首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孔锋  孙劭 《灾害学》2021,(4):107-112
采用SSPs情景下BCC-CSM2-MR模式输出的2015-2100年的全球日值降水数据,基于采用超阈值取样方法和韦伯分布理论,计算了全球陆地极端降水的阈值和强度的空间差异特征。结果表明:①不同SSPs情景下全球陆地的极端降水阈值空间分布具有相似性,且差异较大的地区主要分布在中纬度地区。其中SSP1-2.6情景下的阈值与SSP2-4.5、SSP3-7.0和SSP5-8.5情景的空间相关系数分别达到了0.73、0.71、0.70和0.69(n=16 941),均通过了0.01显著性水平的检验。②不同SSPs情景下的全球陆地极端降水强度空间分布具有相似性,仅在强度和面积上有所差异,呈现出区域和次区域特征。同一SSP情景下的全球陆地极端降水强度之间的空间相关系数,随着重现期的增加而减小。③SSP5-8.5与SSP1-2.6情景下的全球陆地极端降水强度差异在热带和季风区主要以正差异为主,其分布面积和强度随着年遇型增加而增加。  相似文献   

2.
《灾害学》2020,(2)
采用国际耦合模式比较计划第五阶段(CMIP5)中20个气候模式的试验数据,以及OpenStreetMap的中国公路数据,采用极值分布对年最高气温进行拟合,预估2030年和2050年RCP4.5和RCP8.5两种情景下不同重现期的极端高温分布及其变化,分析极端高温下中国公路网暴露度的时空格局,并对不同阈值下的暴露度敏感性进行分析。研究表明:①中国极端高温呈明显上升趋势,2050年与2030年的中国极端高温空间分布差异将大于2030年与2015年的差异,且RCP8.5与RCP4.5情景的差异随着时间的增长不断扩大;②相比于基准时间(2015年),中国公路对极端高温的暴露度无论在何种情景都将增长,且增速随着时间增大;③不同高温影响阈值下的公路暴露度具有显著空间分布差异;④公路暴露热点区域范围将由华北向南逐渐扩张,由数个小区域逐渐融合为一个大区域,公路暴露度东部区域较西部区域严重,京津冀地区暴露度尤其高。  相似文献   

3.
极端高温灾害严重,在未来很有可能会加剧。研究基于NEX-GDDP高时空分辨率降尺度数据及历史观测数据,将35℃作为极端高温阈值,对当前及未来不同情景下夏玉米生育期(6-9月)极端高温时空分布特征进行分析。结果显示:在各个时期、各情景下山东省日最高气温空间上都呈现出东部沿海较低向西部内陆地区逐渐升高的趋势,随时间逐渐增高,在RCP8.5排放情景下增加更显著,且西部地区较东部沿海地区增加幅度大;极端高温日数同样呈现增加的趋势,特别在未来远期RCP8.5排放情景下增加迅速,超过50%地区达到80d以上。NEX-GDDP数据具有较好的应用效果,未来极端高温灾害频发,夏玉米生产将面临严重威胁。  相似文献   

4.
《灾害学》2019,(1)
在地球工程对中国极端降雨致灾因子危险性影响的研究基础上,采用BNU-ESM模式的地球工程(G4试验)和非地球工程(RCP4. 5)日值降雨数据,以日均值降雨量的95%分位数定义极端降雨事件。同时结合IPCC SSP3情景下的中国分省人口数据,评估了中国极端降雨灾害受影响人口风险,并对两种情景下的风险进行对比分析。结果表明:地球工程能够有效降低中国整体极端降雨灾害受影响人口风险,且实施期间的降低作用高于实施结束期。两种情景下中国极端降雨灾害受影响人口风险的区域差异增大,地球工程未能改变中国极端降雨灾害受影响人口风险的相对格局,表明在当前Geo MIP模式设定的地球工程实施当量下,人类能够有效降低气候变化风险,且不影响区域气候相对格局。  相似文献   

