首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photodegradation of atrazine and the photochemical formation of Fe(II) and H2O2 in aqueous solutions containing salicylic acid and Fe(III) were studied under simulated sunlight irradiation. Atrazine photolysis followed first-order reaction kinetics, and the rate constant (k) corresponding to the solution of Fe(III)-salicylic acid complex (Fe(III)-SA) was only 0.0153 h?1, roughly one eighth of the k observed in the Fe(III) alone solution (0.115 h?1). Compared with Fe(III) solution, the presence of salicylic acid significantly enhanced the formation of Fe(II) but greatly decreased H2O2 generation, and their subsequent product, hydroxyl radical (˙OH), was much less, accounting for the low rate of atrazine photodegradation in Fe(III)-SA solution. The interaction of Fe(III) with salicylic acid was analyzed using Fourier-transform infrared (FTIR) spectroscopy and UV-visible absorption, indicating that Fe(III)-salicylic acid complex could be formed by ligand exchange between the hydrogen ions in salicylic acid and Fe(III) ions.  相似文献   

2.
Subsurface geochemical behavior of As(V) with Fe(II) was studied under strict anoxic conditions. Abiotic reduction of As(V) (0.1 mM) to As(III) by aqueous Fe(II) and sorbed Fe(II) in pH range 5.0–7.0 and Fe(II)aq concentration (0.6–1.2 mM) was investigated along with the effect of As(V) on the oxidation of Fe(II) by dissolved oxygen (DO). Although the reduction was thermodynamically feasible for homogeneous chemical conditions, practically no As(V) reduction by aqueous Fe(II) was observed. Similarly, no sorbed As(V) reduction was observed under the heterogeneous experimental conditions by sorbed Fe(II) onto synthetic iron oxide (hematite, α-Fe2O3). Experimental results on Fe(II) oxidation by DO in the presence of 0.1 mM As(V) showed a significantly slower Fe(II) oxidation, which might be due to the formation of Fe(II)–As(V) complex in the aqueous phase. The results of this study demonstrate that As(V) is relatively stable in the presence of Fe(II) under subsurface environment and interfere the oxidation of Fe(II).  相似文献   

3.

Background

In this study, the photodegradation of three pharmaceuticals, namely Ibuprofen (IBP), Naproxen (NPX), and Cetirizine (CIZ) in aqueous media was investigated under UV irradiation. The photocatalyst used in this work consists of surface functionalized titanium dioxide (TiO2–NH2) nanoparticles grafted into Polyacrylonitrile (PAN)/multi-walled carbon nanotube composite nanofibers. Surface modification of the fabricated composite nanofibers was illustrated using XRD, FTIR, and SEM analyses.

Results

Sets of experiments were performed to study the effect of pharmaceuticals initial concentration (5–50 mg/L), solution pH (2–9), and irradiation time on the degradation efficiency. The results demonstrated that more than 99% degradation efficiency was obtained for IBP, CIZ, and NPX within 120, 40, and 25 min, respectively.

Conclusions

Comparatively, the photocatalytic degradation of pharmaceuticals using PAN-CNT/TiO2–NH2 composite nanofibers was much more efficient than with PAN/TiO2–NH2 composite nanofibers.
  相似文献   

4.
The photocatalytic degradation of hydrolyzed reactive violet 5 (RV5) using titanium dioxide (TiO2) was investigated in this study. The effects of various factors including the amount of photocatalyst, RV5 concentration, light intensity, and pH on photocatalytic degradation were evaluated. The photodegradation efficiency was 90% after 20 min of irradiation and reached nearly 100% after 80 min under the condition of pH 4 and temperature of 25°C. The decolorization rate typically followed first-order reaction, and increased markedly with increasing amount of photocatalyst, pH as well as light intensity. The total mineralization, based on total organic carbon (TOC) concentration was 53% after 20 min of UV light exposure and approached nearly 100% after 140 min. The final mineralization product was formylformamide. The photodegradation was faster than the mineralization, indicating that the intermediate products of decolorization were resistant to photodegradation. In this study, we found that toxicity of RV5 significantly decreased after decolorization. Our study suggests that the photocatalytic degradation treatment of RV5 with TiO2 in wastewater is a simple and fast method.  相似文献   

