首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Radionuclides, like radioiodine(~(129)I), may escape deep geological nuclear waste repositories and migrate to the surface ecosystems. In surface ecosystems, microorganisms can affect their movement. Iodide uptake of six bacterial strains belonging to the genera Paenibacillus,Pseudomonas, Burkholderia and Rhodococcus isolated from an acidic boreal nutrient-poor bog was tested. The tests were run in four different growth media at three temperatures. All bacterial strains removed iodide from the solution with the highest efficiency shown by one of the Paenibacillus strains with 99% of iodide removed from the solution in one of the used growth media. Pseudomonas, Rhodococcus and one of the two Paenibacillus strains showed highest iodide uptake in 1% yeast extract with maximum values for the distribution coefficient(K_d) ranging from 90 to 270 L/kg DW. The Burkholderia strain showed highest uptake in 1% Tryptone(maximum K_d170 L/kg DW). The Paenibacillus strain V0-1-LW showed exceptionally high uptake in 0.5% peptone + 0.25% yeast extract broth(maximum K_d 1,000,000 L/kg DW). Addition of 0.1% glucose to the 0.5% peptone + 0.25% yeast extract broth reduced iodide uptake at 4℃ and 20℃ and enhanced iodide uptake at 37℃ compared to the uptake without glucose. This indicates that the uptake of glucose and iodide may be competing processes in these bacteria. We estimated that in in situ conditions of the bog,the bacterial uptake of iodide accounts for approximately 0.1%–0.3% of the total sorption of iodide in the surface, subsurface peat, gyttja and clay layers.  相似文献   

2.
Atmospheric CO2 concentration (Ca) is rising, predicted to cause global warming, and alter precipitation patterns. During 1994, spring barley (Hordeum vulgare L. cv. Alexis) was grown in a strip-split-plot experimental design to determine the effects that the main plot Ca treatments [A: Ambient at 370 μmol (CO2) mol−1; E: Enriched with free-air CO2 enrichment (FACE) at ∼550 μmol (CO2) mol−1] had on several gas exchange properties of fully expanded sunlit primary leaves. The interacting strip-split-plot irrigation treatments were Dry or Wet [50% (D) or 100% (W) replacement of potential evapotranspiration] at ample nitrogen (261 kg N ha−1) and phosphorous (29 kg P ha−1) fertility. Elevated Ca facilitated drought avoidance by reducing stomatal conductance (gs) by 34% that conserved water and enabled stomata to remain open for a longer period into a drought. This resulted in a 28% reduction in drought-induced midafternoon depression in net assimilation rate (A). Elevated Ca increased A by 37% under Dry and 23% under Wet. Any reduction in A under Wet conditions occurred because of nonstomatal limitations, whereas under Dry it occurred because of stomatal limitations. Elevated Ca increased the diurnal integral of A (A′) that resulted in an increase in the seasonal-long integral of A′ (A″) for barley leaves by 12% (P = 0.14) under both Dry and Wet - 650, 730, 905 and 1020 ± 65 g (C) m−2 y−1 for AD, ED, AW and EW treatments, respectively. Elevated Ca increased season-long average dry weight (DWS; crown, shoots) by 14% (P = 0.02), whereas deficit irrigation reduced DWS by 7% (P = 0.06), although these values may have been affected by a short but severe pea aphid [Acyrthosiphon pisum (Harris)] infestation. Hence, an elevated-Ca-based improvement in gas exchange properties enhanced growth of a barley crop.  相似文献   

3.
Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230 ± 35 kg/m~3, which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl-, S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl-and S were lower.This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants.  相似文献   

4.
The present study aimed to investigate the potential ammonia (NH3) emission from flag leaves of paddy rice (Oryza sativa L. cv. Koshihikari). The study was conducted at a paddy field in central Japan that was designed as a free-air CO2 enrichment (FACE) facility for paddy rice. A dynamic chamber method was used to measure the potential NH3 emissions. The air concentrations of NH3 at two heights (2 and 6 m from the ground surface) were measured using a filter-pack method, and the exchange fluxes of NH3 of the whole paddy field were calculated using a gradient method. The flag leaves showed potential NH3 emissions of 25-38 ng N cm−2 h−1 in the daytime from the heading to the maturity stages, and they showed potentials of approximately 22 ng N cm−2 h−1, even in the nighttime, at the heading and mid-ripening stages. The exchange fluxes of NH3 of the whole paddy field in the daytime were net emissions of 0.9-3.9 g N ha−1 h−1 whereas the exchange fluxes of NH3 in the nighttime were approximately zero.  相似文献   