5.
《巴黎协定》确定的1.5℃和2℃温控目标下,全球减排压力剧增,因此地球工程温控手段被多次讨论。针对地球工程中讨论最多的太阳辐射管理,基于BNU-ESM模式的地球工程(G4实验)和非地球工程(RCP4.5)两种情景,以2010-2099年中国日值降雨量数据对两种情景下的中国降雨量时空分布及其差异进行统计分析。结果表明:(1)在时间序列上,地球工程有利于中国整体降雨量的增加。2010-2099年和2020-2069年两种情景下的中国降雨量呈增加趋势,且2010-2099年地球工程情景下的降雨量增加趋势大于非地球工程,而2020-2069年两种情景下变化趋势的相差幅度不大。2070-2099年,地球工程实施结束后,地球工程情景下的降雨量呈增加趋势,而非地球工程呈减少趋势;七大地理分区的降雨量变化趋势在地球工程情景下高于非地球工程。(2)在空间格局上,不同研究时段在两种情景下的中国降雨量空间分布相似,仅面积分布有所不同。地球工程实施期间多数地区降雨量减少,地球工程结束后的2070-2099年降雨量明显显著。(3)2010-2099年地球工程情景下的降雨量呈增加趋势的面积多于非地球工程,尤其是2070-2099年地球工程实施结束后中国降雨量增加区域明显增多。降雨量波动特征在地球工程情景下相比非地球工程整体有所减小,地球工程情景下的中国降雨年际变化相对稳定。  相似文献   

6.
基于广义极值分布(GEV)建立了极端降水统计模拟模型,以20 a一遇重现期定义极端降水事件,利用误差订正与空间分解方法(BCSD)降尺度后的耦合模式比较计划第五阶段(CMIP5)的全球气候模式模拟及预估月降水数据,对中国九大流域未来21世纪极端月降水量时空变化进行了预估分析,同时评估了CMIP5数据(降尺度后)对中国区域极端降水事件的模拟效果,探讨了极端降水和平均降水之间的相关性特征。结果表明:CMIP5数据在中国区域模拟效果良好,基本能保证在一个较高的可信度水平;1901-2005年历史极端月降水量呈"东南多、西北少"的分布格局,未来21世纪上下半叶各流域极端月降水量分别表现出+3.2%~+12.8%和+7.7%~+24.7%不同程度的增长趋势,增强变化形成近似由西北往东南"高-低-高"的空间分布格局;未来情景模式假定的辐射强迫加剧了未来极端月降水量的增长变化,尤其表现在21世纪下半叶;极端降水和平均降水在未来变化方面,北部和中部流域基本保持正相关性,而南部东南诸河流域和珠江流域呈负相关性。  相似文献   

7.
《灾害学》2021,(3)
基于国际耦合模式比较计划第五阶段(CMIP5)中5个气候模式的日降水数据,采用广义极值分布对年最大5 d累积降水数据进行拟合,预估了RCP4.5和RCP8.5两种情景下不同重现期极端降水事件的分布及其变化;并结合Meijer等人整合的中国道路里程数据,在0.5°×0.5°栅格尺度上对中国道路系统对极端降水事件暴露度的时空格局进行分析。研究结果表明:(1)中国年最大5 d累积降水呈现明显的上升趋势,且RCP8.5情景下的增速在2040年之后明显高于RCP4.5情景下的增速。(2)2080年之前,各重现期极端降水事件的影响面积在两情景下随时间不断增加,但之后,RCP4.5情景下增加速度趋于缓和甚至开始下降。(3)道路系统对极端降水的高暴露度地区随时间逐步从我国东南沿海地区向西北地区扩张;至2080—2099年,中国极端降水道路系统暴露度在RCP4.5和RCP8.5两种情景下较2020—2039年分别增加了1.31和1.54倍。  相似文献   

8.
汲欣愉  黄弘 《灾害学》2023,(1):177-185
基于NEX-GDDP数据集,采用气候倾向率法、Mann-Kendall突变检验和小波分析法对北京市2006—2099年极端降水时序变化特征进行分析。结果表明:在RCP4.5和RCP8.5情景下,本世纪内北京地区极端降水呈现增加趋势,世纪末期有较大幅度增加,RCP8.5情景下极端降水增加程度更大。在RCP4.5情景下,年降水量、大雨日数、SDII等多数极端降水指数在2040年前后发生增加突变,而在RCP8.5情景下极端降水表现出更为稳定的上升趋势。极端降水事件在RCP4.5和RCP8.5情景下的主周期均为56年,在该特征尺度下各指标呈现少→多→少→多→少的循环交替,RCP8.5情景下降水量、降水频率和降水强度震荡更加明显。  相似文献   