5.
Titanium dioxide (TiO2) is a promising sorbent for As removal. There are two main and physico-chemically distinct polymorphs of TiO2 in nature, namely anatase and rutile. Since the difference of arsenic removal by the two polymorphs of TiO2 is now well known, study on the arsenic removal efficiency and the underlying mechanism is of great significance in developing new remediation strategies for As-polluted waters. Here batch experiments were carried out in combination with instrumental analysis of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) to investigate the effects, influential factors and mechanisms of As removal from aqueous solution by two types of nano TiO2 crystals. The adsorption behavior of anatase and rutile for As(V) and As(III) are well described by Freundlich equations. Anatase had higher As removal efficiency and adsorption capacity than rutile. Solution pH had no influence on the As adsorption of anatase TiO2, whereas the As removal by rutile TiO2 was increased by 7?C18% with pH from 4 to 10. Presence of accompanying anions such as phosphate, silicate, nitrate and sulfate, decreased the As(V) and As(III) removal by both crystals, with phosphate being the most effective. However, removal of As by rutile TiO2 was greatly enhanced in the presence of divalent cations i.e. Ca2+ and Mg2+. Shading of light decreased the removal of As(V) and As(III) of anatase by 15.5% and 17.5%, respectively, while a slight increase of As removal was observed in the case of Rutile TiO2. FT-IR characterization of As(V) or As(III)-treated nano TiO2 crystals indicated that both Ti-O and As-O groups participated in As adsorption. Both FT-IR and XPS analysis demonstrated that As(III) was photooxidated into As(V) when adsorbed by anatase under the light condition. Thus, the effect of crystal types and light condition on As removal should be taken into consideration when nano TiO2 is applied for As removal from water.  相似文献   

6.
A polyvinylidene fluoride-based membrane bearing the diethylenetriaminepentaacetic acid chelating group was employed to recover Cu(II) from the Cu(II)-ethylenediaminetetraacetic acid complex aqueous solution. Effects of Ca(II), Fe(II), and Fe(III) on Cu(II) uptake were investigated by static batch adsorption tests and dynamic adsorption filtration. Isotherms, kinetics, and breakthrough curves of Cu(II) uptakes in the presence of the three cations at concentrations of 1 mmol L?1 were elucidated. The three cations showed a positive effect on the Cu(II) uptake; the stimulative roles were in the order of Fe(III) > Fe(II) > Ca(II). They did not alter the adsorption behavior of the membrane; adsorption isotherms and kinetics could be described by Langmuir and Lagergren second-order models, and Cu(II) adsorption was a spontaneous and exothermic process. The presence of Ca(II), Fe(II), and Fe(III) increased the sorption capacity of the membrane stack by 1.3, 1.9, and 3 times. Breakthrough time and the exhaustion time of membrane stacks were also extended.  相似文献   

7.
The results of a study of photocatalytic degradation of phenol using aqueous oxygenated TiO2 (anatase) suspensions in a batch Pyrex photoreactor are reported. The influence on the photodegradation rate of various parameters as pH, phenol and TiO2 content, oxygen partial pressure, anions present in the dispersions was investigated. A complete oxidation of phenol was observed. Intermediate compounds, catechol and quinone, were detected. It was observed that the photodegradation also proceeded with sunlight radiation. A mechanistic and kinetic model, which accounts for the results obtained, is given. Likely reasons for inactivity of the rutile modification for this reaction are also given.  相似文献   

8.
In order to provide basic data for practical application, photodegradation experiment of N-nitrosodimethylamine (NDMA) in aqueous solution was carried out with a low-pressure Hg lamp. Effects of the initial concentration of NDMA, solution pH, dissolved oxygen, and the presence of humic acid on NDMA photodegradation were investigated. NDMA at various initial concentrations selected in this study was almost completely photodegraded by UV irradiation within 20 min, except that at 1.07 mmol/L, NDMA could be photodegraded almost completely in the acidic and neutral solutions, while the removal efficiency decreased remarkably in the alkaline solution. Dissolved oxygen enhanced the NDMA photodegradation, and the presence of humic acid inhibited the degradation of NDMA. Depending on the initial concentration of NDMA, NDMA photodegradation by UV obeyed the pseudo-first-order kinetics. Dimethylamine, nitrite, and nitrate were detected as the photodegradation products of NDMA. 1O2 was found to be the reactive oxygen species present in the NDMA photodegradation process by UV, based on the inhibiting experiments using tert-butanol and sodium azide.  相似文献   

