首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.

A pot experiment and a leaching experiment were conducted to investigate the effects of earthworms and pig manure on heavy metals (Cd, Pb, and Zn) immobility, in vitro bioaccessibility and leachability under simulated acid rain (SAR). Results showed manure significantly increased soil organic carbon (SOC), dissolved organic carbon (DOC), available phosphorus (AP), total N, total P and pH, and decreased CaCl2-extractable metals and total heavy metals in water and SAR leachate. The addition of earthworms significantly increased AP (from 0.38 to 1.7 mg kg?1), and a downward trend in CaCl2-extractable and total leaching loss of heavy metals were observed. The combined earthworm and manure treatment decreased CaCl2-extractable Zn, Cd, and Pb. For Na4P2O7-extractable metals, Cd and Pb were decreased with increasing manure application rate. Application of earthworm alone did not contribute to the remediation of heavy metal polluted soils. Considering the effects on heavy metal immobilization and cost, the application of 6% manure was an alternative approach for treating contaminated soils. These findings provide valuable information for risk management during immobilization of heavy metals in contaminated soils.

  相似文献   

2.
This study compared the heavy metal bioaccumulation capacity in the epiphytic moss Scorpiurum circinatum and the epiphytic lichen Pseudevernia furfuracea, exposed in bags for 3 months in the urban area of Acerra (S Italy). The content of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Ti, V, and Zn was measured by ICP-MS. The results showed that both species accumulated all the heavy metals assayed. The moss had the highest bioaccumulation capacity for all metals and showed a more constant and linear accumulation trend than the lichen. Intra-tissue heavy metal bioaccumulation was assessed by X-ray microanalysis applied to ESEM operated in high and low vacuum and ESEM modes.  相似文献   

3.
Xiang L  Chan LC  Wong JW 《Chemosphere》2000,41(1-2):283-287
The removal of heavy metals (Cr, Cu, Zn, Ni and Pb) from anaerobically digested sludge from the Yuen Long wastewater treatment plant, Hong Kong, has been studied in a batch system using isolated indigenous iron-oxidizing bacteria. The inoculation of indigenous iron-oxidizing bacteria and the addition of FeSO4 accelerated the solubilization of Cr, Cu, Zn, Ni and Pb from the sludge. pH of the sludge decreased with an increase in Fe2+ concentrations and reached a low pH of 2-2.5 for treatments receiving both bacterial inoculation and FeSO4. After 16 days of bioleaching, the following heavy metal removal efficiencies were obtained: Cr 55.3%, Cu 91.5%, Zn 83.3%, Ni 54.4%, and Pb 16.2%. In contrast, only 2.6% of Cr, 42.9% of Cu, 72.1% of Zn, 22.8% of Ni and 0.56% of Pb were extracted from the control without the bacterial inoculation and addition of FeSO4. The residual heavy metal content in the leached sludge was acceptable for unrestricted use for agriculture. The experimental results confirmed the effectiveness of using the isolated iron-oxidizing bacteria for the removal of heavy metals from sewage sludge.  相似文献   

4.

The natural abundance of Cr and Ni in serpentine soils is well-known, but the food safety of rice grown in these hazardous paddy soils is poorly understood. The study evaluated the bioaccumulation of chromium (Cr) and nickel (Ni) in rice (Oryza sativa) grown in serpentine-derived paddy soils in the Philippines. Surface soil (0–20 cm) samples were collected and characterized across three (i.e., Masinloc, Candelaria, and Sta. Cruz) paddy areas in Luzon Island, Philippines. At least 3 to 4 whole rice plants at mature stage were uprooted manually in each sampling point where the soil samples were collected. The total Cr and Ni concentrations in rice (i.e., roots, shoots, and grains) and soil, soil physicochemical properties, bioaccumulation factor (BAF), translocation factor (TF), and the hazard quotients (HQ) were determined. Results revealed that Cr and Ni in rice were accumulated mostly in the roots. Although paddy soils had elevated total Cr and Ni concentrations, the BAF and soil-to-root TF values for Cr and Ni were < 1. In terms of human health risks, results further revealed low risk for both male and female Filipino adults as HQ values for Cr and Ni were < 1. While it is safe to consume rice grown in the area in terms of Cr and Ni dietary intake, more studies are necessary to understand the dynamics and bioavailability of these heavy metals in other crops and drinking water from tube wells in these areas in order to provide a more holistic human health-based assessments and to ensure consumer safety in serpentine areas. In addition, a more reliable data on Cr and Ni speciation in serpentine soils and crops is critically important. Further studies are also needed to understand the contribution of bioavailable heavy metals in improving the soil health to achieve food safety.

