首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
The microbial fuel cell uses the microorganism biochemistry to carry on the energy conversion. Concerning the experimental precision, the colony culture would be replaced by a fixed amount of liquid culture for Microbial fuel cell of Escherichia coli. The anode and cathode chambers whose each volume is 100 mL were utilized, the effective surface area of proton exchange membrane Nafion-117 is about 9 cm2. In addition, the electrode area of carbon cloth is 20 cm2. Three kinds of Escherichia coli, named as BCRC No. 10322, 10675 and 51534, respectively, would be selected. Results show that the electricity performance of Escherichia coli of BCRC No.51534 is better than the other microorganism studied because of having a larger open circuit voltage of 1.01 V and limiting current 22 mA, the maximum power density of 1342 mW/m2, and average working power density of 295 mW/m2 would be produced. These results would be useful to improve the performance of microbial fuel cell.  相似文献   

2.
One of the most practical approaches for establishing a successful microbial fuel cell (MFC) is to fasten the oxidation rate of the substrate by the microorganisms to get quick paced electron transfer between microbes and electrode. A genetically modified Escherichiacoli, overexpressing α-amylase, is constructed and applied as biocatalyst in MFC using starch as substrate. The results are compared with nonrecombinant, native E.coli. The results show better performance for the MFC containing the recombinant strain demonstrated by higher power density (PD), lower resistance, and significant electrochemical activity. Maximum PD has been recorded as 279.04 mW m?2 compared to 120.33 Mw m?2 for the MFC operated with nonrecombinant E.coli. The impedance results also suggest the effectiveness of the recombinant strain by lowering the internal resistance by more than half order as compared to the nonrecombinant one. These results affirm that the engineered strain can be used as a superior biocatalyst in contrast to the native strain and by using the technique of genetic alteration; gene of interest can be inserted based on the substrate to be treated. So, this work gives a useful insight for accomplishing successful MFC operation with the use of bacterial stains engineered at the molecular level.  相似文献   

3.
We examined the possibility of harvesting electricity from the surface of a tidal mud flat using a cylindrical-type sediment microbial fuel cell (SMFC), a marine mud battery (MMB), which can be applied in a sea environment where the ebb and flow occur due to tidal difference. In addition, we indirectly investigated the influence of ebb and flow in a lab, using aeration, argon gassing, and by agitating the cathodic solution. The MMBs consisted of cylindrical acrylic compartments containing a nylon membrane, an anode, and a cathode in a single body. The MMBs were stuck vertically into an artificial tidal mud flat such that the anode electrode was in direct contact with the tidal mud surface. As a result, the maximum current and power density generated were 35 mA/m2 and 9 mW/m2, respectively, thus verifying that it is possible to harvest electricity from the surface of a tidal mud flat using an MMB without burying the anode electrode in the tidal mud. Furthermore, the results of tests using an artificial turbulence flow showed the flow induced by the tidal ebb and flow could allow the performance of MMBs to be enhanced.  相似文献   

4.
The microbial fuel cell (MFC) was employed to convert reductive potential in sulfate-laden wastewaters to electricity via reducing sulfate to sulfide by sulfate-reducing bacteria and then oxidizing sulfide to sulfur by exoelectrogens. The excess sulfide presented in the anodic solution inhibited the activities of functional strains in MFC. This study proposed the use of a two-anode system, with a sulfate-reducing bacteria anode and an exoelectrogen (C27) anode in the anodic cell, to efficiently convert reductive potential of sulfate into electricity. The microbial community of sulfate-reducing bacteria anode and the electrochemical characteristics of the studied MFCs were reported.  相似文献   

