首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.

In this research work, the conventional single slope still (CSS) with egg shells of breed Gallus gallus domesticus cascara as sensible heat storage (SHS) material are studied experimentally to enhance the yield. In this experimental investigation, the proposed single slope still (PSS) with SHS material was made in comparison with the CSS to evaluate the productivity of fresh water under the same ambient conditions. Comparatively, this PSS has higher thermal conductivity than the CSS. The yield obtained from the PSS is 2.46 L/m2, while the yield from the CSS is 2.07 L/m2. The average rate at which the rise of output fresh water obtained from the PSS is 18% more than the fresh water output obtained from the CSS. The daily energy efficiency of the PSS is 26.07%, and for the CSS, it is only 22.25%. The daily exergy efficiency of the PSS is 2.36%, and for the CSS, it is only 1.67%. Since using the egg shell will employ as organic waste management and modification in this still is economical, less initial, and maintenance cost.

  相似文献   

2.
Deep percolation of nitrate can contribute to the deterioration of groundwater resources. Leaching of nitrate is a complex process affected by fertilizer and irrigation practices, efficiency of N use by the crop, and how the soil's water holding capacity and water transmission properties are affected by soil texture. Depleted (15NH4)2SO4 fertilizer at N rates of 0, 125, 250 and 375 kg ha−1 was applied annually for 3 years to continuous corn grown within three different water regimes. This time period and the labeled N permitted an evaluation of N use efficiency by the crop and NO3 leaching and carryover on a Weld silty clay loam, a fine-textured soil, typical of the “hardland” soils of the semi-arid Great Plains. Three water regimes, W1 ( 1.5 ET), W2 ( ET) and W3 ( 0.8 ET), were used. Beneath each plot within each water regime, Duke-Haise vacuum trough extractors were installed under undisturbed soil profiles at 1.22-m depth to measure weekly percolate and the NO3 concentration in the percolate. The corn was harvested in the fall in the dent stage to measure the total above-ground biomass N uptake. Soil profiles (1.8 m) were sampled annually in the fall after crop harvest to determine NO3---N in the soil or carryover.Great variability was encountered in measuring the amount of extractor water and its NO3 content under each water regime, which made estimates of N03 leaching losses unreliable. Also, the variability demonstrates formidable problems in quantifying percolation losses with vacuum trough extractors under undisturbed fine-textured soil profiles. With the highest N rate of 376 kg ha−1 yr−1 and within the water regime W1, where leaching was expected to be greatest, only 1% of the cumulative labeled N applied was found in extractor waters and most movement of the labeled N into extractors occurred the third year. The 125-kg-ha−1 yr−1 fertilizer N rate significantly increased the crop yield over the unfertilized plots without increasing residual NO3---N accumulation; whereas fertilizer N rates of > 125 kg ha−1 yr−1 did not appreciably increase plant yields over the 125-kg-ha−1-N rate, but did appreciably increase residual NO3.  相似文献   

3.
The effect of six glyphosate concentrations on growth rate and aflatoxin B1 (AFB1) production by Aspergillus section Flavi strains under different water activity (aW) on maize-based medium was investigated. In general, the lag phase decreased as glyphosate concentration increased and all the strains showed the same behavior at the different conditions tested. The glyphosate increased significantly the growth of all Aspergillus section Flavi strains in different percentages with respect to control depending on pesticide concentration. At 5.0 and 10 mM this fact was more evident; however significant differences between both concentrations were not observed in most strains. Aflatoxin B1 production did not show noticeable differences among different pesticide concentrations assayed at all aW in both strains. This study has shown that these Aspergillus flavus and A. parasiticus strains are able to grow effectively and produce aflatoxins in high nutrient status media over a range of glyphosate concentrations under different water activity conditions.  相似文献   

4.
Impact of initial and boundary conditions on preferential flow   总被引:4,自引:1,他引:3  
Preferential flow in soil is approached by a water-content wave, WCW, that proceeds downward from the ground surface. WCWs were obtained from sprinkler experiments with infiltration rates varying from 5 to 40 mm h− 1. TDR-probes and tensiometers measured volumetric water contents θ(z,t) at seven depths, and capillary heads, h(z,t) at six depths in a column of an undisturbed soil. The wave is characterized by the velocity of the wetting front, cW, the amplitude, wS, and the final water content, θ. We tested with uni-variate and bi-variate linear regressions the impacts of initial volumetric water contents, θini, and input rates, qS, on cW, wS and θ.The test showed that θini influenced θ and wS and qS effected cW. The expected proportionality of wS ≈ qs1/3 was weak and cW ≈ qs2/3 was strong.  相似文献   