  相似文献   

5.

The phosphorus chemical industry is an important source of heavy metals in farmland. Vegetables grown on contaminated soil potentially impose adverse effects on human health. In this study, the pollution status and health risks of heavy metals in vegetables around a phosphorus chemical plant in Kaiyang County, Guizhou Province, southwestern China, were assessed, and the low-accumulation vegetables were screened by bioaccumulation factor (BAF) and cluster analysis. Results showed the average concentrations of Hg, As, Cd, Pb, Cr, Mn, Co, and Zn in vegetables were 0.015, 0.728 0.382, 0.227, 0.850, 27.227, 0.525, and 6.438 mg/kg, respectively. The single-factor pollution index showed that Cd was moderately polluted, and Cr, Hg, As, and Pb were slightly polluted. The Nemerow pollution index showed that the overall heavy metal pollution was classified as moderately polluted. The accumulation of heavy metals in different vegetables varied greatly, and chard, crown daisy, chayote, pumpkin, eggplant, white radish, sweet potato, carrot, and potato were selected as the low-accumulator vegetables. The consumption of all vegetables except chayote poses both carcinogenic and noncarcinogenic risks; among them, the consumption of sweet potato leaves has the highest health risks. The local population needs to adjust plantation structure and change dietary habits, and government should strengthen the management of phosphorus chemical plant pollution.

  相似文献   

6.
Aerobic treatment of swine manure was coupled with anaerobic digestion and microalgal cultivation. A 14-day aerobic treatment reduced the total solid content of swine manure by >15%. Ammonia and carbon dioxide were stripped by the air supplied, and this off-gas was further used to aerate the culture of Chlorella vulgaris. The microalgal growth rates in Bristol medium and the wastewater with the off-gas increased from 0.08 to 0.22 g/L/d and from 0.15 to 0.24 g/L/d, respectively. Meanwhile, the aerobically treated swine manure showed a higher methane yield during anaerobic digestion. The experimental results were used to establish a demonstration unit consisting of a 100 L composter, a 200 L anaerobic digester, a 60 L tubular photobioreactor, and a 300 L micro-open raceway pond.  相似文献   

7.
中国商品有机肥重金属分析   总被引:7,自引:0,他引:7  
测定了来自10个地区不同生产原料的118个商品有机肥样品的重金属含量.结果表明:(1)商品有机肥样品中的Cd、Hg、Pb、Cr、As、Zn、Cu、Ni的平均值分别为0.600、0.120、7.34、84.30、9.45、202.91、91.06、11.01 mg/kg.(2)河南、湖北、上海的商品有机肥中8种重金属平均值均较高;内蒙古的商品有机肥中Cr平均值为20.32 mg/kg,广西的商品有机肥中Zn平均值为51.36mg/kg,远低于所有样品中Cr和Zn平均值.(3)以猪粪为主要生产原料的商品有机肥中重金属平均值最高.(4)Cr超过中国商品有机肥重金属限量标准、欧盟生态标志法的重金属限量标准、加拿大堆肥重金属限量标准(A级)和加拿大堆肥重金属限量标准(B级);As、Cd超过中国商品有机肥重金属限量标准、欧盟生态标志法的重金属限量标准和加拿大堆肥重金属限量标准(A级);Cu、Zn超过欧盟生态标志法的重金属限量标准和加拿大堆肥重金属限量标准(A级);Hg超过加拿大堆肥重金属限量标准(A级);Pb超过中国商品有机肥重金属限量标准;Ni均未超标.  相似文献   

8.
This study examined the toxicological interaction between glyphosate (or its formulation, Roundup) and several heavy metals to a freshwater cladoceran, Ceriodaphnia dubia. We demonstrated that all binary combinations of Roundup and metals (Cd, Cu, Cr, Ni, Pb, Se and Zn) exhibited "less than additive" mixture toxicity, with 48-h LC50 toxic unit > 1. Addition of glyphosate alone could significantly reduce the acute toxicity of Ag, Cd, Cr, Cu, Ni, Pb and Zn (but not Hg and Se). The ratio between glyphosate and metal ions was important in determining the mitigation of metal toxicity by glyphosate. A bioaccumulation study showed that in the presence of glyphosate the uptake of some metals (e.g. Ag) was halted but that of others (e.g. Hg) was increased significantly. Therefore, our study strongly suggests that glyphosate and its commercial formulations can control the toxicity as well as the bioavailability of heavy metals in aquatic ecosystems where both groups of chemicals can co-occur.  相似文献   