5.
Abstract

The modification effect of Nafion on the generation performance at different temperatures and methanol concentrations was investigated. The direct methanol fuel cell performances and electrochemical properties of the DMFC system using as-received Nafion117, a modified Nafion membrane, and using the Nafion117 MEA preparation by spray treatment on the surface of each catalyst layer for conductivity improvement. The open circuit voltage using the modified Nafion membrane was higher than that using Nafion117 at the cell temperature of 343–383 K and methanol concentration of 1.5–10 kmol/m3. The spray treatment of MEA was effective and improved the short circuit current up to 461 mA/cm2 at a 5 kmol/m3 methanol concentration in comparison with no treatment of MEA because of the low interfacial resistance. The power density of 75 mW/cm2 (no treatment Nafion117 MEA:40 mW/cm2) was obtained. The method of the spray treatment was found to be very effective for the DMFC system. The cell performance of Nafion117 MEA increased with the methanol concentration because of the reduction of the concentration overvoltage.  相似文献   

6.
There is an increasing trend to conduct the researches related to Microbial Fuel Cells (MFCs) in the recent years. Limited power output has been the major obstacle for the practical application and upscaling of MFCs. Attempts have been made on electrode modifications such as anode treatments, cathode modifications with catalysts and bio cathodes developments to produce varying degrees of improved output current depending upon the types of modifications. Power density and Coulombic efficiency have been considered as the important parameters to analyze the system performances. This paper overviews on the advances made in MFCs’ researches focusing on different types of electrodes modifications along with the involved methodology. Furthermore, the system performances of different modified MFCs are compared in terms of the power density and the Coulombic efficiency.  相似文献   

7.
为探讨废水中硫酸盐对微生物燃料电池(MFC)产电效能的影响,采用单室空气阴极MFC反应器处理模拟硫酸盐废水,并对硫酸盐的电子分流过程进行了监测。结果表明,在一定范围内,提高硫酸盐浓度能使MFC的稳定电压上升,电池持续时间延长,MFC输出功率增大。随着进水硫酸盐浓度提高,微生物产生的电子总量中,硫酸盐还原捕获的电子和通过外电路的电子所占的比例均下降,分别由12.54%和31.45%下降至7_32%和8.49%。研究表明,较低浓度硫酸盐能够提高MFC的电能输出功率,但由于硫酸盐的还原将消耗掉大量电子,进而降低MFC的库伦效率。  相似文献   

8.
Microbial fuel cells (MFCs) are one of the bioreactors that produce electrons by metabolizing substrate from microorganisms, and have the ability to both degrade waste solution and produce electrons. Recently, the activity of microorganisms has limited the power performance of MFCs. Chaos has been used to stimulate activity of microorganisms, but it has not been used previously in MFCs. In this study, three types of acclimations – native acclimation (NA), MFC acclimation (MFCA), and MFC embedded with chaotic electric field acclimation (CMFCA) – are applied to realize their performance and chemical oxygen demand (COD) removal in MFCs, respectively. Results show that the current density and the power density of CMFCA were improved by 1.33 and 1.25 times than MFCA, and the COD removal of CMFCA reached 85% after five days. In addition, the acclimation stage at the condition of CMFCA appeared after 10 days, but was not found for the MFCA system. These observations would provide positive information for improving the performance of MCFs in the future.  相似文献   

9.
A novel process for a simultaneous removal of ammonia and organics was developed on the basis of ion exchange and biological reactions. From batch experiments, it was found out that NH4+ could be removed effectively by combining cation exchange and biological nitrification showing 0.98 mg N/m2?s of a maximum flux. On the other hand, the removal of NO3 was 3.5 times faster than NH4+ and the maximum flux was calculated to be 3.4 mg N/m2?s. The systems for NH4+ and NO3 removal were combined for establishing the IEBR process. When the process was operated in a continuous mode, approximately 95.8% of NH4+ was removed showing an average flux of 0.22 mg N/m2·s. The removal efficiency of total nitrogen was calculated as 94.5% whereas that of organics was 99.5%. It was concluded that the IEBR process would be effectively used for a simultaneous removal of NH4+ and organics.  相似文献   

