首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Brown PM 《Ecology》2006,87(10):2500-2510
Climate influences forest structure through effects on both species demography (recruitment and mortality) and disturbance regimes. Here, I compare multi-century chronologies of regional fire years and tree recruitment from ponderosa pine forests in the Black Hills of southwestern South Dakota and northeastern Wyoming to reconstructions of precipitation and global circulation indices. Regional fire years were affected by droughts and variations in both Pacific and Atlantic sea surface temperatures. Fires were synchronous with La Ni?as, cool phases of the Pacific Decadal Oscillation (PDO), and warm phases of the Atlantic Multidecadal Oscillation (AMO). These quasi-periodic circulation features are associated with drought conditions over much of the western United States. The opposite pattern (El Ni?o, warm PDO, cool AMO) was associated with fewer fires than expected. Regional tree recruitment largely occurred during wet periods in precipitation reconstructions, with the most abundant recruitment coeval with an extended pluvial from the late 1700s to early 1800s. Widespread even-aged cohorts likely were not the result of large crown fires causing overstory mortality, but rather were caused by optimal climate conditions that contributed to synchronous regional recruitment and longer intervals between surface fires. Synchronous recruitment driven by climate is an example of the Moran effect. The presence of abundant fire-scarred trees in multi-aged stands supports a prevailing historical model for ponderosa pine forests in which recurrent surface fires affected heterogenous forest structure, although the Black Hills apparently had a greater range of fire behavior and resulting forest structure over multi-decadal time scales than ponderosa pine forests of the Southwest that burned more often.  相似文献   

2.
Many ponderosa pine and mixed-conifer forests of the western, interior United States have undergone substantial structural and compositional changes since settlement of the West by Euro-Americans. Historically, these forests consisted of widely spaced, fire-tolerant trees underlain by dense grass swards. Over the last 100 years they have developed into dense stands consisting of more fire-sensitive and disease-susceptible species. These changes, sometimes referred to as a decline in "forest health," have been attributed primarily to two factors: active suppression of low-intensity fires (which formerly reduced tree recruitment, especially of fire-sensitive, shade-tolerant species), and selective logging of larger, more fire-tolerant trees. A third factor, livestock grazing, is seldom discussed, although it may be as important as the other two factors. Livestock alter forest dynamics by (1) reducing the biomass and density of understory grasses and sedges, which otherwise outcompete conifer seedlings and prevent dense tree recruitment, and (2) reducing the abundance of fine fuels, which formerly carried low-intensity fires through forests. Grazing by domestic livestock has thereby contributed to increasingly dense western forests and to changes in tree species composition. In addition, exclosure studies have shown that livestock alter ecosystem processes by reducing the cover of herbaceous plants and litter, disturbing and compacting soils, reducing water infiltration rates, and increasing soil erosion.  相似文献   

3.
Bakker JD  Moore MM 《Ecology》2007,88(9):2305-2319
Long-term studies can broaden our ecological understanding and are particularly important when examining contingent effects that involve changes to dominance by long-lived species. Such a change occurred during the last century in Southwestern (USA) ponderosa pine (Pinus ponderosa) forests. We used five livestock grazing exclosures established in 1912 to quantify vegetation structure in 1941 and 2004. Our objectives were to (1) assess the effects of historical livestock grazing on overstory structure and age distribution, (2) assess the effects of recent livestock grazing and overstory on understory vegetation, and (3) quantify and explain changes in understory vegetation between 1941 and 2004. In 1941, canopy cover of tree regeneration was significantly higher inside exclosures. In 2004, total tree canopy cover was twice as high, density was three times higher, trees were smaller, and total basal area was 40% higher inside exclosures. Understory species density, herbaceous plant density, and herbaceous cover were negatively correlated with overstory vegetation in both years. Most understory variables did not differ between grazing treatments in 1941 but were lower inside exclosures in 2004. Differences between grazing treatments disappeared once overstory effects were accounted for, indicating that they were due to the differential overstory response to historical livestock grazing practices. Between 1941 and 2004, species density declined by 34%, herbaceous plant density by 37%, shrub cover by 69%, total herbaceous cover by 59%, graminoid cover by 39%, and forb cover by 82%. However, these variables did not differ between grazing treatments or years once overstory effects were accounted for, indicating that the declines were driven by the increased dominance of the overstory during this period. Our results demonstrate that historical livestock grazing practices are an aspect of land-use history that can affect ecosystem development. Grazing history must be considered when extrapolating results from one site to another. In addition, the understory vegetation was more strongly controlled by the ponderosa pine overstory than by recent livestock grazing or by temporal dynamics, indicating that overstory effects must be accounted for when examining understory responses in this ecosystem.  相似文献   