9.
A solution of atrazine in a TiO2 suspension, an endocrine disruptor in natural water, was tentatively treated by microwave-assisted photocatalytic technique. The effects of mannitol, oxygen, humic acid, and hydrogen dioxide on the photodegradation rate were explored. The results could be deduced as follows: the photocatalytic degradation of atrazine fits the pseudo-first-order kinetic well with k = 0.0328 s?1, and ·OH was identified as the dominant reactant. Photodegradation of atrazine was hindered in the presence of humic acid, and the retardation effect increased as the concentration of humic acid increased. H2O2 displayed a significant negative influence on atrazine photocatalysis efficiency. Based on intermediates identified with gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-mass spectrometry (LC-MS/MS) techniques, the main degradation routes of atrazine are proposed.  相似文献   

10.
Multi-walled carbon nanotubes (MWCNTs)/TiO2 composite photocatalysts with high photoactivity were prepared by sol-gel process and further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and UV-vis absorption spectra. Compared to pure TiO2, the combination of MWCNTs with titania could cause a significant absorption shift toward the visible region. The photocatalytic performances of the MWCNTs/TiO2 composite catalysts were evaluated for the decomposition of Reactive light yellow K-6G (K-6G) and Mordant black 7 (MB 7) azo dyes solution under solar light irradiation. The results showed that the addition of MWCNTs enhanced the adsorption and photocatalytic activity of TiO2 for the degradation of azo dyes K-6G and MB 7. The effect of MWCNTs content, catalyst dosage, pH, and initial dye concentration were examined as operational parameters. The kinetics of photocatalytic degradation of two dyes was found to follow a pseudo-first-order rate law. The photocatalyst was used for seven cycles with photocatalytic degradation efficiency still higher than 98%. A plausible mechanism is also proposed and discussed on the basis of experimental results.  相似文献   

11.
In the present study arsenic contaminated simulated water and groundwater was treated by the combination of biological oxidation of tri-valent arsenite [As (III)] to penta-valent arsenate [As (V)] in presence of Acidothiobacillus ferrooxidans bacteria and its removal by adsorptive filtration in a bioreactor system. This method includes the immobilisation of A.ferrooxidans on Granulated Activated Carbon (GAC) capable of oxidising ferrous [Fe (II)] to ferric [Fe (III)]. The Fe (III) significantly converts the As (III) to As (V) and ultimately removed greater than 95% by the bed of GAC, limestone, and sand. The significant influence of Fe (II) concentration (0.1–1.5?gL?1), flowrate (0.06–0.18?Lh?1), and initial As (III) concentration (100–1000?µgL?1) on the arsenic removal efficiency was investigated. The simulated water sample containing the different concentration of As (III) and other ions was used in the study. The removal of other co-existing ions present in contaminated water was also investigated in column study. The concentration of arsenic was found to be <10?µgL?1 which is below Maximum Contaminant Level (MCL) as per WHO in treated water. The results confirmed that the present system including adsorptive-filtration was successfully used for the treatment of contaminated water containing As (III) ions.  相似文献   

12.
In the present paper, a polymer inclusion membrane (PIM) containing polyvinyl chloride (PVC), and bis-(2-ethylhexyl) phosphate (D2EHPA) which was used as extracting agent was used for the recovery of In(III) ions in hydrochloric acid medium. The effects of carrier concentration, feed phase pH, strip phase HCl concentration, temperature on the transport, and the membrane’s stability and thickness were examined. And the conditions for the selective separation of In(III) and Cu(II) were optimized. The results showed that the transport of In(III) across PIM was consistent with the first order kinetics equation, and also it was controlled by both the diffusion of the metal complex in the membrane and the chemical reaction at the interface of the boundary layers. The transport flux (J 0) was inversely proportional to the membrane thickness, however, the transport stability improved as the membrane thickness increased. The transport flux of In(III) and Cu(II) was decreased by excessive acidity of feed phase and high concentration of Cl. The selectivity separation coefficient of In(III)/Cu(II) was up to 34.33 when the original concentration of both In(III) and Cu(II) was 80 mg?L–1 as well as the pH of the feed phase and the concentration of Cl in the adjusting context were0.6 and 0.5 mol?L–1, respectively.Within the range of pH = 1–3, the separation selectivity of In(III)/Cu(II) reached the peak in the case when the Cl concentration was 0.7 mol?L–1.
  相似文献   

13.