9.
电混凝处理电镀综合废水   总被引:4,自引:0,他引:4  
采用电混凝法处理酸性电镀综合废水,首先研究了不同电流密度对总氰化物、重金属和化学需氧量(COD)去除率的影响。实验结果表明,电混凝可有效去除酸性电镀综合废水中的氰化物与重金属。随着电流密度的增大,总氰化物与重金属的去除率逐渐提高。当电流密度为10mA/cm2时,废水中残留的总氰化物、Cu2+、Ni2+、Cr6+和Zn2+ 的浓度分别为23.0、25.0、4.5、0.2和0.2mg/L。为了进一步提高去除率,在电化学体系中添加H2O2,随着H2O2投量的增大,总氰化物、重金属、COD去除率不断提高。当H2O2投量为3mL/L时,处理过废水中残留总氰化物、Cu2+、Ni2+、Cr6+、Zn2+和COD的浓度分别为0.2、2.0、3.0、1.5、0.1和220mg/L。  相似文献   

10.
Goal, Scope and Background Andisols are widespread in Japan and have some special properties such as high anion exchange capacity, low bulk density, and high organic matter content, which might influence the accumulation or chemical fractionation of heavy metals. However, few such data exist in Japanese andisols. The primary objective of this study was to investigate the distribution and chemical fractions of Cu, Zn, Ni, and Cr in the soil profiles and subsequently to assess their potential environmental hazard. Materials and Methods Soil samples were taken from a field experiment conducted on Japanese andisols, which had received either swine compost or chemical fertilizers for 6 years. Concentrations of Cu, Zn, Ni, and Cr were determined for all of the obtained extract solutions by ICP-AES. Results and Discussion Considerably higher total concentrations of Cu and Zn were observed in the top 20 cm layer of the compost-amended soil, relative to the unfertilized soil, while chemical fertilizers had little effect. Application of the swine compost increased the concentrations of Cu and Zn, but not Ni and Cr, in all fractions in the top 20 cm layer. The greatest increase in the organically bound fraction (OM) Cu and dilute acid-exchangeable fraction (DAEXCH) Zn was observed. This suggests that Cu and Zn are potentially bioavailable and mobile in the andisol profiles after 6-year consecutive applications of the swine compost. On the other hand, distribution of Cu, Zn, Ni and Cr among various soil fractions was generally unaffected by chemical fertilizers. Conclusions We observed that 6-year consecutive applications of the swine compost led to an increase in total metals of Cu and Zn, as well as their all-chemical fractions, in the top 20 cm soil layers. Potential hazard of heavy metals, especially of Cu and Zn, as a result of the use of swine compost on andisols, must be taken into account. Recommendations and Outlook The long-term effect of the accumulation of heavy metals, particularly Cu and Zn, in various plant tissues and soils, as well as their potential risk to surface water via runoff and groundwater via leaching, needs to be carefully considered. Further investigations in the long-term experiments are therefore necessary. - Abbreviations. EXCH, exchangeable fraction of metals; DAEXCH, dilute acid-exchangeable fraction of metals; FeMnOX, iron and manganese-oxide-bound fraction; OM, organically-bound fraction; RESD, residual fraction. COMPOST, SRNF, RANF, and CONTROL stand for compost (from swine wastes), slow-release nitrogen fertilizer (coated urea), readily available nitrogen fertilizer (including NH4-N, P, and K fertilizers), and no fertilizer application, respectively.  相似文献   

11.
Biogas slurry is a product of anaerobic digestion of manure that has been widely used as a soil fertilizer. Although the use for soil fertilizer is a cost-effective solution, it has been found that repeated use of biogas slurry that contains high heavy metal contents can cause pollution to the soil-plant system and risk to human health. The objective of this study was to investigate effects of biogas slurry on the soil-plant system and the human health. We analyzed the heavy metal concentrations (including As, Pb, Cu, Zn, Cr and Cd) in 106 soil samples and 58 plant samples in a farmland amended with biogas slurry in Taihu basin, China. Based on the test results, we assessed the potential human health risk when biogas slurry containing heavy metals was used as a soil fertilizer. The test results indicated that the Cd and Pb concentrations in soils exceeded the contamination limits and Cd exhibited the highest soil-to-root migration potential. Among the 11 plants analyzed, Kalimeris indica had the highest heavy metal absorption capacity. The leafy vegetables showed higher uptake of heavy metals than non-leafy vegetables. The non-carcinogenic risks mainly resulted from As, Pb, Cd, Cu and Zn through plant ingestion exposure. The integrated carcinogenic risks were associated with Cr, As and Cd in which Cr showed the highest risk while Cd showed the lowest risk. Among all the heavy metals analyzed, As and Cd appeared to have a lifetime health threat, which thus should be attenuated during production of biogas slurry to mitigate the heavy metal contamination.  相似文献   