4.
5.
Heyerdahl EK  Morgan P  Riser JP 《Ecology》2008,89(3):705-716
Our objective was to infer the climate drivers of regionally synchronous fire years in dry forests of the U.S. northern Rockies in Idaho and western Montana. During our analysis period (1650-1900), we reconstructed fires from 9245 fire scars on 576 trees (mostly ponderosa pine, Pinus ponderosa P. & C. Lawson) at 21 sites and compared them to existing tree-ring reconstructions of climate (temperature and the Palmer Drought Severity Index [PDSI]) and large-scale climate patterns that affect modern spring climate in this region (El Ni?o Southern Oscillation [ENSO] and the Pacific Decadal Oscillation [PDO]). We identified 32 regional-fire years as those with five or more sites with fire. Fires were remarkably widespread during such years, including one year (1748) in which fires were recorded at 10 sites across what are today seven national forests plus one site on state land. During regional-fire years, spring-summers were significantly warm and summers were significantly warm-dry whereas the opposite conditions prevailed during the 99 years when no fires were recorded at any of our sites (no-fire years). Climate in prior years was not significantly associated with regional- or no-fire years. Years when fire was recorded at only a few of our sites occurred under a broad range of climate conditions, highlighting the fact that the regional climate drivers of fire are most evident when fires are synchronized across a large area. No-fire years tended to occur during La Ni?a years, which tend to have anomalously deep snowpacks in this region. However, ENSO was not a significant driver of regional-fire years, consistent with the greater influence of La Ni?a than El Ni?o conditions on the spring climate of this region. PDO was not a significant driver of past fire, despite being a strong driver of modern spring climate and modern regional-fire years in the northern Rockies.  相似文献   

6.
Forests experiencing moderate- or mixed-severity fire regimes are presumed to be widespread across the western United States, but few studies have characterized these complex disturbance regimes and their effects on contemporary forest structure. Restoration of pre-fire-suppression open-forest structure to reduce the risk of uncharacteristic stand-replacing fires is a guiding principle in forest management policy, but identifying which forests are clear candidates for restoration remains a challenge. We conducted dendroecological reconstructions of fire history and stand structure at 40 sites in the upper montane zone of the Colorado Front Range (2400-2800 m), sampled in proportion to the distribution of forest types in that zone (50% dominated by ponderosa pine, 28% by lodgepole pine, 12% by aspen, 10% by Douglas-fir). We characterized past fire severity based on remnant criteria at each site in order to assess the effect of fire history on tree establishment patterns, and we also evaluated the influence of fire suppression and climate. We found that 62% of the sites experienced predominantly moderate-severity fire, 38% burned at high severity, and no sites burned exclusively at low severity. The proportion of total tree and sapling establishment was significantly different among equal time periods based on a chi-square test, with highest tree and sapling establishment during the pre-fire-suppression period (1835-1919). Superposed epoch analysis revealed that fires burned during years of extreme drought (95% CI). The major pulse of tree establishment in the upper montane zone occurred during a multidecadal period of extreme drought conditions in the Colorado Front Range (1850-1889), during which 53% of the fires from the 1750-1989 period burned. In the upper montane zone of the Colorado Front Range, historical evidence suggests that these forests are resilient to prolonged periods of severe drought and associated severe fires.  相似文献   

