首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Heating, ventilating, and air-conditioning (HVAC) systems in commercial buildings consume the largest amount of energy. Recent surge in energy cost necessitates constant re-evaluation of HVAC system for most of the buildings. The objective of this study is to present the strategic approach on energy saving analysis of the HVAC system and chiller sizing optimization for a library building. Energy modeling code (eQUEST) for buildings simulation has been applied to verify and predict the long-term energy consumption of HVAC systems. To improve the accuracy of simulation results, the actual performance curves of the chillers and pumps were the inputs of curve fitting data from on-site field measurements data. Energy consumption data acquisition from the building energy management system (BEMS) for one year has been conducted comprehensively to calibrate energy modeling and to quantify energy saving results. The results revealed good agreement between energy modeling and BEMS data with the error of less than 10%. Besides, energy savings through the chillers’ sizing based on cooling load profile could be achieved satisfactorily by utilizing energy modeling by using the actual chiller performance curve. The energy saving for HVAC system can be obtained satisfactorily at the saving of 110,362 kWh per year. It is expected that the study will stimulate a more robust investigation of energy-efficient and cost-effective HVAC system specific for library buildings.  相似文献   

2.
The energy consumption of buildings is influenced by the climates tremendously. Taiwan is an island covered with high mountains. Crossed by the tropic of cancer, the basic climates zones include tropical and subtropical climates. In this research, the degree day and degree hour methods were used to analyze 37 weather stations data in mid and high elevation regions of Taiwan collected over 10 years. The WRF model were used to predict summer cooling hours using 26, 28, 30°C as the base temperatures. The research showed that Taiwan has complicated climate zones due to the variations of the elevation. The low air-conditioning load areas in the mid and high elevation regions will be the most suitable areas to design low energy consumption buildings in Taiwan.  相似文献   

3.
Seaplanes have become an important tool along with rapidly developing technology in modern transportation for many countries related to sea. Considering the environmental evaluation for these aircraft, decreasing fossil fuels consumption and energy efficiency are important points for sustainability. For this purpose, in this study, first, the energy and exergy analyses based on the real data of a turboprop engine used in seaplane taken as the reference were performed. Then, new indicators developed for the sustainable propulsion index were examined and evaluated separately. The analyses were made for an altitude of 9000 ft and three different dead state temperatures of ?33°C, ?3°C, and 27°C. According to the analyses, while the average energy efficiencies were found to be 34.7%, 37.8%, and 40.7%, the average exergy efficiencies were found to be 19.24%, 21.25%, and 23.20%, respectively. In addition, the improvement potential due to irreversibility and entropy production for each case was also calculated and the results of the sustainable emission index were found to be very low. At the end of the study, the results were evaluated and some suggestions for the effective use of energy in the seaplanes were made.  相似文献   

4.
Most chemical companies consume a lot of steam, water and electrical resources in the production process. Given recent record fuel costs, utility networks must be optimized to reduce the overall cost of production. Environmental concerns must also be considered when preparing modifications to satisfy the requirements for industrial utilities, since wastes discharged from the utility networks are restricted by environmental regulations. Construction of Eco-Industrial Parks (EIPs) has drawn attention as a promising approach for retrofitting existing industrial parks to improve energy efficiency. The optimization of the utility network within an industrial complex is one of the most important undertakings to minimize energy consumption and waste loads in the EIP.In this work, a systematic approach to optimize the utility network of an industrial complex is presented. An important issue in the optimization of a utility network is the desire of the companies to achieve high profits while complying with the environmental regulations. Therefore, the proposed optimization was performed with consideration of both economic and environmental factors.The proposed approach consists of unit modeling using thermodynamic principles, mass and energy balances, development of a multi-period Mixed Integer Linear Programming (MILP) model for the integration of utility systems in an industrial complex, and an economic/environmental analysis of the results. This approach is applied to the Yeosu Industrial Complex, considering seasonal utility demands. The results show that both the total utility cost and waste load are reduced by optimizing the utility network of an industrial complex.  相似文献   