10.
A new contact oxidation filtration separation integrated bioreactor (CFBR) was used to treat municipal wastewater. The CFBR was made up of a biofilm reactor (the upper part of the CFBR) and a gravitational filtration bed (the lower part of the CFBR). Polyacrylonitrile balls (50 mm diameter, 237 m2/m3 specific surface, 90% porosity, and 50.2% packing rate) were filled into the biofilm reactor as biofilm attaching materials and anthracite coal (particle size 1–2 mm, packing density 0.947 g/cm3, non-uniform coefficient (K80 = d80/d10) < 2.0) was placed into the gravitational filtration bed as filter media. At an organic volumetric loading rate of 2.4 kg COD/(m3 d) and an initial filtration velocity of 5 m/h in the CFBR, the average removal efficiencies of COD, ammonia nitrogen, total nitrogen and turbidity were 90.6%, 81.4%, 64.6% and 96.7% respectively, but the treatment process seemed not to be effective in phosphorus removal. The average removal efficiency of total phosphorus was 60.1%. Additionally, the power consumption of the CFBR was less than 0.15 kWh/m3 of wastewater treated, and less than 1.5 kWh/kg BOD5 removal.  相似文献   

11.
ABSTRACT

When the proton exchange membrane fuel cell (PEMFC) works in the mode of dead-ended anode (DA), the water and the nitrogen in the cathode flow channel will diffuse, and accumulate, to the anode flow channel resulting in fuel starvation on the anode side as well as the performance degradation of PEMFC, which has an important impact on the durability and working state of PEMFC. Because the PEMFC performance is closely related to the cathode working parameters, in order to study the influence of the cathode working parameters on the performance of the PEMFC with DA, a two-dimensional analytical model of PEMFC with DA is established in this article, and the parameters in the model are corrected by experiments. The effects of humidity, stoichiometric ratio and working pressure of cathode gas on the performance of PEMFC with DA are studied by model and experiment, as well as the effects of these working parameters on the accumulation process and distribution of water vapor and nitrogen on the anode side, and the relative performance of PEMFC with DA under different cathode working parameters is obtained. This model is of great significance to guide the practical work of the PEMFC with DA.  相似文献   

12.
In the present study, bioelectricity generation using a living plant in soil was achieved by converting solar energy into electricity on the principles of plant photosynthesis. The plants Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffuses were used in microbial fuel cells (MFCs) and produced, respectively, a maximum current of 25, 31 and 19 mA/m2, without the use of any nutrient or membrane. In this study, the importance of light was demonstrated by the high current values generated during daytime, and the microorganisms at the anode-rhizosphere interface were examined.  相似文献   

13.
An emissions inventory and the AERMOD View dispersion model were used to estimate the concentrations and the potential effects of carbon monoxide (CO) from diesel engine electric power generators operated by and providing electricity to a textile factory in Nigeria on its host air shed. The CO emissions from simultaneous operations of all of the electric power generators in the factory resulted in: 1‐hr average CO emissions of 4.2 to 54.5 micrograms per cubic meters (μg/m3) and 24‐hr average CO emissions of 0.3 to 20.9 μg/m3. The estimated 1‐hr averaging period maximum ground‐level concentrations of CO were deposited within the factory, while the 24‐hr maximum ground‐level concentrations are estimated at a distance 90 meters (m) from the factory in a southeast direction. The ground‐level concentrations of CO emanating from the textile factory are within the stipulated ambient air quality standards.  相似文献   