7.
DeLuca TH  Sala A 《Ecology》2006,87(10):2511-2522
Recurrent, low-severity fire in ponderosa pine (Pinus ponderosa)/interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests is thought to have directly influenced nitrogen (N) cycling and availability. However, no studies to date have investigated the influence of natural fire intervals on soil processes in undisturbed forests, thereby limiting our ability to understand ecological processes and successional dynamics in this important ecosystem of the Rocky Mountain West. Here, we tested the standing hypothesis that recurrent fire in ponderosa pine/Douglas-fir forests of the Inland Northwest decreases total soil N, but increases N turnover and nutrient availability. We compared soils in stands unburned over the past 69-130 years vs. stands exposed to two or more fires over the last 130 years at seven distinct locations in two wilderness areas. Mineral soil samples were collected from each of the seven sites in June and July of 2003 and analyzed for pH, total C and N, potentially mineralizable N (PMN), and extractable NH4+, NO3-, PO4(-3), Ca+2, Mg+2, and K+. Nitrogen transformations were assessed at five sites by installing ionic resin capsules in the mineral soil in August of 2003 and by conducting laboratory assays of nitrification potential and net nitrification in aerobic incubations. Total N and PMN decreased in stands subjected to multiple fires. This loss of total N and labile N was not reflected in concentrations of extractable NH4+ and NO3-. Rather, multiple fires caused an increase in NO3 sorbed on ionic resins, nitrification potential, and net nitrification in spite of the burned stands not having been exposed to fire for at least 12-17 years. Charcoal collected from a recent fire site and added to unburned soils increased nitrification potential, suggesting that the decrease of charcoal in the absence of fire may play an important role in N transformations in fire-dependent ecosystems in the long term. Interestingly, we found no consistent effect of fire frequency on extractable P or alkaline metal concentrations. Our results corroborate the largely untested hypothesis that frequent fire in ponderosa pine forests increases inorganic N availability in the long term and emphasize the need to study natural, unmanaged sites in far greater detail.  相似文献   

8.
We studied northern flying squirrel (Glaucomys sabrinus) demography in the eastern Washington Cascade Range to test hypotheses about regional and local abundance patterns and to inform managers of the possible effects of fire and fuels management on flying squirrels. We quantified habitat characteristics and squirrel density, population trends, and demography in three typical forest cover types over a four-year period. We had 2034 captures of flying squirrels over 41 000 trap nights from 1997 through 2000 and marked 879 squirrels for mark-recapture population analysis. Ponderosa pine (Pinus ponderosa) forest appeared to be poorer habitat for flying squirrels than young or mature mixed-conifer forest. About 35% fewer individuals were captured in open pine forest than in dry mixed-conifer Douglas-fir (Pseudotsuga menziesii) and grand fir (Abies grandis) forests. Home ranges were 85% larger in pine forest (4.6 ha) than in mixed-conifer forests (2.5 ha). Similarly, population density (Huggins estimator) in ponderosa pine forest was half (1.1 squirrels/ha) that of mixed-conifer forest (2.2 squirrels/ha). Tree canopy cover was the single best correlate of squirrel density (r = 0.77), with an apparent threshold of 55% canopy cover separating stands with low- from high-density populations. Pradel estimates of annual recruitment were lower in open pine (0.28) than in young (0.35) and mature (0.37) forest. High recruitment was most strongly associated with high understory plant species richness and truffle biomass. Annual survival rates ranged from 45% to 59% and did not vary among cover types. Survival was most strongly associated with understory species richness and forage lichen biomass. Maximum snow depth had a strong negative effect on survival. Rate of per capita increase showed a density-dependent response. Thinning and prescribed burning in ponderosa pine and dry mixed conifer forests to restore stable fire regimes and forest structure might reduce flying squirrel densities at stand levels by reducing forest canopy, woody debris, and the diversity or biomass of understory plants, truffles, and lichens. Those impacts might be ameliorated by patchy harvesting and the retention of large trees, woody debris, and mistletoe brooms. Negative stand-level impacts would be traded for increased resistance and resilience of dry-forest landscapes to now-common, large-scale stand replacement fires.  相似文献   

9.
Laughlin DC  Moore MM  Fulé PZ 《Ecology》2011,92(3):556-561
We analyzed one of the longest-term ecological data sets to evaluate how forest overstory structure is related to herbaceous understory plant strategies in a ponderosa pine forest. Eighty-two permanent 1-m2 chart quadrats that were established as early as 1912 were remeasured in 2007. We reconstructed historical forest structure using dendrochronological techniques. Ponderosa pine basal area increased from an average of 4 m2/ha in the early 1900s to 29 m2/ha in 2007. Understory plant foliar cover declined by 21%, species richness declined by two species per square meter, and functional diversity also declined. The relative cover of C4 graminoids decreased by 18% and C3 graminoids increased by 19%. Herbaceous plant species with low leaf and fine root nitrogen concentrations, low specific leaf area, high leaf dry matter content, large seed mass, low specific root length, short maximum height, and early flowering date increased in relative abundance in sites where pine basal area increased the most. Overall, we observed a long-term shift in composition toward more conservative shade- and stress-tolerant herbaceous species. Our analysis of temporal changes in plant strategies provides a general framework for evaluating compositional and functional changes in terrestrial plant communities.  相似文献   

