首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
废物处理   2篇
环保管理   1篇
污染及防治   3篇
评价与监测   2篇
  2021年   1篇
  2019年   2篇
  2017年   2篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
A total of 176 (water and sediment) samples from 22 stations belonging to four different (urban, semi-urban, rural, and holy places) human habitations of Tamil Nadu beaches were collected and analyzed for physiochemical and microbial parameters during 2008–2009. Bacterial counts were two- to tenfold higher in sediments than in water due to strong bacterial aggregations by dynamic flocculation and rich organic content. The elevated bacterial communities during the monsoon explain rainfalls and several other wastes from inlands. Coliform counts drastically increased at holy and urban places due to pilgrimage and other ritual activities. Higher values of the pollution index (PI) ratio (>1) reveals, human fecal pollutions affect the water quality. The averaged PI ratio shows a substantial higher microbial contamination in holy places than in urban areas and the order of decreasing PI ratios observed were: holy places?>?urban areas?>?semi-urban areas?>?rural areas. Correlation and factor analysis proves microbial communities were not related to physicochemical parameters. Principal component analysis indicates 55.32 % of the total variance resulted from human/animal fecal matters and sewage contaminants whereas 19.95 % were related to organic contents and waste materials from the rivers. More than 80 % of the samples showed a higher fecal coliform and Streptococci by crossing the World Health Organization's permissible limits.  相似文献   
2.
This contribution reports a novel and cost efficient strategy for nickel ion removal from metal finishing effluents by electro-dissolution of scrap aluminium and iron sacrificial anodes. Electro-coagulation of effluent was carried out at 30 mA/cm2 current density for 60 min. The nickel ion concentration of electroplating effluent was analysed by Atomic Absorption Spectroscopy. SEM images of iron and aluminium scrap anodes were critically analysed. Parameters such as heavy metal removal, anode dissolution rate with respect to heavy metal removal, reaction kinetics and cost estimation have been elaborately studied. Electro-coagulation at 30 mA/cm2 for 60 min using iron and aluminium scrap anodes resulted in 95.9 and 94.1 % nickel ion reduction, respectively, with 0.0094 and 0.0053 g/ppm dissolution rates. The energy consumption for scrap aluminium and iron anodes was 0.0547 kWh/L. Loose internal bonding and spongy surface morphology of used metal scrap render high porosity and active surface area, enhancing reaction rate. Low cost and ready availability of waste scrap makes the process of electro-coagulation economically viable. Thus, the findings from this contribution point decisively at the superiority of waste metal scrap-based anodes for economic and environmentally sustainable heavy metal ion removal from metal finishing effluent.  相似文献   
3.

In this research work, the conventional single slope still (CSS) with egg shells of breed Gallus gallus domesticus cascara as sensible heat storage (SHS) material are studied experimentally to enhance the yield. In this experimental investigation, the proposed single slope still (PSS) with SHS material was made in comparison with the CSS to evaluate the productivity of fresh water under the same ambient conditions. Comparatively, this PSS has higher thermal conductivity than the CSS. The yield obtained from the PSS is 2.46 L/m2, while the yield from the CSS is 2.07 L/m2. The average rate at which the rise of output fresh water obtained from the PSS is 18% more than the fresh water output obtained from the CSS. The daily energy efficiency of the PSS is 26.07%, and for the CSS, it is only 22.25%. The daily exergy efficiency of the PSS is 2.36%, and for the CSS, it is only 1.67%. Since using the egg shell will employ as organic waste management and modification in this still is economical, less initial, and maintenance cost.

  相似文献   
4.

Over the past years, there were dramatic improvements in identifying and assessing various feedstocks for the production of biodiesel fuels. To promote a particular feedstock as a renewable source of energy, it is important to analyze their energy, economic, and engine performance characteristics. The current work attempts to evaluate the net energy and economic indices for both fossil diesel and coconut-blended diesel (B20) considering the diesel consumption by the Indian railways. Further, we present the experimental results of a multi-cylinder diesel engine operated with neat coconut biodiesel (B100) and fossil diesel at various load and speed conditions. The engine experiments reveal that the coconut biodiesel exhibits leaner combustion and shorter ignition delay than fossil diesel. Lower amount of carbon monoxide, hydrocarbon, and smoke emission is observed in the case of coconut biodiesel, with higher levels of nitric oxide (14%) and fuel consumption than diesel. The coefficient of variation in indicated mean effective pressure is within the range of better driveability zone for both the fuels at all test conditions. Overall the engine performance, emission and combustion results with neat coconut biodiesel are favorable with a penalty in NO emission at high load conditions. The techno-economical study highlights higher production cost per liter of B20 than the cost of fossil diesel. However, the net energy ratio (NER) for B20 is 1.021, favoring higher output than diesel and thus lowers the dependency on crude oil.