12.

When sewage sludge is incorrectly applied, it may adversely impact agro-system productivity. Thus, this study addresses the reaction of Cucumis sativus L. (cucumber) to different amendment rates (0, 10, 20, 30, 40 and 50 g kg?1) of sewage sludge in a greenhouse pot experiment, in which the plant growth, heavy metal uptake and biomass were evaluated. A randomized complete block design with six treatments and six replications was used as the experimental design. The soil electrical conductivity, organic matter and Cr, Fe, Zn and Ni concentrations increased, but the soil pH decreased in response to the sewage sludge applications. As approved by the Council of European Communities, all of the heavy metal concentrations in the sewage sludge were less than the permitted limit for applying sewage sludge to land. Generally, applications of sewage sludge of up to 40 g kg?1 resulted in a considerable increase in all of the morphometric parameters and biomass of cucumbers in contrast to plants grown on the control soil. Nevertheless, the cucumber shoot height; root length; number of leaves, internodes and fruits; leaf area; absolute growth rate and biomass decreased in response to 50 g kg?1 of sewage sludge. All of the heavy metal concentrations (except the Cu, Zn and Ni in the roots, Mn in the fruits and Pb in the stems) in different cucumber tissues increased with increasing sewage sludge application rates. However, all of the heavy metal concentrations (except the Cr and Fe in the roots, Fe in the leaves and Cu in the fruits) were within the normal range and did not reach phytotoxic levels. A characteristic of these cucumbers was that all of the heavy metals had a bioaccumulation factor <1.0. All of the heavy metals (except Cd, Cu and Zn) had translocation factors that were <1.0. As a result, the sewage sludge used in this study could be considered for use as a fertilizer in cucumber production systems in Saudi Arabia and can also serve as a substitute method of sewage sludge disposal.

The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers

  相似文献   

13.
Total contents and speciation of selected heavy metals, including Al, Fe, Co, Ni, Pb, Zn, Cu, Cr, were measured in sediment samples and mussels Mya arenaria and Astarte borealis collected in the Horsund Fjord off Spitsbergen (Norwegian Sea) and the Bay of Gdansk (Baltic Sea). The investigation aimed at revealing differences in the accumulation pattern of heavy metals in mussels inhabiting sediments characterized by varying metal bioavailability. The contents of metals adsorbed to sediments and associated with iron and manganese hydroxides, which were obtained by sequential extraction, were utilized as a measure of metal bioavailability. The contents of Cd, Pb, Zn, Cu and Cr in mussels collected off Spitsbergen were generally lower than those in mussels from the Baltic Sea. In sediments collected off Spitsbergen the bioavailable fraction represented a small proportion (0-3.7% adsorbed metals and 0-11% associated with metals hydroxides) of total heavy metal contents. In sediments from the Baltic Sea the percentages of metals adsorbed and bound to hydroxides were 1-46% and 1-13%, respectively. The differences in bioavailable metal contents measured in sediments were utilized to explain the different contents of metals in mussels collected in the corresponding sites.  相似文献   

14.
Vermicomposting of water hyacinth is a good alternative for the treatment of water hyacinth (Eichhornia crassipes) and subsequentially, beneficial for agriculture purposes. The bioavailability and leachability of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) were evaluated during vermicomposting of E. crassipes employing Eisenia fetida earthworm. Five different proportions (trials 1, 2, 3, 4, and 5) of cattle manure, water hyacinth, and sawdust were prepared for the vermicomposting process. Results show that very poor biomass growth of earthworms was observed in the highest proportion of water hyacinth (trial 1). The water soluble, diethylenetriaminepentaacetic acid (DTPA) extractable, and leachable heavy metals concentration (percentage of total heavy metals) were reduced significantly in all trials except trial 1. The total concentration of some metals was low but its water soluble and DTPA extractable fractions were similar or more than other metals which were present in higher concentration. This study revealed that the toxicity of metals depends on bioavailable fraction rather than total metal concentration. Bioavailable fraction of metals may be toxic for plants and soil microorganisms. The vermicomposting of water hyacinth by E. fetida was very effective for reduction of bioavailability and leachability of selected heavy metals. Leachability test confirmed that prepared vermicompost is not hazardous for soil, plants, and human health. The feasibility of earthworms to mitigate the metal toxicity and to enhance the nutrient profile in water hyacinth vermicompost might be useful in sustainable land renovation practices at low-input basis.  相似文献   