10.
Lesser MR  Jackson ST 《Ecology》2012,93(5):1071-1081
The processes underlying the development of new populations are important for understanding how species colonize new territory and form viable long-term populations. Life-history-mediated processes such as Allee effects and dispersal capability may interact with climate variability and site-specific factors to govern population success and failure over extended time frames. We studied four disjunct populations of ponderosa pine in the Bighorn Basin of north-central Wyoming to examine population growth spanning more than five centuries. The study populations are separated from continuous ponderosa pine forest by distances ranging from 15 to >100 km. Strong evidence indicates that the initial colonizing individuals are still present, yielding a nearly complete record of population history. All trees in each population were aged using dendroecological techniques. The populations were all founded between 1530 and 1655 cal yr CE. All show logistic growth patterns, with initial exponential growth followed by a slowing during the mid to late 20th century. Initial population growth was slower than expectations from a logistic regression model at all four populations, but increased during the mid-18th century. Initial lags in population growth may have been due to strong Allee effects. A combination of overcoming Allee effects and a transition to favorable climate conditions may have facilitated a mid-18th century pulse in population growth rate.  相似文献   

11.
Morgan P  Heyerdahl EK  Gibson CE 《Ecology》2008,89(3):717-728
We inferred climate drivers of 20th-century years with regionally synchronous forest fires in the U.S. northern Rockies. We derived annual fire extent from an existing fire atlas that includes 5038 fire polygons recorded from 12,070,086 ha, or 71% of the forested land in Idaho and Montana west of the Continental Divide. The 11 regional-fire years, those exceeding the 90th percentile in annual fire extent from 1900 to 2003 (>102,314 ha or approximately 1% of the fire atlas recording area), were concentrated early and late in the century (six from 1900 to 1934 and five from 1988 to 2003). During both periods, regional-fire years were ones when warm springs were followed by warm, dry summers and also when the Pacific Decadal Oscillation (PDO) was positive. Spring snowpack was likely reduced during warm springs and when PDO was positive, resulting in longer fire seasons. Regional-fire years did not vary with El Ni?o-Southern Oscillation (ENSO) or with climate in antecedent years. The long mid-20th century period lacking regional-fire years (1935-1987) had generally cool springs, generally negative PDO, and a lack of extremely dry summers; also, this was a period of active fire suppression. The climate drivers of regionally synchronous fire that we inferred are congruent with those of previous centuries in this region, suggesting a strong influence of spring and summer climate on fire activity throughout the 20th century despite major land-use change and fire suppression efforts. The relatively cool, moist climate during the mid-century gap in regional-fire years likely contributed to the success of fire suppression during that period. In every regional-fire year, fires burned across a range of vegetation types. Given our results and the projections for warmer springs and continued warm, dry summers, forests of the U.S. northern Rockies are likely to experience synchronous, large fires in the future.  相似文献   

12.
Abstract: The ability of reserves to maintain natural ecosystem processes such as fire disturbance regimes is central to long-term conservation. Fire-scarred tree samples were used to reconstruct fire regimes at five study sites totaling approximately 230 ha in pine (   Pinus spp.) and oak ( Quercus spp.) forests of La Michilía Biosphere Reserve on the dry east slope of the Sierra Madre Occidental, Durango, Mexico. Study sites covered a 20-km environmental gradient of elevation, topography, and human land uses. Plant communities ranged from oak-pine to mixed conifer forests. Fires were frequent at all sites prior to 1930, when large-scale grazing of domestic livestock was initiated. Widespread fires have been excluded from four of the five sites since 1945, with an essentially uninterrupted regime of frequent fires continuing only in the reserve core. Xeric sites had many, smaller fires, whereas mesic sites had fewer but larger fires. On a reserve-wide scale, a fire burned on at least one site nearly every year, usually in the dry spring or early summer season, but fire years were rarely synchronous among the sites. Fire occurrence was weakly related to the Southern Oscillation climate pattern; major reserve-wide fire years almost never coincided with wet Southern Oscillation extremes but only occasionally matched dry extremes. Maintenance of the long-term frequent-fire regime in the reserve core is one indicator that the biosphere reserve model has been successful in conserving natural processes, but the protected area is small ( 7000 ha). Because of the key role of frequent-fire regimes in regulating ecosystem structure and function, restoration of the ecological role of fire disturbance is a desirable conservation strategy.  相似文献   