5.
TiO_2 nanotube(Ti NT) electrodes anodized in fluorinated organic solutions were successfully prepared on Ti sheets. Field-emission scanning electron microscopy(FE-SEM) and X-ray diffraction(XRD) were performed to characterize the TiNT electrodes. The linear voltammetry results under irradiation showed that the TiNT electrode annealed at 450°C presented the highest photoelectrochemical activity. By combining photocatalytic with electrochemical process, a significantly synergetic effect on ammonia degradation was observed with Na_2SO_4 as supporting electrolyte at pH 10.7. Furthermore, the photoelectrocatalytic efficiency on the ammonia degradation was greatly enhanced in presence of chloride ions without the limitation of pH. The degradation rate was improved by 14.8 times reaching 4.98 × 10~(-2) min~(-1) at pH 10.7 and a faster degradation rate of 6.34 × 10~(-2) min~(-1)was obtained at pH 3.01. The in situ photoelectrocatalytic generated active chlorine was proposed to be responsible for the improved efficiency. On the other hand, an enhanced degradation of ammonia using TiNT electrode fabricated in fluorinated organic solution was also confirmed compared to TiNT electrode anodized in fluorinated water solution and TiO_2 film electrode fabricated by sol–gel method. Finally, the effect of chloride concentration was also discussed.  相似文献   

6.
The purpose of this study was to examine the cumulative effects of exposure to a pathogenic bacteria and municipal effluent in the freshwater mussel Elliptio complanata. Mussels were exposed to increasing concentrations of an ozone-treated effluent at 15°C for 7 days. A sub-group of mussels was inoculated with Vibrio anguillarum and exposed to the same conditions as above.After the exposure period, mussels were collected to assess hemocyte count and viability,immunocompetence(phagocytosis and nitrite production), oxidative stress/inflammation(cyclooxygenase and lipid peroxidation) and oxygen radical/xenobiotic scavenging activity(metallothioniens, glutathione S-transferase). The results showed that mussels exposed to municipal effluent had increased hemocyte counts, phagocytosis, nitrites, lipid peroxidation and metallothioneins. In the inoculated mussels, the same responses were observed, in addition to cyclooxygenase and glutathione S-transferase activities. Multivariate analyses revealed that(1)the response pattern changed with effluent concentration, where increased responses observed at low effluent concentrations(10%, V/V) were attenuated at higher effluent concentrations,(2)the effluent produced more pronounced changes in lipid peroxidation, metallothionein and hemocyte viability, and(3) the simultaneous presence of V. anguillarum led to more important changes in hemocyte count and viability and nitrite levels. In conclusion, the presence of V.anguillarum could alter the response of mussels to municipal effluent, which could lead to increased inflammation in mussels.  相似文献   

7.
A bacterium strain Y3,capable of efficiently degrading pendimethalin,was isolated from activated sludge and identified as Bacillus subtilis according to its phenotypic features and 16 S rRNA phylogenetic analysis.This strain could grow on pendimethalin as a sole carbon source and degrade 99.5%of 100 mg/L pendimethalin within 2.5 days in batch liquid culture,demonstrating a greater efficiency than any other reported strains.Three metabolic products,6-aminopendimethalin,5-amino-2-methyl-3-nitroso-4-(pentan-3-ylamino) benzoic acid,and 8-amino-2-ethyl-5-(hydroxymethyl)-1,2-dihydroquinoxaline-6-carboxylic acid,were identified by HPLC-MS/MS,and a new microbial degradation pathway was proposed.A nitroreductase catalyzing nitroreduction of pendimethalin to 6-aminopendimethalin was detected in the cell lysate of strain Y3.The cofactor was nicotinamide adenine dinucleotide phosphate(NADPH) or more preferably nicotinamide adenine dinucleotide(NADH).The optimal temperature and pH for the nitroreductase were 30℃ and 7.5,respectively.Hg~(2+),Ni~(2+),Pb~(2+),Co~(2+),Mn~(2+) Cu~(2+),Ag~+,and EDTA severely inhibited the nitroreductase activity,whereas Fe~(2+),Mg~(2+),and Ca~(2+) enhanced it.This study provides an efficient pendimethalin-degrading microorganism and broadens the knowledge of the microbial degradation pathway of pendimethalin.  相似文献   

