCE and 21.1 days for TCE at 55 °C, concentrations of anticipated dechlorination products, including chloride, remained constant or were not detected. The rate of PCE disappearance was 34 times faster in VOA vials at 55 °C compared to values obtained with flame-sealed ampules containing PCE-contaminated water. In addition, the concentration of TCE increased slightly in flame-sealed ampules incubated at 55 °C, while a decrease in TCE levels was observed in the VOA vials. The observed losses of PCE and TCE in the VOA vials were attributed to diffusion and sorption in the septa, rather than to dechlorination. These findings demonstrate that VOA vials are not suitable for measuring rates of volatile organic compound hydrolysis at elevated temperatures.  相似文献   

20.
The fate of chlorinated ethenes in a large contaminant plume originating from a tetrachloroethene (PCE) source in a sandy aquifer in Denmark was investigated using novel methods including compound-specific carbon and chlorine isotope analysis and quantitative real-time polymerase chain reaction (qPCR) methods targeting Dehaloccocoides sp. and vcrA genes. Redox conditions were characterized as well based on concentrations of dissolved redox sensitive compounds and sulfur isotopes in SO(4)(2-). In the first 400 m downgradient of the source, the plume was confined to the upper 20 m of the aquifer. Further downgradient it widened in vertical direction due to diverging groundwater flow reaching a depth of up to 50 m. As the plume dipped downward and moved away from the source, O(2) and NO(3)(-) decreased to below detection levels, while dissolved Fe(2+) and SO(4)(2-) increased above detectable concentrations, likely due to pyrite oxidation as confirmed by the depleted sulfur isotope signature of SO(4)(2-). In the same zone, PCE and trichloroethene (TCE) disappeared and cis-1,2-dichloroethene (cDCE) became the dominant chlorinated ethene. PCE and TCE were likely transformed by reductive dechlorination rather than abiotic reduction by pyrite as indicated by the formation of cDCE and stable carbon isotope data. TCE and cDCE showed carbon isotope trends typical for reductive dechlorination with an initial depletion of (13)C in the daughter products followed by an enrichment of (13)C as degradation proceeded. At 1000 m downgradient of the source, cDCE was the dominant chlorinated ethene and had reached the source δ(13)C value confirming that cDCE was not affected by abiotic or biotic degradation. Further downgradient (up to 1900 m), cDCE became enriched in (13)C by up to 8 ‰ demonstrating its further transformation while vinylchloride (VC) concentrations remained low (<1 μg/L) and ethene was not observed. The correlated shift of carbon and chlorine isotope ratios of cDCE by 8 and 3.9 ‰, respectively, the detection of Dehaloccocides sp genes, and strongly reducing conditions in this zone provide strong evidence for reductive dechlorination of cDCE. The significant enrichment of (13)C in VC indicates that VC was transformed further, although the mechanism could not be determined. The transformation of cDCE was the rate limiting step as no accumulation of VC occurred. In summary, the study demonstrates that carbon-chlorine isotope analysis and qPCR combined with traditional approaches can be used to gain detailed insight into the processes that control the fate of chlorinated ethenes in large scale plumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号