13.
Caribou are an integral component of high-latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long-term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5-fold increase in the area burned annually and an associated 41% decrease in the amount of spruce-lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.  相似文献   

14.
15.
Examining the potential for ecological restoration is important in areas where anthropogenic disturbance has degraded forest landscapes. However, the conditions under which restoration of degraded tropical dry forests (TDF) might be achieved in practice have not been determined in detail. In this study, we used LANDIS-II, a spatially explicit model of forest dynamics, to assess the potential for passive restoration of TDF through natural regeneration. The model was applied to two Mexican landscapes under six different disturbance regimes, focusing on the impact of fire and cattle grazing on forest cover, structure and composition. Model results identified two main findings. First, tropical dry forests are more resilient to anthropogenic disturbance than expected. Results suggested that under both a scenario of small, infrequent fires and a scenario of large, frequent fires, forest area can increase relatively rapidly. However, forest structure and composition differed markedly between these scenarios. After 400 years, the landscape becomes increasingly occupied by relatively shade-tolerant species under small, infrequent fires, but only species with both relatively high shade tolerance and high fire tolerance can thrive under conditions with large, frequent fires. Second, we demonstrated that different forms of disturbance can interact in unexpected ways. Our projections revealed that when grazing acts in combination with fire, forest cover, structure and composition vary dramatically depending on the frequency and extent of the fires. Results indicated that grazing and fire have a synergistic effect causing a reduction in forest cover greater than the sum of their individual effects. This suggests that passive landscape-scale restoration of TDF is achievable in both Mexican study areas only if grazing is reduced, and fires are carefully managed to reduce their frequency and intensity.  相似文献   

16.
青藏高原东部亚高山森林草甸植被地理格局的成因探讨   总被引:31,自引:1,他引:30  
森林和草地在亚高山带的阴阳坡上形成的交错分布现象,呈一弧型分布在青藏高原东部本文在综合分析了造成这种现象的生理生态因素之后,重点从火的作用、放牧作用和历史时期人类活动的影响等方面,讨论了青藏高原东部亚高山带植被地理格局的形成原因结果表明,自然生态因素和人类活动的影响在植被地理格局的形成过程中起着同等重要的作用,其中火灾的作用以及气候变化造成的人口迁移压力作用十分明显.在这一弧形区域内,林线以下的亚高山灌丛或草甸多属次生类型,人类有目的的烧荒和长期放牧阻滞了植被的顺向演替,维持了亚高山(灌丛)草甸的偏途顶级状态.  相似文献   

17.
Kulakowski D  Veblen TT 《Ecology》2007,88(3):759-769
Disturbances are important in creating spatial heterogeneity of vegetation patterns that in turn may affect the spread and severity of subsequent disturbances. Between 1997 and 2002 extensive areas of subalpine forests in northwestern Colorado were affected by a blowdown of trees, bark beetle outbreaks, and salvage logging. Some of these stands were also affected by severe fires in the late 19th century. During a severe drought in 2002, fires affected extensive areas of these subalpine forests. We evaluated and modeled the extent and severity of the 2002 fires in relation to these disturbances that occurred over the five years prior to the fires and in relation to late 19th century stand-replacing fires. Occurrence of disturbances prior to 2002 was reconstructed using a combination of tree-ring methods, aerial photograph interpretation, field surveys, and geographic information systems (GIS). The extent and severity of the 2002 fires were based on the normalized difference burn ratio (NDBR) derived from satellite imagery. GIS and classification trees were used to analyze the effects of prefire conditions on the 2002 fires. Previous disturbance history had a significant influence on the severity of the 2002 fires. Stands that were severely blown down (> 66% trees down) in 1997 burned more severely than other stands, and young (approximately 120 year old) postfire stands burned less severely than older stands. In contrast, prefire disturbances were poor predictors of fire extent, except that young (approximately 120 years old) postfire stands were less extensively burned than older stands. Salvage logging and bark beetle outbreaks that followed the 1997 blowdown (within the blowdown as well as in adjacent forest that was not blown down) did not appear to affect fire extent or severity. Conclusions regarding the influence of the beetle outbreaks on fire extent and severity are limited, however, by spatial and temporal limitations associated with aerial detection surveys of beetle activity. Thus, fire extent in these forests is largely independent of prefire disturbance history and vegetation conditions. In contrast, fire severity, even during extreme fire weather and in conjunction with a multiyear drought, is influenced by prefire stand conditions, including the history of previous disturbances.  相似文献   