5.
In this study, exergy, exergoeconomic, exergoenvironmental analyses, and exergoeconomic environmental optimization are applied to a four-cylinder, spark ignition, naturally aspirated and air-cooled piston-prop aircraft engine in the cruise phase of flight for the first time to the best of the authors` knowledge. Here, three piston-prop aircraft engine parameters (altitude, air–fuel ratio (AF), and rated power setting (PS)) are selected for optimization purposes. All exergy, exergoeconomic, and exergoenvironmental values are calculated first. These values are then optimized to find the best results of all analyses. The best altitude, AF ratio, and PS values are finally found while the maximum exergy efficiency, the minimum product specific environmental impact, and the minimum average unit fuel exergy cost are obtained. The best results of optimization indicated that the maximum exergy efficiency varied between 19.54% and 19.80%, the minimum unit fuel exergy cost ranged from 126.30 $/GJ to 127.23 $/GJ, and the minimum specific environmental impact of production was in the range of 8.70–9.59 mPts/MJ. Based on the results obtained, for ensuring the optimum conditions, the low AF ratios and the low-altitude flight at high rated power settings have to be selected.  相似文献   

6.
The human population is rising and the availability of terrestrial land and its resources are finite and, perhaps, not sufficient to deliver enough food, energy, materials and space. Thus, it is important to (further) explore and exploit the marine environment which covers no less than 71% of the earth's surface. The marine environment is very complex but can roughty be divided into two systems: natural (e.g. wild fishing) and human-made (e.g. artificial islands). In this study, characterization factors (CF) for natural and human-made marine systems were calculated in order to be able to assess the environmental impact of occupying marine surfaces, which was not possible so far in life cycle assessment. When accounting for natural resources while occupying one of these systems, it is important to consider the primary resources that are actually deprived from nature, which differs between the natural and human-made marine systems.In natural systems, the extracted biomass was accounted for through its exergy content, which is the maximum quantity of work that the system can execute in its environment. Reference flows for marine fish, seaweeds, crustaceans and mollusks were proposed and their correlated CF was calculated. For human-made systems, the deprived land resource is, in fact, the occupied area of the marine surface. Based on potential marine net primary production data (NPP), exergy based spatial and temporal CFs for ocean areal occupation were calculated. This approach was included in the Cumulative Exergy Extraction from the Natural Environment (CEENE) method which makes it the first life cycle impact assessment (LCIA) method capable of analyzing the environmental impact (and more specific the resource footprint) of marine areal occupation. Furthermore, the methodology was applied to two case studies: comparing resource consumption of on- and offshore oil production, and fish and soybean meal production for fish feed applications.  相似文献   

7.
The rapid decrease of energy resources has accelerated studies on energy efficiency. Energy efficiency refers to the effective use of energy, in other words, completing a specific task to the required standard by using less energy. Exergy is an effective instrument to indicate the effective and sustainable use of energy in systems and processes. Transportation is an important part of human life. The studies on energy saving and the effective use of energy in different areas around the world have also increased for transportation systems and vehicles. With the more effective use of fuel, there will be potential benefits for the environment as well as a reduction in operating costs. This study includes energy and exergy analyses as well as a sustainability assessment by using C8H16 as a fuel at different engine powers (150–600 SHP (shaft horse power)), for the piston-prop helicopter engine. The maximum exergetic sustainability index was found at the power that provided the maximum energy and exergy efficiency. As a result of this index, the lowest waste exergy ratio, the lowest exergy destruction factor, and the lowest environmental impact factor were obtained. The highest exergy destruction and the highest exergy loss value were obtained at maximum power (600 SHP).  相似文献   