5.
The present study provides an optimization of electrocoagulation process for the recovery of hydrogen and removal of nitrate from water. In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. Aluminum alloy of size 2 dm2 was used as anode and as cathode. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and effect of current density were studied. The results show that a significant amount of hydrogen can be generated by this process during the removal of nitrate from water. The energy yield calculated from the hydrogen generated is 3.3778 kWh/m3. The results also showed that the maximum removal efficiency of 95.9 % was achieved at a current density of 0.25 A/dm2, at a pH of 7.0. The adsorption process followed second-order kinetics model. The adsorption of NO 3 ? preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. Thermodynamic studies showed that adsorption was exothermic and spontaneous in nature. The energy yield of generated hydrogen was ~54 % of the electrical energy demand of the electrocoagulation process. With the reduction of the net energy demand, electrocoagulation may become a useful technology to treat water associated with power production. The aluminum hydroxide generated in the cell removes the nitrate present in the water and reduced it to a permissible level making the water drinkable.  相似文献   

6.
We investigated the respiratory uptake kinetics of polychlorinated biphenyls (PCBs), organohalogen pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and 2,2′,4,4′-tetrabrominated diphenyl ether (BDE #47) in a marine benthic fish, Pseudopleuronectes yokohamae. The respiratory uptake efficiencies (EW) of the chemicals, of which there have been no reports for the majority of persistent organic pollutants (POPs), were obtained by measuring the respiratory uptake rate constants (k1) and the oxygen consumption rates of fish. Fish were exposed to water in which these chemicals were dissolved at environmentally relevant concentrations for 28 d, followed by 168 d of depuration in clean seawater. The k1 and EW values for 99 compounds were obtained, and they ranged from 2000 to 42 000 L kg-lipid−1 d−1 and from 0.060 to 1.3, respectively. The EW values of the chemicals, except for PAHs, tended to increase with increasing values of the log octanol–water partition coefficients (KOW) of the chemicals up to a log KOW of 5. For log KOW in the range 3–5, the EW values in this study were much lower than those in a published study (about one-third). As a result of analysis by a two-phase resistance model, the resistance of transport rates to the lipid phase in this study was lower than was the case in the published study. These findings indicate that the EW predicted by the published study for log KOW in the range 3–5 may differ among fish species and water temperature, and further study is needed.  相似文献   

7.
Abstract

Chemical transport in soil is a major factor influencing soil and water contamination. Four soils and turfgrass thatch, representing a wide range of organic carbon OC content were studied to determine sorption Kd and Kf parameters for the insecticides chlorpyrifos and fonofos. The batch equilibrium method was used. The concentration of insecticide was measured in the solution as well as in the solid phase to determine the most accurate sorption data. Four soils and thatch were equilibrated for 24 h at 22 ± 1OC with aqueous insecticide solutions. Four concentrations of the insecticides, each <50% of their respective water solubilities, were selected for the experiments. After extraction with an organic solvent, the concentration of insecticides in the aqueous solution was determined by gas liquid chromatography using electron capture detection for chlorpyrifos, and nitrogen/phosphorus detection for fonofos. Data obtained were fitted to the log and simple linear form of the Freundlich equation. Mass balance Freundlich isotherm exponents n ranged between 0.82 and 0.93 for chlorpyrifos. 0.82 and 1.21 for fonofos, with r2 ≥ 0.97. Koc (percent of organic carbon %OC normalized Sorption coefficient) values were calculated by using experimentally developed Kd and Kf coefficients in relation to OC levels from 0.29 to 34.85%. Kd and Kf coefficients of both insecticides were positively correlated with OC (r2 ≥ 0.96). organic matter OM (r2 0.96), and cation exchange capacity CEC (r2 ≥ 0.90).  相似文献   