14.
Daily global solar radiation on a horizontal surface and duration of sunshine hours have been determined experimentally for five meteorological stations in Saudi Arabia, namely, Abha, Al-Ahsa, Al-Jouf, Al-Qaisumah, and Wadi Al-Dawaser sites. Five-years of data covering 1998–2002 period have been used. Suitable Angstrom models have been developed for the global solar radiation estimation as a function of the sunshine duration for each respective sites. Daily averages of monthly solar PV power outputs have been determined using the Angstrom models developed. The effect of the PV cell temperature on the PV efficiency has been considered in calculating the PV power output. The annual average PV output energy has been discussed in all five sites for small loads. The minimum and maximum monthly average values of the daily global solar radiation are found to be 12.09 MJ/m2/d and 30.42 MJ/m2/d for Al-Qaisumah and Al-Jouf in the months of December June, respectively. Minimum monthly average sunshine hours of 5.89 hr were observed in Al-Qaisumah in December while a maximum of 12.92 hr in Al-Jouf in the month of June. Shortest range of sunshine hours of 7.33–10.12 hr was recorded at Abha station. Minimum monthly average Solar PV power of 1.59 MJ/m2/day was obtained at Al-Qaisumah in the month of December and a maximum of 3.39 MJ/m2/day at Al-Jouf in June. The annual PV energy output was found to be 276.04 kWh/m2, 257.36 kWh/m2, 256.75 kWh/m2, 245.44 kWh/m2, and 270.95 kWh/m2 at Abha, Al-Ahsa, Al-Jouf, Al-Qaisumah, and Wadi Al-Dawaser stations, respectively. It is found that the Abha site yields the highest solar PV energy among the five sites considered.  相似文献   

15.
ABSTRACT: Rapid-rate filter with sand or anthracite as filter media was studied at filtration rates of 4.5 and 9.0 m3/m2-h. Different parameters were evaluated by adopting a proposed simplified model. A suitable combination of anthracite-sand as filter media was given by using corresponding filter parameters of single-medium filters and break-even optimization technique.  相似文献   

16.
This study develops and investigates a fully passive air-breathing tubular direct methanol fuel cell (t-DMFC) with a steel-tube anode and a steel-mesh cathode. The effects of methanol concentration, cathode catalyst loading, mesh structure, and forced air convection are experimentally explored. Results indicate that the t-DMFC performs better at a relatively higher methanol concentration of 8 M. It is recommended to use a catalyst loading of 4 mg cm?2. Both the electrochemical impedance spectroscopy (EIS) and performance tests confirm that the 40-mesh setup is preferred at the cathode. The fuel cell yields a poor performance when the cathode works with forced air convection because the air-blowing operation reduces the cell temperature and this effect dominates the cell performance. The dynamic and constant-load behaviors are also inspected.  相似文献   

17.
ABSTRACT: One component of the filamentous algal community of a northern fen ecosystem in central Michigan was studied under conditions of nutrient enrichment by secondarily treated sewage effluent during one growing season. The productivity of Cladophora spp. measured by continuous flow bioassay was 2.6 g dry weight m day at the site of effluent addition compared to 0.085 g m day at the control site. Under conditions of nutrient enrichment, uptake by bioassay Cladophora spp. averaged 12 mg m?2day?1for phosphorus and 55 mg m?2day?1for nitrogen, compared to 0.01 mg m?2 day?1and 0.16 mg m?2day?1for phosphorus and nitrogen, respectively, in the control area. At the end of the growing season approximately 4.3 g N m?2 and 0.96 g P m?2were immobilized in Cladophora algal biomass. Algal growth temporarily immobilized 3.0 percent of the nitrogen and 1.0 percent of the phosphorus added as sewage effluent. Gross productivity of surface water in the fen averaged 1.5 g O2m?2day?1at the nutrient enriched site, compared to 0.5 g O2 m?2day?1at the control area. Gross productivity, community respiration and reaeration constant values in the fen were similar to data collected by other researchers in shallow water aquatic systems, but only at the fertilized sites.  相似文献   