8.
The objective of this study was to understand toxicity of mixture of nanoparticles (NPs) (ZnO and TiO2) and their ions to Escherichia coli. Results indicated the decrease in percentage growth of E. coli with the increase in concentration of NPs both in single and mixture setups. Even a small concentration of 1 mg/L was observed to be significantly toxic to E. coli in binary mixture setup (exposure concentration: 1 mg/L ZnO and 1 mg/L TiO2; 21.15% decrease in plate count concentration with respect to control). Exposure of E. coli to mixture of NPs at 1000 mg/L (i.e., 1000 mg/L ZnO and 1000 mg/L TiO2) resulted in 99.63% decrease in plate count concentration with respect to control. Toxic effects of ions to E. coli were found to be lesser than their corresponding NPs. The percentage growth reduction was found to be 36% for binary mixture of zinc and titanium ions at the highest concentration (i.e., 803.0 mg/L Zn and 593.3 mg/L Ti where ion concentrations are equal to the Zn ions present in 1000 mg/L ZnO NP solution and Ti+ 4 ions present in 1000 mg/L TiO2 NP solution). Nature of mixture toxicity of the two NPs to E. coli was found to be antagonistic. The alkaline phosphatase (Alp) assay indicated that the maximum damage was observed when E. coli was exposed to 1000 mg/L of mixture of NPs. This study tries to fill the knowledge gap on information of toxicity of mixture of NPs to bacteria which has not been reported earlier.  相似文献   

9.
Nitrite accumulation in shrimp ponds can pose serious adverse effects to shrimp production and the environment.This study aims to develop an effective process for the enrichment of ready-to-use nitrite-oxidizing bacteria(NOB)inocula that would be appropriate for nitrite removal in brackish shrimp ponds.To achieve this objective,the effects of nitrite concentrations on NOB communities and nitrite oxidation kinetics in a brackish environment were investigated.Moving-bed biofilm sequencing batch reactors and continuous moving-bed biofilm reactors were used for the enrichment of NOB at various nitrite concentrations,using sediment from brackish shrimp ponds as seed inoculum.The results from NOB population analysis with quantitative polymerase chain reaction(q PCR)show that only Nitrospira were detected in the sediment from the shrimp ponds.After the enrichment,both Nitrospira and Nitrobacter coexisted in the reactors controlling effluent nitrite at 0.1 and 0.5 mg-NO_2~--N/L.On the other hand,in the reactors controlling effluent nitrite at 3,20,and 100 mg-NO_2~--N/L,Nitrobacter outcompeted Nitrospira in many orders of magnitude.The half saturation coefficients(Ks)for nitrite oxidation of the enrichments at low nitrite concentrations(0.1 and 0.5 mg-NO_2~--N/L)were in the range of 0.71–0.98 mg-NO_2~--N/L.In contrast,the Ksvalues of NOB enriched at high nitrite concentrations(3,20,and 100 mg-NO_2~--N/L)were much higher(8.36–12.20 mg-NO_2~--N/L).The results suggest that the selection of nitrite concentrations for the enrichment of NOB inocula can significantly influence NOB populations and kinetics,which could affect the effectiveness of their applications in brackish shrimp ponds.  相似文献   