  相似文献   
5.
The levels of 17 organochlorine pesticides residues (OCPs) in surface water and sediments from Tamiraparani river basin, South India were investigated to evaluate their potential pollution and risk impacts. A total of 96 surface water and sediment samples at 12 sampling stations were collected along the river in four seasons during 2008–2009. The ΣOCP concentrations in surface water and sediments were in the range of 0.1 to 79.9 ng l−1 and 0.12 to 3,938.7 ng g−1 dry weight (dw), respectively. Among the OCPs, the levels of dichlorodiphenyltrichloroethanes (DDTs), aldrin, dieldrin, cis-chlordane, trans-chlordane, and mirex were dominant in the sediments. The dominant OCPs in water samples are heptachlor, o,p′-DDE, dieldrin, o,p′-DDD, and mirex, which show different source of contamination pattern among sampling seasons. The distribution pattern of DDTs, hexachlorocyclohexane, and other OCPs in the present study shows heterogenic nature of nonpoint source of pollution. Notable contamination of water and sediment sample that was observed in upstream (S2) 58 ng l−1 and downstream (S11) 1,693 ng g−1 dw explains agricultural and municipal outfalls, whereas frequent damming effect reduces the concentration level in the midstream. The overall spatial–temporal distribution pattern of ΣOCP residues are illustrated by GIS package.  相似文献   
6.
In this paper cellulose nanocrystals were prepared by treating microcrystalline cellulose with 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid. Cellulose nanocrystals, after separation from ionic liquid, were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field emission scanning electron microscopy (FESEM) Transmission Electron Microscope (TEM) and Thermogravimetric analysis. XRD results showed no changes in type of cellulose after the treatment with ionic liquid, however, high crystallinity index was observed in the ionic liquid treated sample. Cellulose nanocrystals, having length around 50–300 nm and diameter around 14–22 nm were observed in the ionic liquid treated sample under FESEM and TEM, and similar patterns of peaks as that of microcrystalline cellulose were observed for cellulose nanocrystals in the FTIR spectra. The thermal stability of the cellulose nanocrystals was measured low as compare to microcrystalline cellulose.  相似文献   
7.
In the recent decades, the energy demand for transport and industrial sector has increased considerably. Fossil fuels which were the major fuel source for decades are no more sustainable. Biodiesel is an efficient alternative compared to depleting fossil fuels. The prospect of biodiesel as the best alternative fuel is a reliable source compared to depleting fossil fuels. Hydrogen is also considered as an attractive alternative fuel producing low emission with improved engine performance. This paper investigates the performance and emission characteristics of a single cylinder compression ignition engine using hydrogen as an inducted fuel and biodiesel, aka Pongamia pinnata as injected fuel. The experiments are conducted for different quantities of hydrogen induction through the intake manifold in order to improve the performance of the engine. The performance parameters such as brake thermal efficiency, brake specific fuel consumption, exhaust temperature and emission quantities like HC, NOX, CO, CO2 of biodiesel fueled CI engine with variable mass flow rate of hydrogen are investigated. The performances of biodiesel combined with hydrogen at varying mass flow rates are also compared. The 10 LPM hydrogen induction with biodiesel provided 0.33% increase of brake thermal efficiency compared with diesel and increase of 3.24% to biodiesel at 80% loading conditions. The emission of HC decreased by 13 ppm, CO decreased by 0.02% by volume and CO2 decreased by 3.8% by volume for biodiesel with induction of hydrogen at 10 LPM to that of neat biodiesel for 80% load conditions.  相似文献   
8.
Environmental Science and Pollution Research - The use of P25 TiO2 NPs in consumer products, their release, and environmental accumulation will have harmful effects on the coastal ecosystems. The...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号