Biochar derived from food waste was modified with Fe to enhance its adsorption capacity for As(III), which is the most toxic form of As. The synthesis of Fe-impregnated food waste biochar (Fe-FWB) was optimized using response surface methodology (RSM), and the pyrolysis time (1.0, 2.5, and 4.0 h), temperature (300, 450, and 600 °C), and Fe concentration (0.1, 0.3, and 0.5 M) were set as independent variables. The pyrolysis temperature and Fe concentration significantly influenced the As(III) removal, but the effect of pyrolysis time was insignificant. The optimum conditions for the synthesis of Fe-FWB were 1 h and 300 °C with a 0.42-M Fe concentration. Both physical and chemical properties of the optimized Fe-FWB were studied. They were also used for kinetic, equilibrium, thermodynamic, pH, and competing anion studies. Kinetic adsorption experiments demonstrated that the pseudo-second-order model had a superior fit for As(III) adsorption than the pseudo-first-order model. The maximum adsorption capacity derived from the Langmuir model was 119.5 mg/g, which surpassed that of other adsorbents published in the literature. Maximum As(III) adsorption occurred at an elevated pH in the range from 3 to 11 owing to the presence of As(III) as H2AsO3? above a pH of 9.2. A slight reduction in As(III) adsorption was observed in the existence of bicarbonate, hydrogen phosphate, nitrate, and sulfate even at a high concentration of 10 mM. This study demonstrates that aqueous solutions can be treated using Fe-FWB, which is an affordable and readily available resource for As(III) removal.

  相似文献   

14.
ZnS-loaded TiO2 (ZnS–TiO2) was synthesized by a sol–gel method. The catalyst was characterized by using different techniques (XRD, HR-SEM, EDS, DRS, PL, XPS, and BET methods). The photocatalytic activity of ZnS–TiO2 was investigated for the degradation of Sunset Yellow FCF (SY) dye in an aqueous solution using ultraviolet light. ZnS–TiO2 is found to be more efficient than prepared TiO2, TiO2–P25, TiO2 (Merck), and ZnS at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration, and initial pH on photo mineralization of SY have been analyzed. The mineralization of SY has been confirmed by chemical oxygen demand measurements. The catalyst is found to be reusable.  相似文献   

15.
The TiO2/SiO2 composite was prepared by means of the SiO2-particle-entrapment method. The FTIR data showed the presence of Si–O–Ti stretching vibration band at 970 cm−1 in the TiO2/SiO2 composite, suggesting a reaction between TiO2 and silica on the TiO2 particle surface during the silicagel formation around the TiO2 particles. The photocatalytic efficiency of TiO2 immobilized in silicagel was compared with that of the conventional TiO2 Degussa P25 catalyst. For this purpose, the degradation of indigo carmin (IC) dye was used as model molecule in the tests. The effect of operational parameters such as catalyst loading and dye concentration on the photocatalytic degradation of the model dye was investigated. The rate of degradation increased with increasing catalyst loading, and when the concentration of the dye decreases.  相似文献   

16.
• ORP value from −278.71 to −379.80 mV showed indiscernible effects on methane yield. • Fe(II) and Fe(III) promoted more degradation of proteins and amino acids than Fe0. • The highest enrichment of Geobacter was noted in samples added with Fe0. • Cysteine was accumulated during iron enhanced anaerobic sludge digestion. • Both iron content and valence were important for methane production. This study compared effects of three different valent iron (Fe0, Fe(II) and Fe(III)) on enhanced anaerobic sludge digestion, focusing on the changes of oxidation reduction potential (ORP), dissolved organic nitrogen (DON), and microbial community. Under the same iron dose in range of 0−160 mg/L after an incubation period of 30 days (d), the maximum methane production rate of sludge samples dosed with respective Fe0, Fe(II) and Fe(III) at the same concentration showed indiscernible differences at each iron dose, regardless of the different iron valence. Moreover, their behavior in changes of ORP, DON and microbial community was different: (1) the addition of Fe0 made the ORP of sludge more negative, and the addition of Fe(II) and Fe(III) made the ORP of sludge less negative. However, whether being more or less negative, the changes of ORP may show unobservable effects on methane yield when it ranged from −278.71 to −379.80 mV; (2) the degradation of dissolved organic nitrogen, particularly proteins, was less efficient in sludge samples dosed with Fe0 compared with those dosed with Fe(II) and Fe(III) after an incubation period of 30 d. At the same dose of 160 mg/L iron, more cysteine was noted in sludge samples dosed with Fe(II) (30.74 mg/L) and Fe(III) (27.92 mg/L) compared with that dosed with Fe0 (21.75 mg/L); (3) Fe0 particularly promoted the enrichment of Geobacter, and it was 6 times higher than those in sludge samples dosed with Fe(II) and Fe(III) at the same dose of 160 mg/L iron.  相似文献   