15.
To understand the temporal variations and bioaccumulation of heavy metals in the coastal marshes, the concentrations of heavy metals (Cr, Ni, Pb, and Cu) in the two Suaeda salsa marshes [middle S. salsa marsh (MM) and low S. salsa marsh (LM)] of the Yellow River estuary were determined from May to November in 2008 by in situ sampling and inductively coupled plasma mass spectrometry (ICP-MS) analysis. Results showed that heavy metal concentrations in S. salsa of MM and LM were generally in the order of Cu?>?Cr?>?Pb?>?Ni, while those in sediments fell in the order of Cr?>?Ni?>?Cu?>?Pb. Heavy metal concentrations of S. salsa in MM and LM were different, and significant differences were observed in stems (F?=?4.797, p?=?0.046) and litters (F?=?6.799, p?=?0.026) for Ni. Litter was the main stock of heavy metals, and the allocations of Cr, Ni, and Pb reached 31.25–51.31, 28.49–42.58, and 29.55–66.79 % (in MM) and 36.73–48.60, 41.70–57.87, and 33.30–60.64 % (in LM), respectively. The ratios of roots/leaves (R/L) and roots/stems (R/S) for Cr and Ni in MM were mostly greater than 1, while those ratios in LM were mostly less than 1, indicating that Cr and Ni in S. salsa at LM had greater mobility compared with those at MM. Moreover, the [accumulation factor, AF]plant of Cr, Ni, Cu, and Pb in LM, especially [AF]root and [AF]stem of Cr and [AF]litter of Ni, was also higher than that in MM. These indicated that S. salsa grown in LM was more suitable for potential biomonitor or phytoremediation of Cr, Ni, Cu, and Pb if intertidal sediments were seriously contaminated with an increase of pollutant loading (especially heavy metals) in the Yellow River estuary. The use of biomonitor (S. salsa) living and growing in LM could yield valuable information not only on the presence of anthropogenic stressors, but, more importantly, on the adverse influence the stressors are having on the environment.  相似文献   

16.
To evaluate the effects of manure application on continuous maize seed production, 10-year cattle manure on soil properties, heavy metal in soil and plant were evaluated and investigated in calcareous soil. Results showed that manure application increased soil organic matter, total and available nutrients, pH, and electrical conductivity (EC), and the most massive rate caused the highest increase. Manure application led to an increase in exchangeable fraction and an increase of availability of heavy metal. Residual fraction was dominant among all metals, followed by the fraction bound to Fe and Mn oxides. Manure application involved accumulation of heavy metal on corn, but the accumulation in the stem is higher than that in the seed. Manure application led to a high deficiency of total Zn and high accumulation of total Cd in the soil of corn seed production, which should be a risk for safety seed production in calcareous soil in Northwest China.  相似文献   