8.
In this article, energy and exergy analyses are conducted for two integrated systems which can be used in HVAC applications. These two systems are analyzed for the cases of single generation, cogeneration and trigeneration, and their performances are evaluated through energy and exergy efficiencies. The parametric studies are performed to investigate the effects of using cogeneration and extended to trigeneration on the system performance. To perform the comparisons between the systems for multiple options, the same amounts of outputs (in terms of electricity, heating, cooling) are produced for all systems. The energy analyses of systems 1 and 2 show a great benefit for moving from single generation to trigeneration, with the trigeneration efficiencies of 83.5% and 87.2%, respectively, and single generation efficiencies of 47% for both systems. However, the exergy analyses show that trigeneration may not always become more efficient than single generation, particularly for system 1, due to the fact that the trigeneration exergy efficiency is 38.7% and the corresponding single generation efficiency is 44.3%. For system 2, the trigeneration exergy efficiency is 52.7% while the single generation efficiency becomes 44.3%. Depending on the type of cogeneration or cogeneration design, the system can be more efficient.  相似文献   

9.
ABSTRACT

Human-induced climate change through the over liberation of greenhouse gases, resulting in devastating consequences to the environment, is a concern of considerable global significance which has fuelled the diversification to alternative renewable energy sources. The unpredictable nature of renewable resources is an impediment to developing renewable projects. More reliable, effective, and economically feasible renewable energy systems can be established by consolidating various renewable energy sources such as wind and solar into a hybrid system using batteries or back-up units like conventional energy generators or grids. The precise design of these systems is a critical step toward their effective deployment. An optimal sizing strategy was developed based on a heuristic particle swarm optimization (PSO) technique to determine the optimum number and configuration of PV panels, wind turbines, and battery units by minimizing the total system life-cycle cost while maximizing the reliability of the hybrid renewable energy system (HRES) in matching the electricity supply and demand. In addition, by constraining the amount of conventional electricity purchased from the grid, environmental concerns were also considered in the presented method. Various systems with different reliabilities and potential of reducing consumer’s CO2 emissions were designed and the behavior of the proposed method was comprehensively investigated. An HRES may reduce the annualized cost of energy and carbon footprint significantly.  相似文献   

10.
In this paper, we have proposed a thermal cycle with the integration of chemical-looping combustion and solar thermal energy with the temperature of about 500-600°C. Chemical-looping combustion may be carried out in two successive reactions between a reduction of hydrocarbon fuel with metal oxides and a reduced metal with oxygen in the air. This loop of chemical reactions is substituted for conventional combustion of fuel. Methane as a fuel and nickel oxides as an oxygen carrier were employed in this cycle. Collected high-temperature solar thermal energy is provided for the endothermic reduction reaction. The feature of the proposed cycle is investigated through Energy-Utilization Diagram methodology. As a result, at the turbine inlet temperature of 1200°C, the exergy efficiency of the proposed cycle would be expected to be about 4 percentage points higher than that of a conventional gas turbine combined cycle. Compared to the previous study of chemical-looping combustion energy systems, the proposed cycle with the integration of green energy and traditional hydrocarbon fuels will offer the possibility of both greenhouse gas mitigation, with green energy, and a new approach to the efficient use of solar energy.  相似文献   

11.
This study examines parametric approaches to the calculation of refrigerant-based CO2 emissions in different cooling areas. Both the exergy analyses of refrigerants, used in domestic, commercial, transportation and industrial applications, and the environmental performances regarding exergetic irreversibility are investigated separately. Then, CO2 emissions caused by systems are examined via two different parameters, I°) Environmental Impact Factor and ??°) Integrated Impact Factor (CIF). The study is based on a vapor compression cooling cycle model, commonly preferred by cooling applications, and the analyses have been made for 1 kW cooling capacity in relation to evaporator temperatures of the systems. In all cooling application, R134A gas stands out among the others in terms of coefficient of performance and exergy efficiency. Moreover, both emission analyses show that it has the lowest emission value. The paper concludes with an evaluation of the reasons for the refrigerant choice, the design and the selection of such a system, and why exergetic and environmental parameters should be preferred.  相似文献   