18.
Vander Wall SB 《Ecology》2008,89(7):1837-1849
Selective pressures that influence the form of seed dispersal syndromes are poorly understood. Morphology of plant propagules is often used to infer the means of dispersal, but morphology can be misleading. Several species of pines, for example, have winged seeds adapted for wind dispersal but owe much of their establishment to scatter-hoarding animals. Here the relative importance of wind vs. animal dispersal is assessed for four species of pines of the eastern Sierra Nevada that have winged seeds but differed in seed size: lodgepole pine (Pinus contorta murrayana, 8 mg); ponderosa pine (Pinus ponderosa ponderosa, 56 mg); Jeffrey pine (Pinus jeffreyi, 160 mg); and sugar pine (Pinus lambertiana, 231 mg). Pre-dispersal seed mortality eliminated much of the ponderosa pine seed crop (66%), but had much less effect on Jeffrey pine (32% of seeds destroyed), lodgepole pine (29%), and sugar pine (7%). When cones opened most filled seeds were dispersed by wind. Animals removed > 99% of wind-dispersed Jeffrey and sugar pine seeds from the ground within 60 days, but animals gathered only 93% of lodgepole pine seeds and 38% of ponderosa pine seeds during the same period. Animals gathered and scatter hoarded radioactively labeled ponderosa, Jeffrey, and sugar pine seeds, making a total of 2103 caches over three years of study. Only three lodgepole pine caches were found. Caches typically contained 1-4 seeds buried 5-20 mm deep, depths suitable for seedling emergence. Although Jeffrey and sugar pine seeds are initially wind dispersed, nearly all seedlings arise from animal caches. Lodgepole pine is almost exclusively wind dispersed, with animals acting as seed predators. Animals treated ponderosa pine in an intermediate fashion. Two-phased dispersal of large, winged pine seeds appears adaptive; initial wind dispersal helps to minimize pre-dispersal seed mortality whereas scatter hoarding by animals places seeds in sites with a higher probability of seedling establishment.  相似文献   

19.
Abstract: We studied local patterns of Brown-headed Cowbird ( Molothrus ater ) abundance, parasitism rates, and nest success of a common host, the Plumbeous Vireo ( Vireo plumbeus ), in relation to the distribution of livestock grazing in an undeveloped region of northeastern New Mexico, 1992–1997. We predicted that both cowbird abundance and parasitism rates of vireo nests would decrease with increasing distance from active livestock grazing, and that the nesting success of vireos would increase. We measured cowbird abundance and host density and located and monitored vireo nests in pinyon-juniper and mixed-conifer habitats that ranged from actively grazed to isolated from livestock grazing by up to 12 km. Cowbird abundance declined with distance from active livestock grazing and was not related to host density or habitat type. Brood parasitism levels of vireo nests ( n = 182) decreased from> 80% in actively grazed habitats to 33% in habitats that were 8–12 km from active grazing but did not vary by habitat type or distance to forest edge. Vireo nesting success was higher in mixed-conifer habitat than in pinyon-juniper but was unrelated to distance from active livestock grazing. Nest losses due to parasitism declined with distance from active livestock grazing. Our results suggest that cowbird abundance and parasitism rates of hosts may be distributed as a declining gradient based on distance from cowbird feeding sites and that isolation from feeding sites can reduce the effects of parasitism on host populations. These findings provide support for management techniques that propose to reduce local cowbird numbers and parasitism levels by manipulating the distribution of cowbird feeding sites. The presence of parasitized nests> 8 km from active livestock grazing suggests that, in some regions, management efforts may need to occur at larger scales than previously realized.  相似文献   

20.
Abstract:  The contemporary southwestern United States is characterized by fire-adapted ecosystems; large numbers of federally listed threatened and endangered species; a patchwork of federal, state, and private landownership; and a long history of livestock grazing as the predominant land use. I compared eight sites in southern Arizona and New Mexico to assess the interacting effects of these characteristics on conservation practices and outcomes. There was widespread interest and private-sector leadership in restoring fire to southwestern rangelands, and there is a shortage of predictive scientific knowledge about the effects of fire and livestock grazing on threatened and endangered species. It was easier to restore fire to lands that were either privately owned or not grazed, in part because of obstacles created by threatened and endangered species on grazed public lands. Collaborative management facilitated conservation practices and outcomes, and periodic removal of livestock may be necessary for conservation, but permanent livestock exclusion may be counterproductive because of interactions with land-use and landownership patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号