10.
In this study,the cytotoxicity of two different crystal phases of TiO2 nanoparticles,with surface modification by humic acid(HA),to Escherichia coli,was assessed.The physicochemical properties of TiO2 nanoparticles were thoroughly characterized.Three different initial concentrations,namely 50,100,and 200 ppm,of HA were used for synthesis of HA coated TiO2 nanoparticles(denoted as A/RHA50,A/RHA100,and A/RHA200,respectively).Results indicate that rutile(LC50(concentration that causes 50%mortality compared the control group)=6.5)was more toxic than anatase(LC50=278.8)under simulated sunlight(SSL)irradiation,possibly due to an extremely narrow band gap.It is noted that HA coating increased the toxicity of anatase,but decreased that of rutile.Additionally,AHA50 and RHA50had the biggest differences compared to uncoated anatase and rutile with LC50of 201.9 and21.6,respectively.We then investigated the formation of reactive oxygen species(ROS)by TiO2 nanoparticles in terms of hydroxyl radicals(OH)and superoxide anions(O2-).Data suggested that O2- was the main ROS that accounted for the higher toxicity of rutile upon SSL irradiation.We also observed that HA coating decreased the generation of OH and O2- on rutile,but increased O2- formation on anatase.Results from TEM analysis also indicated that HA coated rutile tended to be attached to the surface of E.coli more than anatase.  相似文献   

11.
Indole, a typical nitrogen heterocyclic aromatic pollutant, is extensively spread in industrial wastewater. Microbial degradation has been proven to be a feasible approach to remove indole, whereas the microbial resources are fairly limited. A bacterial strain designated as SHE was isolated and found to be an efficient indole degrader. It was identified as Cupriavidus sp. according to 16S rRNA gene analysis. Strain SHE could utilize indole as the sole carbon source and almost completely degrade 100 mg/L of indole within 24 hr. It still harbored relatively high indole degradation capacity within pH 4–9 and temperature 25°C–35°C. Experiments also showed that some heavy metals such as Mn2 +, Pb2 + and Co2 + did not pose severe inhibition on indole degradation. Based on high performance liquid chromatography–mass spectrum analysis, isatin was identified as a minor intermediate during the process of indole biodegradation. A major yellow product with m/z 265.0605 (C15H8N2O3) was generated and accumulated, suggesting a novel indole conversion pathway existed. Genome analysis of strain SHE indicated that there existed a rich set of oxidoreductases, which might be the key reason for the efficient degradation of indole. The robust degradation ability of strain SHE makes it a promising candidate for the treatment of indole containing wastewater.  相似文献   

12.
The distribution and chemical speciation of arsenic (As) in different sized atmospheric particulate matters (PMs), including total suspended particles (TSP), PM10, and PM2.5, collected from Baoding, China were analyzed. The average total mass concentrations of As in TSP, PM10, and PM2.5 were 31.5, 35.3, and 54.1 µg/g, respectively, with an order of PM2.5 >PM 10 > TSP, revealing that As is prone to accumulate on fine particles. Due to the divergent toxicities of different As species, speciation analysis of As in PMs is further conducted. Most of previous studies mainly focused on inorganic arsenite (iAsIII), inorganic arsenate (iAsV), monomethylarsonate (MMA), and dimethylarsinate (DMA) in PMs, while the identification and sensitive quantification of trimethylarsine oxide (TMAO) were rarely reported. In this study, a high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry system was optimized for As speciation including TMAO in PMs. An anion exchange column was used to separate MMA, DMA and iAsV, while a cation exchange column to separate TMAO and iAsIII. Results showed that iAsV was the dominate component in all the samples, corresponding to a portion of 79.2% ± 9.3% of the total extractable species, while iAsIII, TMAO and DMA made up the remaining 21%. Our study demonstrated that iAsIII accounted for about 14.4% ± 11.4% of the total extracted species, with an average concentration of 1.7 ± 1.6 ng/m3. It is worth noting that TMAO was widely present in the samples (84 out of 97 samples), which supported the assumption that TMAO was ubiquitous in atmospheric particles.  相似文献   