17.
Heavy metal distribution in medicinal plants is gaining importance not only as an alternative medicine, but also for possible concern due to effects of metal toxicity. The present study has been focused on emphasizing the heavy metal status and bioaccumulation factors of V, Mn, Fe, Co, Cu, Zn, Se (essential metals) and Cr, Ni, Cd, As and Pb (potentially toxic metals) in medicinal plants grown under two different environmental conditions e.g., near to Khetri copper mine and those in fertile soils of Haridwar, both in India, using Instrumental Neutron Activation Analysis (relative method) and Atomic Absorption Spectrometry. The copper levels in the medicinal plants from Khetri were found to be 3-4 folds higher (31.6–76.5 mg kg?1) than those from Haridwar samples (7.40–15.3 mg kg?1), which is correlated with very high copper levels (763 mg kg?1) in Khetri soil. Among various heavy metals, Cr (2.60–5.92 mg kg?1), Cd (1.47–2.97 mg kg?1) and Pb (3.97–6.63 mg kg?1) are also higher in concentration in the medicinal plants from Khetri. The essential metals like Mn (36.4–69.3 mg kg?1), Fe (192–601 mg kg?1), Zn (24.9–49.9 mg kg?1) and Se (0.13–0.91 mg kg?1) and potentially toxic metals like Ni (3.09–9.01 mg kg?1) and As (0.41–2.09 mg kg?1) did not show much variations in concentration in the medicinal plants from both Khetri and Haridwar. The medicinal plants from Khetri, e.g., Ocimum sanctum, Cassia fistula, Withania somnifera and Azadirachta Indica were found rich in Ca and Mg contents while Aloe barbadensis showed moderately high Ca and Mg. Higher levels of Ca-Mg were found to correlate with Zn (except Azadirachta Indica). The bioaccumulation factors (BAFS) of the heavy metals were estimated to understand the soil-to-plant transfer pattern of the heavy metals. Significantly lower BAF values of Cu and Cr were found in the medicinal plants from Khetri, indicating majority fraction of these metals are precipitated and were immobilized species unsuitable for plant uptake. Overall, Withania somnifera (Ashwagandha) showed very high metal bioaccumulation.  相似文献   

18.
Wong JW  Xiang L  Gu XY  Zhou LX 《Chemosphere》2004,55(1):101-107
The effect of using FeS2 as an energy source, on the bioleaching of heavy metals (Zn, Cr, Cu, Pb and Ni) and nutrients (nitrogen and phosphorus) from anaerobically digested sludge using isolated indigenous iron-oxidizing bacteria was investigated in this paper. Addition of FeS2 in the range of 0.5-4.0 g l(-1) accelerated the acidification of sludge and raised the oxidation-reduction potential of sludge medium with an inoculation of 15% (v/v) of active bacteria, thus resulting in an overall increase in metal dissolution efficiency. After 16 days of bioleaching at 28 degrees C and an initial pH of 3.0, up to 99% of Zn, 65% of Cr, 74% of Cu, 58% of Pb and 84% of Ni can be removed from the sludge. In contrast, only 94% of Zn, 12% of Cr, 21% of Cu, 32% of Pb and 38% of Ni were leached out in the control without inoculation of iron-oxidizing bacteria and the addition of FeS2. Less than 15% of nitrogen and 6% of phosphorous were lost after 16 days of bioleaching when using FeS2 as the energy source. Comparing to 39% and 45% loss respectively for these two nutrients when using FeSO4.7H2O as the energy source, FeS2 appears to be a more suitable energy source for preserving nutrients in sludge while removing heavy metals from sludge.  相似文献   

19.
A study was conducted to evaluate the changes in total calcium and sulphur and some heavy metal (Zn, Cu, and Pb) concentration of different organic wastes affected by liming and microorganism inoculation. Vermicomposting was an effective technology for disposal of organic substrates like municipal solid wastes (MSW), possessing comparatively higher concentration of heavy metals. The addition of lime in initial organic substrates significantly (P ≤ 0.05) increased total calcium and total sulphur content of vermicomposts. Inoculation of microorganisms significantly (P ≤ 0.05) reduced the heavy metal content of final products as compared to control. Fungal strains were comparatively more effective in detoxification of heavy metals than B. polymyxa.  相似文献   

20.
Mussels (Mytilus galloprovincialis), clams (Venerupis decussatus) and oysters (Crassostrea gigas) were sampled seasonally during 2004-2005, from different coastal environments of Morocco in order to measure their accumulated heavy metal concentrations. The concentrations of Hg and Pb were determined by AFS and ICP-MS methods, respectively, whilst the remaining metals (Cd, Cr, Cu, Mn, Zn and Ni) were quantified by AAS. The soft tissue concentrations of the mussels were on average 7.2 mg kg(-1) (Cd), 9.6 mg kg(-1) (Pb), 0.6 mg kg(-1) (Hg), 26.8 mg kg(-1) (Cu), 8.8 mg kg(-1) (Cr), 292 mg kg(-1) (Zn), 20.8 mg kg(-1) (Mn) and 32.8 mg kg(-1) (Ni). The highest tissue heavy metal concentrations were recorded in the south from the industrial area of Jorf Lasfar. The relationships between metal concentration and season in each species showed very similar annual profiles with a peak observed around spring-summer. Statistical analysis indicated that different species showed different bioaccumulation of metals depending on study site and season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号