17.
Poly(vinylidene fluoride) (PVDF)/titanium dioxide (TiO2) hybrid membranes were prepared using nano-TiO2 as the modifier, and characterized by Transmission Electron Microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results demonstrated that nano-sized TiO2 particles dispersed homogeneously within the PVDF matrix, contributing to more hydroxyls and smoother surfaces. Moreover, permeate flux, retention factor, porosity, contact angle and anti-fouling tests were carried out to evaluate the effect of TiO2 concentration on the performance of PVDF membranes. Among all the prepared membranes, PVDF/TiO2 membrane containing 10 vol.% TiO2 exhibited the best hydrophilicity with an average pure water flux up to 237 L·m?2·h?1, higher than that of unmodified PVDF membranes (155 L·m?2·h?1). Besides, the bovine serum albumin rejection of the hybrid membrane was improved evidently from 52.3% to 70.6%, and the contact angle was significantly lowered from 83° to 60°, while the average pore size and its distribution became smaller and narrower.  相似文献   

18.
The photodegradation of Acid blue 74 in aqueous solution employing a H2O2/ultraviolet system in a photochemical reactor was investigated. The kinetics of decolorization were studied by application of a kinetic model. The results show that the reaction of decolorization followed pseudo-first order kinetics. We demonstrate that there is an optimum H2O2 concentration, at which the rate of the decolorization reaction is maximum. Irradiation at 253.7 nm of the dye solution in the presence of H2O2 results in complete discoloration after ten minutes of treatment.  相似文献   

19.
大同盆地是典型的高砷地下水分布区。利用从地方性砷中毒严重病区山阴县采集的高砷地下水样品,用稀释培养法实验研究了外加砷源对地下水中微生物数量的影响;同时基于生物学可培养法和16S rDNA序列比对法,选取代表性高砷水样,研究了耐砷菌的种群特征。结果表明,外加砷源对地下水中微生物数量影响显著,高浓度砷会抑制大部分微生物生长,使微生物数量减少;低浓度砷对微生物生长具有一定促进作用。通过多次分离、纯化从3个不同砷含量地下水样中分离到多株砷抗性菌,经鉴定属于主要为BacillusPseudomonasPaenibacillusAeromonasEnterobacter5个属。从RDP(Ribosomal Database Project)分析显示3个水样可培养微生物组成不同,都有生存能力强能够耐低浓度NaAsO2的Bacillales,优势耐砷菌是γ-proteobacteria,其中Enterbacter具有耐高浓度NaAsO2的能力。  相似文献   

20.
砷浓度、形态及碳酸氢盐对蜈蚣草吸收砷的影响   总被引:1,自引:0,他引:1  
为了探讨超富集植物蜈蚣草在处理高砷地下水方面的可行性,研究了水培条件下砷的浓度、形态和碳酸氢盐(HCO-3)对超富集植物蜈蚣草吸收砷的影响。实验中使用了浓度为0.1~100mg·L-1的As(III)和As(V)溶液。HCO-3处理中,HCO-3浓度范围为0.5~20mmol·L-1,As(III)或As(V)的浓度为5mg·L-1。结果表明,在水培条件下,蜈蚣草具有明显的耐高砷特征。当介质砷含量高达100mg·L-1时,砷的去除率可达到80%,且对As(III)的吸收效率高于As(V)。植物体内砷形态研究表明,蜈蚣草体内2种形态砷的含量与外源砷形态有一定的关系,As(V)处理条件下,植物体中的As(V)比例较As(III)处理高。高浓度的HCO-3(20mmol·L-1)处理对蜈蚣草地上部分生物量没有明显影响,但是抑制了地下部分的生长,并且对砷的吸收表现出明显的抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号