13.
The anaerobic digestion(AD)and microbial electrolysis cell(MEC)coupled system has been proved to be a promising process for biomethane production.In this paper,it was found that by co-cultivating Geobacter with Methanosarcina in an AD–MEC coupled system,methane yield was further increased by 24.1%,achieving to 360.2 m L/g-COD,which was comparable to the theoretical methane yield of an anaerobic digester.With the presence of Geobacter,the maximum chemical oxygen demand(COD)removal rate(216.8 mg COD/(L·hr))and current density(304.3 A/m_3)were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter,resulting in overall energy efficiency reaching up to 74.6%.Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm,and the electrochemical activities of both were confirmed by cyclic voltammetry.Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter,suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane.Taken together,Geobacter not only can improve the performance of the MEC system,but also can enhance methane production.  相似文献   

14.
Atrazine, a widely used herbicide, is increasing the agricultural production effectively, while also causing great environmental concern. Efficient atrazine-degrading bacterium is necessary to removal atrazine rapidly to keep a safe environment. In the present study, a new atrazine-degrading strain ZXY-1, identified as Pseudomonas, was isolated. This new isolated strain has a strong ability to biodegrade atrazine with a high efficiency of 9.09 mg/L/hr.Temperature, p H, inoculum size and initial atrazine concentration were examined to further optimize the degradation of atrazine, and the synthetic effect of these factors were investigated by the response surface methodology. With a high quadratic polynomial mathematical model(R~2= 0.9821) being obtained, the highest biodegradation efficiency of 19.03 mg/L/hr was reached compared to previous reports under the optimal conditions(30.71°C, pH 7.14, 4.23%(V/V) inoculum size and 157.1 mg/L initial atrazine concentration).Overall, this study provided an efficient bacterium and approach that could be potentially useful for the bioremediation of wastewater containing atrazine.  相似文献   

15.
Changes in metal concentrations in the litter of Potamogeton crispus were monitored during a consecutive 40-day in situ decomposition experiment using the litterbag method.The accumulation index was calculated and used to indicate the changes in the metals in litter.The results showed that the concentrations of Al,Cd,Cr,Fe,Mn,and Pb in litter increased significantly during the decomposition,while Cu and Zn concentrations decreased dramatically.Significant positive correlations were found between the concentrations of Al,Cr,Fe,and Mn and between Cu and Zn.Moreover,Cu and Zn both negatively correlated with Al and Fe.The remaining dry mass was negatively correlated with Al and Fe concentrations but positively correlated with Cu and Zn concentrations.Generally the accumulation index values of metals other than Al were less than one,indicating that the litter of P.crispus acted as a source of metals to the surrounding water body.Al was the only metal that showed continuous net accumulation in litter.The net accumulation of Fe and Mn in litter during the last 10 days of the experiment may indicate the precipitation of Feand Mn-oxides.It was estimated that 160 g/m~2(dry weight)P.crispus was decomposed in40 days.This was equivalent to releasing the following amounts of metals:0.01 mg Cd,0.03 mg Cr,0.71 mg Cu,0.55 mg Mn,0.02 mg Pb and 13.8 mg Zn into surrounding water,and accumulating 149 mg Al and 11 mg Fe,in a 1 m~2 area.  相似文献   

16.
Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense (FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5 tons/ha and 3.0 tons/ha was incubated under flooded or water-saturated (100% water holding capacity) conditions at 30°C for 30 days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15 days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential (down to − 350 mV) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3 tons/ha. Therefore, incorporating soil with straw (rice or maize straw) at a rate of 3.0 tons/ha under 100% water holding capacity or 1.5 tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30°C.  相似文献   

17.
It is generally accepted that a low dissolved oxygen(DO) concentration is more beneficial for achieving partial nitrification than high-DO. In this study, partial nitrification was not established under low-DO conditions in an intermittent aeration reactor for treating domestic wastewater. During the operational period of low-DO conditions(DO: 0.3 ±0.14 mg/L), stable complete nitrification was observed. The abundance of Nitrospira-like bacteria, which were the major nitrite-oxidizing bacteria, increased from 1.03 × 10~6to2.64 × 10~6cells/m L. At the end of the low-DO period, the batch tests showed that high-DO concentration(1.5, 2.0 mg/L) could inhibit nitrite oxidation, and enhance ammonia oxidation. After switching to the high-DO period(1.8 ± 0.32 mg/L), partial nitrification was gradually achieved. Nitrospira decreased from 2.64 × 10~6 to 8.85 × 10~5cells/m L. It was found that suddenly switching to a high-DO condition could inhibit the activity and abundance of Nitrospira-like bacteria, resulting in partial nitrification.  相似文献   