8.
Numerical sensitivity tests and four months of complete model runs have been conducted for the Routine Deposition Model (RDM). The influence of individual model inputs on dry deposition velocity as a function of land-use category (LUC) and pollutant (SO2, O3, SO2−4 and HNO3) were examined over a realistic range of values for solar radiation, stability and wind speed. Spatial and temporal variations in RDM deposition velocity (Vd) during June – September 1996 time period generated using meteorological input from a mesoscale model run at 35 km resolution over north-eastern North America were also examined. Comparison of RDM Vd values to a variety of measurements of dry deposition velocities of SO2, O3, SO2−4 and NHO3 that have been reported in the literature demonstrated that RDM produces realistic results. Over northeastern NA RDM monthly averaged dry deposition velocities for SO2 vary from 0.2 to 3.0 cm s−1 with the highest deposition velocities over water surfaces. For O3, the monthly averaged dry deposition velocities are from 0.05 to 1.0 cm s−1 with the lowest values over water surfaces and the highest over forested areas. For HNO3, the monthly averaged dry deposition velocities have the range of 0.5 to 6 cm s−1, with the highest values for forested areas. For SO2−4, they range from 0.05–1.5 cm s−1, with the lowest values over water and the highest over forest. The monthly averaged dry deposition velocities for SO2 and O3 are higher in the growing season compared to the fall, but this behaviour is not apparent for HNO3 and sulphate. In the daytime, the hourly averaged dry deposition velocities for SO2, O3, SO2−4 and HNO3 are higher than that in the nighttime over most of the vegetated area. The diurnal variation is most evident for surfaces with large values for leaf area index (LAI), such as forests. Based on the results presented in this paper, it is concluded that RDM Vd values can be combined with measured air concentrations over hourly, daily or weekly periods to determine dry deposition amounts and with wet deposition measurements to provide seasonal estimates of total deposition and estimates of the relative importance of dry deposition.  相似文献   

9.
10.
The fate of herbicides trifluralin, pendimethalin, alachlor and metolachlor in paddy field soils amended with plant materials was investigated. The plant materials were purple sesbania, vegetable soybean and rice straw. The investigation was performed at two temperatures (25 and 40°C) and two soil water moistures (60 and 90% water-holding capacity). The results showed linear and Freudlich equations described the adsorption of amide compound to soil. Adsorption coefficient (K d ) fit to linear equation were in general greater in plant material-amended soils than in non-amended soil, especially in soil amending with rice straw. Increasing temperature and soil water moisture content shortened the half-lives of compounds in various treated soils. The movement of compounds in the soil columns showed the maximum distribution of aniline type compound, trifluralin and pendimethalin, appeared at the upper top of 0 to 5 and 0 to 10 cm of soil column, respectively, and of anilide type, alachlor and metolachlor, were distributed at 0 to 25 cm of the soil column. The mobility of chemicals in the different treated soils was simulated by the behavior assessment model (BAM). There was no significant difference among different plant material incubated soils on dissipation and mobility of compounds in soils.  相似文献   

11.

With the aim of upgrading current food waste (FW) management strategy, a novel FW hydrothermal pretreatment and air-drying incineration system is proposed and optimized from an energy and exergy perspective. Parameters considered include the extracted steam quality, the final moisture content of dehydrated FW, and the reactor thermal efficiency. Results show that optimal working condition can be obtained when the temperature and pressure of extracted steam are 159 °C and 0.17 MPa, the final moisture content of dehydrated FW is 10%, and the reactor thermal efficiency is 90%. Under such circumstance, the optimal steam energy and exergy increments reach 194.92 and 324.50 kJ/kg-FW, respectively. The novel system is then applied under the local conditions of Hangzhou, China. Results show that approximately 2.7 or 11.6% (from energy or exergy analysis perspective) of electricity can be additionally generated from 1 ton of MSW if the proposed novel FW system is implemented. Besides, comparisons between energy and exergy analysis are also discussed.