9.
黄土高原极端温度事件的时空变化   总被引:4,自引:0,他引:4  
极端温度事件对农业生态系统有显著影响,其变化趋势需要进行评估。基于黄土高原50个站点的日序列最高和最低温度数据,经定义极端温度事件及其衡量指标(频率、强度、年极值和日温差)后,评价了黄土高原1961-2007年极端温度事件的空间分布和长期变化趋势。结果表明1,961-2007年黄土高原极端温度事件不同指标的空间分布有显著差异,基本上沿东南—西北方向呈梯度变化。多数站点极端温度事件的变化具有单调趋势,但趋势具有显著意义的站点数有很大差异,96%以上站点极端高(低)温事件的频率显著升高(降低);70%站点的日温差(46%降低和24%升高)和最低温度年极值的升高趋势具有显著性;约50%站点极端低温事件的强度和最高温度年极值的增加趋势显著;其他指标的显著性趋势较少。黄土高原极端温度事件对全球变暖的响应有其特殊性。  相似文献   

10.
在2009年哥本哈根举行的气候变化大会上,中国提出到2020年,CO2的排放强度在2005年的基础上要削减40%~45%。为分析"哥本哈根减排"对中国经济的影响,利用国外较为成熟的动态气候经济区域综合评估模式(RICE),设置了我国2005-2050年的6种碳排放情景,且以成本-效益为主开展了该系列情景下的经济评估。结果表明:到2050年,碳强度分别减排30%~35%,40%~45%和50%~55%情景的成本效益比分别为0.28~0.48,0.13~0.18和0.07~0.1。我国CO2减排表现出高成本低效益,且是以我国经济增长的减缓和人民生活水平的降低为代价实现的。  相似文献   

11.
吉林省夏季极端降水事件特征分析   总被引:6,自引:0,他引:6  
利用吉林省46个气象站1961-2010年逐日降水资料,采用百分位定义极端事件阈值的方法,对吉林省极端降水事件的时空分布及变化趋势特征进行了分析。结果表明:(1)吉林省极端降水事件主要发生在夏季,其中5%的降水日数贡献了该季度25%~30%的降水量;夏季极端降水强度以通化地区最强、东部山区最弱,极端降水频率东部山区最大、西北部最小;(2)吉林省100mm以上的极端大暴雨天气也时有发生,通化地区南部发生几率最大,约为4~6 a一遇;中部一带约为8~10a一遇;西北平原区和东部山区出现大暴雨概率很小。(3)近50a吉林省夏季极端降水事件稍有增多的趋势,而强度变化趋势不明显,但存在明显的地域差别,西北部表现为频率减少、强度减弱,中部和东南部表现为频率增多、强度增强。(4)极端降水事件存在年代际差异,20世纪70年代极端降水频率最小,90年代极端降水强度最大,60年代初期极端降水强度存在由强转弱的突变。  相似文献   

12.
利用区域气候模式PRECIS单向嵌套Hadley气候中心海-气耦合模式HadCM3高分辨率的大气部分HadAM3P,分别进行了气候基准时段(1961—1990年)和2080 s时段(2071—2100年)中国区域各30年时间长度的模拟试验,以分析PRECIS对当代中国区域极端降水事件的模拟能力和SRES B2情景下2080s时段相对于气候基准时段中国区域极端降水事件的可能变化趋势。气候基准时段模拟结果与观测值的对比分析表明:PRECIS能够较好地模拟出中国区域年平均极端降水事件的空间分布特征,但模式模拟的大雨事件和湿日数高值区范围较观测值偏大,对华南地区暴雨事件和日最大降水事件的模拟结果较观测值偏低。SRES B2情景下,2080s时段年平均大雨事件除东北和华南地区外,全国均呈增多趋势。暴雨事件在西部地区以减少为主,而东部地区主要呈增加趋势。年平均日最大降水事件的分布型与大雨事件基本一致。湿日数除华北、西北和青藏高原部分地区外均呈减少趋势。未来长江流域洪涝灾害事件发生的频率将可能增大。  相似文献   