18.
We developed the T3-induced Xenopus metamorphosis assay, which is supposed to be able to sensitively detect thyroid hormone(TH) signaling disruption of chemicals. The present study aimed to validate the T3-induced Xenopus metamorphosis assay by re-evaluating the TH signaling antagonism of tetrabromobisphenol A(TBBPA), a known TH signaling disruptor. According to the assay we developed, Xenopus tadpoles at stage 52 were exposed to 10–500 nmol/L TBBPA in the presence of 1 nmol/L T3. After 96 hr of exposure, TBBPA in the range of 10–500 nmol/L was found to significantly inhibit T3-induced morphological changes of Xenopus tadpoles in a concentration-dependent manner in term of body weight and four morphological endpoints including head area(HA), mouth width(MW), unilateral brain width/brain length(ULBW/BL), and hind-limb length/snout-vent length(HLL/SVL).The results show that these endpoints we developed are sensitive for characterizing the antagonistic effects of TBBPA on T3-induced metamorphosis. Following a 24-hr exposure,we found that TBBPA antagonized expression of T3-induced TH-response genes in the tail,which is consistent with previous findings in the intestine. We propose that the tail can be used as an alternative tissue to the intestine for examining molecular endpoints for evaluating TH signaling disruption. In conclusion, our results demonstrate that the T3-induced Xenopus metamorphosis assay we developed is an ideal in vivo assay for detecting TH signaling disruption.  相似文献   

19.
We conducted an experiment to study the interaction effects of Microcystis aeruginosa and Pseudomonas pseudoalcaligenes on off-flavors in an algae/bacteria co-culture system at three temperatures (24, 28 and 32°C). Gas chromatography–mass spectrometry was applied to measure off-flavor compounds dimethyl sulfide (DMS), dimethyl trisulfide (DMTS), 2-methylisoborneol, geosmin (GEO) and β-cyclocitral. During the lag phase of co-cultured M. aeruginosa (first 15 days), P. pseudoalcaligenes significantly increased the production of DMS, DMTS and β-cyclocitral at all three temperatures. In the exponential phase of co-cultured M. aeruginosa (after 15 days), M. aeruginosa became the main factor on off-flavors in the co-culture system, and β-cyclocitral turned to the highest off-flavor compound. These results also indicated that DMS, DMTS and β-cyclocitral were the main off-flavor compounds in our M. aeruginosa/P. pseudoalcaligenes co-culture system. Univariate analysis was applied to investigate the effects of M. aeruginosa and P. pseudoalcaligenes on the production of off-flavors. The results demonstrated that both M. aeruginosa and P. pseudoalcaligenes could increase the production of DMS and DMTS, while β-cyclocitral was mainly determined by M. aeruginosa. Our results also provide some insights into understanding the relationship between cyanobacteria and heterotrophic bacteria.  相似文献   

20.
The uptake of metals in roots and their transfer to rhizomes and above-ground plant parts (stems, leaves) of cattails (Typha latifolia L.) were studied in leachates from a domestic landfill site (Etueffont, France) and treated in a natural lagooning system. Plant parts and corresponding water and sediment samples were taken at the inflow and outflow points of the four ponds at the beginning and at the end of the growing season. Concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni and Zn in the different compartments were estimated and their removal efficiency assessed, reaching more than 90% for Fe, Mn and Ni in spring and fall as well in the water compartment. The above- and below-ground cattail biomass varied from 0.21 to 0.85, and 0.34 to 1.24 kg dry weight/m2, respectively, the highest values being recorded in the fourth pond in spring 2011. The root system was the first site of accumulation before the rhizome, stem and leaves. The highest metal concentration was observed in roots from cattails growing at the inflow of the system''s first pond. The trend in the average trace element concentrations in the cattail plant organs can generally be expressed as: Fe > Mn > As > Zn > Cr > Cu > Ni > Cd for both spring and fall. While T. latifolia removes trace elements efficiently from landfill leachates, attention should also be paid to the negative effects of these elements on plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号