  相似文献   

12.
Chen H  Chen S  Quan X  Zhao H  Zhang Y 《Chemosphere》2008,73(11):1832-1837
Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil–water distribution coefficients (Koil). The resulting oil-contaminated soil–water distribution coefficients (Kd) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (Coil) but sorption-reducing (competitive) effects at intermediate Coil (approximately 1 g kg−1). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in Kd at Coil above approximately 1 g kg−1 were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.  相似文献   

13.
To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H2 production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth’s surface and use water as the source of electrons to reduce protons. The H2 production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H2 for extended periods even in the presence of evolved O2. This review summarizes our efforts to improve the rate of photobiological H2 production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H2 also are discussed.  相似文献   

14.
Abstract

The hydrolysis of the insecticide tebufenozide was studied in the dark at 20 to 40°C in buffered (pH 4 to 10) distilled water, and at 20°C in unbuffered, sterilized and unsterilized stream water. Tebufenozide was very stable in acidic and neutral buffers at 20°C and the corresponding pseudo‐first‐order rate constants (kobsd) and half‐lives (T1/2) were 5.946 × 10‐4 and 13.10 × 10‐4 d‐1, and 1166 and 529 d, respectively. The hydrolytic degradation was dependent on pH and temperature. At pH 10 and at 20,30 and 40°C, the kobsd (10‐4 d‐1) and T1/2 (d) values were 34.22, 66.72 and 130.0; and 203, 104 and 53.3, respectively. The energy of activation (Ea) values for the hydrolysis of tebufenozide at pH 4, 7 and 10, calculated from the Arrhenius plots, were 83.50, 66.71 and 50.87 kJ/mol, respectively. Tebufenozide was stable in sterilized stream water in the dark (T1/2 = 734 d) but it degraded fairly rapidly in unsterilized stream water (T1/2 = 181 d). Sunlight photodegradation of the chemical was slower (T1/2 = 83.0 h) than the photolysis by ultraviolet radiations (T1/2 values at 254 and 365 nm were 9.92 and 27.6 h, respectively); nevertheless, it was still appreciable during the summer months at 46°31’ N latitude. The differences in degradation rates between the unsterilized and sterilized stream water and the degradation of the chemical in the sterile, distilled water in sunlight, suggests that microbial processes and photolysis are the two main degradative routes for tebufenozide in natural aquatic systems.  相似文献   

15.
Agricultural management affects the movement of atrazine in soil and leaching to groundwater. The objective of this study was to determine atrazine adsorption in a soil after 20 years of atrazine application under agronomic management practices differing in tillage practice (conventional and zero tillage), residue management (with and without residue retention) and crop rotation (wheat-maize rotation and maize monoculture). Atrazine sorption was determined using batch and column experiments. In the batch experiment, the highest distribution coefficient Kd (1.1 L kg?1) at 0–10 cm soil depth was observed under zero tillage, crop rotation and residue retention (conservation agriculture). The key factor in adsorption was soil organic matter content and type. This was confirmed in the column experiment, in which the highest Kd values were observed in treatments with residue retention, under either zero or conventional tillage (0.81 and 0.68 L kg?1, respectively). Under zero tillage, the fact that there was no soil movement helped to increase the Kd. The increased soil organic matter content with conservation agriculture may be more important than preferential flow due to higher pore connectivity in the same system. The soil's capacity to adsorb 2-hydroxyatrazine (HA), an important atrazine metabolite, was more important than its capacity to adsorb atrazine, and was similar under all four management practices (Kd ranged from 30 to 40 L kg?1). The HA adsorption was attributed to the type and amount of clay in the soil, which is unaffected by agronomic management. Soils under conservation agriculture had higher atrazine retention potential than soils under conventional tillage, the system that predominates in the study area.  相似文献   

16.

Solar air heater (SAH) is simple and the greatest effective approach to utilize and convert solar energy into thermal energy for heating utilizations. The employment of artificial roughness under side of the observer surface is the key technique for augmenting heat transfer with minimal friction factor penalty. Current paper summarized different kinds of artificial roughness used in SAH, which augments its performance. In this review article, 96 research papers are cited, which provide detailed information about the effect of different geometrical parameters on heat transfer and friction factor. This paper also brings the information about the optimum roughness parameters and heat transfer and friction factor correlation developed by different investigators in tabular form. Optimum roughness parameters and empirical correlations are used for comparative analysis of heat transfer, friction factor, and thermo-hydraulic performance parameter (THPP) of different roughness geometries. The best performing roughness geometry is reported on the basis of comparative analysis. Mathematical model is developed for predicting the thermal efficiency (ηth) of roughened SAH duct.