18.
In this paper Molten Carbonate Fuel Cells (MCFCs) are considered for their potential application in carbon dioxide separation when integrated into natural gas fired combined cycles. The MCFC performs on the anode side an electrochemical oxidation of natural gas by means of CO32? ions which, as far as carbon capture is concerned, results in a twofold advantage: the cell removes CO2 fed at the cathode to promote carbonate ion transport across the electrolyte and any dilution of the oxidized products is avoided.The MCFC can be “retrofitted” into a combined cycle, giving the opportunity to remove most of the CO2 contained in the gas turbine exhaust gases before they enter the heat recovery steam generator (HRSG), and allowing to exploit the heat recovery steam cycle in an efficient “hybrid” fuel cell + steam turbine configuration. The carbon dioxide can be easily recovered from the cell anode exhaust after combustion with pure oxygen (supplied by an air separation unit) of the residual fuel, cooling of the combustion products in the HRSG and water separation. The resulting power cycle has the potential to keep the overall cycle electrical efficiency approximately unchanged with respect to the original combined cycle, while separating 80% of the CO2 otherwise vented and limiting the size of the fuel cell, which contributes to about 17% of the total power output so that most of the power capacity relies on conventional low cost turbo-machinery. The calculated specific energy for CO2 avoided is about 4 times lower than average values for conventional post-combustion capture technology. A sensitivity analysis shows that positive results hold also changing significantly a number of MCFC and plant design parameters.  相似文献   

19.
PEM water electrolysis is one of the most efficient methods for the production of hydrogen because of produced high purity of the gases and environmentally friendly. In the present study, Phosphorus-doped Graphene (PG) was synthesized by thermal annealing of triphenylphosphine (TPP) and graphene oxide (GO). The PG supported palladium (Pd/PG) electrocatalysts were synthesized by chemical reduction method and used as the cathode for hydrogen evolution reaction (HER) electrode. Structural properties and electrochemical performances of the synthesized Pd/PG electrocatalyst were studied by FE-SEM, EDS, ICP, FT-IR, XRD, and Cyclic voltammetry (CV) methods, respectively. The membrane electrode assemblies (MEA’s) were fabricated using Pd/PG as cathode for HER electrode and RuO2 as anode for OER electrode. Also, their electrochemical performances along with the corresponding hydrogen yields were evaluated in single cell PEM water electrolyzer at various experimental conditions such as different current densities from 0.1 to 2.0 A cm?2 and temperatures (28–80°C). The synthesized Pd/PG electrocatalyst was observed a current density of 1 A cm?2 with 1.95 V at 80°C. Further, long-term stability studies were carried out continuously up to 2000 h which showed a reasonable stability. Hence, the synthesized Pd/PG can be used as an alternative to Pt-based electrocatalysts for the HER in PEM water electrolysis.  相似文献   

20.
The objective of this work was to assess the effect of agitation rate and impeller type in two mechanically stirred sequencing batch reactors: one containing granulated biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam (denominated AnSBBR). Each configuration, with total volume of 1 m3, treated 0.65 m3 sanitary wastewater at ambient temperature in 8-h cycles. Three impeller types were assessed for each reactor configuration: flat-blade turbine impeller, 45°-inclined-blade turbine impeller and helix impeller, as well as two agitation rates: 40 and 80 rpm, resulting in a combination of six experimental conditions. In addition, the ASBR was also operated at 20 rpm with a flat-blade turbine impeller and the AnSBBR was operated with a draft tube and helix impeller at 80 and 120 rpm. To quantify how impeller type and agitation rate relate to substrate consumption rate, results obtained during monitoring at the end of the cycle, as well as the time profiles during a cycle were analyzed. Increasing agitation rate from 40 rpm to 80 rpm in the AnSBBR improved substrate consumption rate whereas in the ASBR this increase destabilized the system, likely due to granule rupture caused by the higher agitation. The AnSBBR showed highest solids and substrate removal, highest kinetic constant and highest alkalinity production when using a helix impeller, 80 rpm, and no draft tube. The best condition for the ASBR was achieved with a flat-blade turbine impeller at 20 rpm. The presence of the draft tube in the AnSBBR did not show significant improvement in reactor efficiency. Furthermore, power consumption studies in these pilot scale reactors showed that power transfer required to improve mass transfer might be technically and economically feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号