13.
近50年北京地区主要灾害性天气事件变化趋势   总被引:1,自引:0,他引:1  
应用1958-2008年逐日气象观测资料,对北京地区的几种主要灾害性天气事件进行了统计分析。结果表明:(1)各种灾害性天气事件的发生频率与强度均具较大的年际变化特征,高温事件的分布为双峰型结构,1990年代以来为高温多发期,年极端高温强度及连续高温日数均有增加的趋势,低温事件的变化趋势则正好相反;(2)强对流天气事件如暴雨、冰雹、雷暴日数的下降趋势不明显,但强度有减弱的迹象,大风、沙尘暴、大雾事件下降趋势明显;(3)北京年酸雨日数上升趋势明显,酸雨pH值的变化表明污染日趋严重;(4)北京气候变暖突变发生前后某些极端天气频率和强度表现出明显差异,其突变点相差1~2 a间隔,表明极端事件对于气候增暖变化需要一个响应过程。  相似文献   

14.
利用淮河流域110个气象站点1959年1月1日至2008年12月31日的日尺度降水数据,建立了AM及POT极端降水序列,通过4大类33种概率分布函数对其进行了拟合,以建立最优概率分布模型,并利用其参数分析淮河流域极端降水的空间分布及概率特征。研究发现:(1)淮河流域1959-2008年日极端降水的空间分布为东西两端高并逐渐向流域中心降低,且有淮河上游地区及沂沭泗流域东部两处强降水中心;(2)经K-S法检验,Wakeby函数是AM及POT序列的最优概率分布函数。50a一遇的日极端降水预估值与1959-2008年实际最大日极端降水值的误差率随着实际降水量的增加而增大,且大多数站点的误差率在20%以下;(3)通过对最优概率分布模型参数的分析,得出河南省驻马店地区、安徽省阜南和淮南地区以及皖鲁苏交界地区的极端降水发生概率较大,淮河中上游干流周边地区及下游地区的极端降水变化不稳定;(4)以最优概率分布模型的形状、尺度参数为指标,绘制了淮河流域极端降水风险图,为极端降水风险管理与预警工作提供参考。  相似文献   

15.
为了应对全球气候变化,《巴黎协定》没有强制规定各国的温室气体排放量,而是各国以"自主贡献"(INDC)的方式参与全球温室气体减排行动。国家自主贡献减排的气候响应是当今气候变化科学界的热点问题。目前缺少对于自主贡献目标情景下的区域极端温度变化的研究。本文基于32个全球气候模式的模拟,采用九个温度极值指数,研究了中亚地区INDC目标情景下极端温度的变化特征。结果表明INDC目标情景相对现代气候期,中亚地区极端高温事件显著增加,而极端低温事件显著减少。夜间低温的上升幅度大于日间高温。不同极端温度指标变化的空间分布型有所差异,帕米尔高原和高纬度地区是主要的变化敏感区。本研究还进一步发现中亚地区的大部分温度极值指数与全球平均温升呈近似线性的关系。如果加强减排行动,将全球平均温升控制在较低水平,极端温度事件的变化将显著减少。  相似文献   