  相似文献   

17.
The soil/water partition coefficient (Kd) of hexachlorobenzene (HCB) ranged from 220 1/kg to 1800 1/kg for eight soils having a wide range of physico-chemical properties. Kd normalised to soil organic carbon (Koc) was found to be 28000 ± 4800 1/kg. Anionic surfactant dodecylsulphate (DS) present at concentrations above the critical micellar concentration (CMC) caused reductions in the apparent soil/water partition coefficient (Kd *) in the range of 3–26 times for most soils and up to 36–91 times for sandy soils. Below CMC, at environmentally relevant surfactant concentrations, Kd * was reduced by a factor of 1–13. For clay and calcareous soils significant adsorption/complexation/precipitation of DS occurred. At the lowest DS concentration this produced a two-fold increase in Kd *. At increasing DS concentrations this effect was shielded by the solubihzing effect from DS. Monomer (Kmn) and micellar (Kmc) surfactant/water partition coefficients for HCB were determined to be, 980 ± 190 1/kg and 21000 ± 1600 1/kg, respectively.  相似文献   

18.
对市政污泥与生活垃圾混烧进行了验证研究。结果表明,与生活垃圾单独焚烧相比,污泥与生活垃圾混烧后烟气中NOx、CO和HCl的浓度没有出现明显变化,而SO2浓度出现了下降(从82~93 mg/m3下降至41~70 mg/m3);Hg、Pb、Sn、Cr和Zn的浓度均表现为不同程度的上升,但仍然符合GB18485;二恶英从0.0087 ng TEQ/m3降至0.0047 ng TEQ/m3。掺烧半干污泥比例为10%、12%和15%时,吨物质的发电量分别为311.8 kWh/t、306.7 kWh/t和296.1 kWh/t。混烧污泥在一定程度上降低了系统的发电量,因此建议混烧污泥的比例不应大于15%。测算的污泥混烧成本约209元/t(80%含水率)。  相似文献   

19.
Sorption of acetamiprid ((E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-methylacetamidine), carbendazim (methyl benzimidazol-2-ylcarbamate), diuron (N-(3,4-dichlorophenyl)-N, N-dimethyl urea) and thiamethoxam (3-(2-chloro-thiazol-5-ylmethyl)-5-methyl-[1,3,5]oxadiazinan-4-ylidene-N-nitroamine) was evaluated in two Brazilian tropical soils, Oxisol and Entisol, from Primavera do Leste region, Mato Grosso State, Brazil. To describe the sorption process, batch experiments were carried out. Linear and Freundlich isotherm models were used to calculate the K d and K f coefficients from experimental data. The K d values were utilized to calculate the partition coefficient normalized to soil organic carbon (K oc ). For the pesticides acetamiprid, carbendazim, diuron and thiamenthoxan the K oc (mL g? 1) values ranged in both soils from 98 – 3235, 1024 – 2644, 145 – 2631 and 104 – 2877, respectively. From the studied pesticides, only carbendazim presented correlation (r2 = 0.82 and p < 0.01) with soil organic carbon (OC) content. Acetamiprid and thiamethoxam showed low sorption coefficients, representing a high risk of surface and ground water contamination.  相似文献   

20.
Abstract

This study was conducted to evaluate atrazine (2‐chloro‐4‐ethylamino‐6‐isopropyl‐1, 3, 5‐triazine) and alachlor (2‐chIoro‐N‐(methoxymethyl)acetamide) dissipation and movement to shallow aquifers across the Northern Sand Plains region of the United States. Sites were located at Minnesota on a Zimmerman fine sand, North Dakota on Hecla sandy loam, South Dakota on a Brandt silty clay loam, and Wisconsin on a Sparta sand. Herbicide concentrations were determined in soil samples taken to 90 cm four times during the growing season and water samples taken from the top one m of aquifer at least once every three months. Herbicides were detected to a depth of 30 cm in Sparta sand and 90 cm in all other soils. Some aquifer samples from each site contained atrazine with the highest concentration in the aquifer beneath the Sparta sand (1.28 μg L‐1). Alachlor was detected only once in the aquifer at the SD site. The time to 50% atrazine dissipation (DT50) in the top 15 cm of soil averaged about 21 d in Sparta and Zimmerman sands and more than 45 d for Brandt and Hecla soils. Atrazine DT50 was correlated positively with % clay and organic carbon (OC), and negatively with % fine sand. Alachlor DT50 ranged from 12 to 32 d for Zimmerman and Brandt soils, respectively, and was correlated negatively with % clay and OC and positively with % sand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号