12.
ABSTRACT

Remote communities in the North of Ontario survive in isolation as their proximity to the southern industrial sector of the province limits their accessibility to the major grid. The lack of grid connection has led to antiquated methods of power generation which pollute the environment and deplete the planet of its natural resources. Aside from the primary means of electricity generation being by diesel generators, generation infrastructure is deteriorating due to age and the stagnation of the power supply has led to communities facing load restrictions. These challenges may be resolved by introducing clean energy alternatives and providing a fuel blend option. The primary energy sources investigated in this research are solar, wind, and hydrogen. To assess the viability of these energy production methods in Northern communities, an exergy analysis is employed as it utilizes both the first and second law of thermodynamics to determine systems’ efficiency and performance in the surroundings. Local weather patterns were used to determine the viability of using wind turbines, solar panels and/or hydrogen fuel cells in a remote community. Through analysis of the resources available at the community, it was determined that the hydrogen fuel cell was best suited to provide clean energy to the community. Wind resulted in low efficiency in the range of 2–3% while solar efficiencies resulted in ranges of 18 – 19%, as the seasonal variations between the three years is not very great. Due to the higher operating efficiencies observed of the PV panels it would also be an attractive alternative to diesel generators however, the lack of consistent operation above 30% efficiency throughout the year, resulted in hydrogen fuel cells being a better alternative.  相似文献   

13.
The reported research seeks to answer several questions regarding energy conservation within urbanizing areas. As a practical matter, to what extent can dependence upon exhaustible resources be reduced? Can these reductions be achieved without severely impairing social well-being and environmental quality? And, what seem to be the prevailing institutional constraints limiting energy conservation within urbanizing areas? The study area was the proposed “downtown” of The Woodlands, a new town north of Houston, Texas. Two plans were developed for this area. In one, no particular attempt was made to conserve energy (conventional plan), while in the other, energy conservation was a primary consideration (conservation plan). For both plans, estimates were made of energy consumption within buildings, in the transportation sector, and in the actual production of building materials themselves (embodied energy). In addition, economic and environmental analyses were performed, including investigation of other resource issues such as water supply, solid waste disposal, stormwater management, and atmospheric emissions. Alternative on-site power systems were also investigated. Within the bounds of economic feasibility and development practicality, it was found that application of energy-conserving methods could yield annual energy savings of as much as 23%, and reduce dependence on prime fuels by 30%. Adverse economic effects on consumers were found to be minimal and environmental quality could be sustained. The major institutional constraints appeared to be those associated with traditional property ownership and with the use of common property resources. The resistance to change of everyday practices in land development and building industries also seemed to constrain potential applications.  相似文献   

14.
ABSTRACT

Large-scale greenhouse solar dryers have been used for drying various products and this type of dryer is usually equipped with LPG burner as auxiliary heater, which creates more operating cost. To overcome this problem, phase change material (PCM) thermal storage was proposed to substitute for the LPG burner. In this work, the performance of a large-scale greenhouse solar dryer integrated with a PCM as a latent heat storage for drying of chili was investigated. Experimental studies were conducted to compare the performance of this dryer with that of another large-scale greenhouse solar dryer without the PCM thermal storage and open sun drying. Chili with an initial moisture content of 74.7% (w.b.) was dried to a final moisture content of 10.0% (w.b.) in 2.5 days, 3.5 days, and 11 days using the solar dryer integrated with the PCM thermal storage, the solar dryer without the PCM thermal storage and the open sun drying, respectively. The performance of the solar dryer integrated with the PCM thermal storage was also evaluated using exergy analysis. The exergy efficiency of the drying room of the solar dryer integrated with the PCM thermal storage and the solar dryer without the PCM thermal storage for drying of chili was found to be 13.1% and 11.4%, respectively and the thermal storage helps to dry chili during adverse weather conditions. The results of exergy analysis implied that the exergy losses from the dryer with the PCM should be reduced.  相似文献   