16.
依托中国逐日雪深模拟预估数据集、草地生产力数据、气象站点数据、灾害统计资料以及统计年鉴,选取了历史基准时段(1986—2005年)、未来近期(2016—2035年)和未来远期(2046—2065年)三个时间段,以及RCP4.5和RCP8.5两种情景,分析了青藏高原牧区雪灾危险性、牧区牲畜暴露量以及脆弱性,在此基础上,定量预估了青藏高原畜牧业雪灾风险。结果表明:(1)青藏高原区域内,中国逐日雪深模拟预估数据中,CESM1-BGC模式模拟的积雪深度数据更接近于站点雪深观测值,模拟精度最高,此次研究选用该模式下雪深数据识别雪灾危险性。雪灾危险性从时序看,相比于历史时期,RCP4.5情景下未来近期、未来远期和RCP8.5情景下未来近期、未来远期发生雪灾危险性的范围减少6%、11%、6%和14%;但是雪灾危险性强度减弱并不明显,RCP4.5情景下,未来远期,甚至增强;空间分布来看,危险性指数较高的区域主要分布在藏北高原、冈底斯山脉沿线、昆仑山脉西段沿线、祁连山脉沿线、三江源区域和横断山脉山脉区域。(2)与2000年青藏高原牧区草地载畜量相比,2017年载畜量增加11%,未来载畜量将可能进一步增加...  相似文献   

17.
中国高温致灾危险性时空格局预估   总被引:8,自引:0,他引:8  
应用PRECIS模式模拟的气候情景数据,选取高温日数和热浪日数两个指标,对IPCC SRESB2情景下未来我国高温致灾危险性时空格局进行了预估。结果表明:在近期(2011-2040)、中期(2041-2070)和远期(2071-2100),全国年均高温日数从基准时段(1961-1990)的10.2d将分别增加到17.3d,22.6d和28.4d,年均热浪日数从基准时段的11.5d分别增加到22.6d,30.6d和39.0d;除了青藏高原,全国大部分地区的高温致灾危险性等级均有不同程度的提高,其中高温致灾危险性等级高于4级(包括4级)的地区在基准时段仅占全国总面积的3.8%,在近期、中期和远期将分别扩展到全国总面积的29.9%,51.3%和63.0%。  相似文献   

18.
基于DFA法的江苏省极端降水时空分布特征研究   总被引:1,自引:0,他引:1  
为进一步掌握江苏省极端降水的时空分布特征,基于该省1961-2010年均一性较好的逐日降水数据,利用去趋势波动分析法确定了全省13个站点的极端降水阈值,并通过Morlet小波及Mann-Kendall法分析了江苏省极端降水频数的振荡周期及其突变。结果表明,江苏省极端降水年频数和夏季极端降水均呈现8~10 a的变化周期,且1998年和2006年分别为其突变增加年,而秋季极端降水主要呈2~3 a与5~7 a的变化周期;极端降水与降水总量的空间分布具有较好的一致性,均呈南部大、北部小的特征。  相似文献   

19.
极端气温对城市人群死亡的影响评估   总被引:3,自引:0,他引:3  
利用北京心肺血管疾病研究所提供的1994-2000年北京城近郊区的七个监测点的以25-74岁人群为监测对象的25余万居民中全死因死亡事件监测数据、同期北京观象台的逐日气温观测数据、月平均气候资料,对极端气温对城市人群死亡的影响进行分析,得出对城市人群死亡影响的极端气温阈值及其长序列的时间线形变率,采用最优子集回归方法建立预测评估模型,根据气候模式对未来气候变化的预测结果,对未来北京城市人群死亡的影响进行定量评估。  相似文献   

20.
随着全球变暖,极端气候事件频繁发生,由此造成气象灾害的数量日益增加。深入研究极端气候的变化特征,能够为预测和预防极端事件灾害提供参考依据。采用线性倾向估计法、反距离加权法和R/S分析法,选取10个极端气温指标研究了宁夏近50年来极端气温事件的时空变化特征,并在此基础上尝试预测了未来该地区极端气温变化的情形。结果发现:全天极端高温天数、白天极端高温天数、夜间极端高温天数、生物生长季和夏季天数分别以0.76、0.48、0.67、0.35和0.29 d/a的趋势明显增加,而全天极端低温天数、白天极端低温天数、夜间极端低温天数和最大连续霜冻天数分别以-0.40、-0.25、-0.66和-0.30 d/a趋势显著减少,极端气温年较差也呈下降趋势(-0.02℃/a),且空间差异明显;除极端气温年较差外,其它各极端气温指标与年平均气温均有很好的相关性;年极端冷指标和极端气温年较差在未来将继续下降,极端暖指标在未来将继续上升;宁夏气象灾害所造成的影响和损失将进一步增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号