15.
This paper describes the application of exergy and extended exergy analyses to large complex systems. The system to be analysed is assumed to be at steady state, and the input and output fluxes of matter and energy are expressed in units of exergy. Human societies of any reasonable extent are indeed Very Large Complex Systems and can be represented as interconnected networks of N elementary "components", their Subsystems; the detail of the disaggregation depends on the type and quality of the available data. The structural connectivity of the "model" of the System must correctly describe the interactions of each mass or energy flow with each sector of the society: since it is seldom the case that all of these fluxes are available in detail, some preliminary mass- and energy balances must be completed and constitute in fact a part of the initial assumptions. Exergy accounting converts the total amount of resources inflow into their equivalent exergetic form with the help of a table of "raw exergy data" available in the literature. The quantification of each flow on a homogeneous exergetic basis paves the way to the evaluation of the efficiency of each energy and mass transfer between the N sectors and makes it possible to quantify the irreversible losses and identify their sources. The advantage of the EEA, compared to a classical exergy accounting, is the inclusion in the system balance of the exergetic equivalents of three additional "Production Factors": human Labour, Capital and Environmental Remediation costs. EEA has an additional advantage: it allows for the calculation of the efficiency of the domestic sector (impossible to evaluate with any other energy- or exergy-based method) by considering the working hours as its product. As implied in the title, an application of the method was made to a model of the province of Siena (on a year 2000 database): the results show that the sectors of this Province have values of efficiency close to the Italian average, with the exception of the commercial and energy conversion sectors that are more efficient, in agreement with the rather peculiar socio-economic situation of the Province. The largest inefficiency is found to be in the transportation sector, which has an efficiency lower then 30% in EEA and lower than 10% in classical exergy accounting.  相似文献   

16.
A common characteristic of carbon capture and storage systems is the important energy consumption associated with the CO2 capture process. This important drawback can be solved with the analysis, synthesis and optimization of this type of energy systems. The second law of thermodynamics has proved to be an essential tool in power and chemical plant optimization. The exergy analysis method has demonstrated good results in the synthesis of complex systems and efficiency improvements in energy applications.In this paper, a synthesis of pinch analysis and second law analysis is used to show the optimum window design of the integration of a calcium looping cycle into an existing coal power plant for CO2 capture. Results demonstrate that exergy analysis is an essential aid to reduce energy penalties in CO2 capture energy systems. In particular, for the case of carbonation/calcination CO2 systems integrated in existing coal power plants, almost 40% of the additional exergy consumption is available in the form of heat. Accordingly, the efficiency of the capture cycle depends strongly on the possibility of using this heat to produce extra steam (live, reheat and medium pressure) to generate extra power at steam turbine. The synthesis of pinch and second law analysis could reduce the additional coal consumption due to CO2 capture 2.5 times, from 217 to 85 MW.  相似文献   

17.
Construction and building industry is in dire need for developing sustainability assessment frameworks that can evaluate and integrate related environmental and socioeconomic impacts. This paper discusses an analytic hierarchy process (AHP) based sustainability evaluation framework for mid-rise residential buildings based on a broad range of environmental and socioeconomic criteria. A cradle to grave life cycle assessment technique was applied to identify, classify, and assess triple bottom line (TBL) sustainability performance indicators of buildings. Then, the AHP was applied to aggregate the impacts into a unified sustainability index. The framework is demonstrated through a case study to investigate two six storey structural systems (i.e. concrete and wood) in Vancouver, Canada. The results of this paper show that the environmental performance of a building in Canada, even in regions with milder weather such as Vancouver, is highly dependent on service life energy, rather than structural materials.  相似文献   

18.
In this article, a comparative study is presented for the transcritical cycle with expansion valve (TCEV) and transcritical cycle with vortex tube (TCVT) mainly based on the second law of thermodynamics. Natural refrigerant nitrous oxide (N2O) is used in both the cycles for analysis. The evaporator and gas cooler temperatures are varied from ?55°C to 5°C and 35°C to 60°C, respectively. The effects of various operating and design parameters on the optimum heat rejection pressure, coefficient of performance (COP), exergy loss (irreversibility), and the exergetic efficiency are studied. Exergy analysis of each component in TCEV and TCVT is performed to identify the amount and locations of irreversibility. It is observed that the use of the vortex tube in place of the expansion valve reduces the total exergy losses and increases the exergetic efficiency as well as COP. The exergetic efficiency and COP of the TCVT are on average 10–12% higher compared to TCEV for the considered operating conditions. The computed values of the exergetic efficiency for TCVT using refrigerant N2O are the highest at an evaporator temperature of ?55°C, and the corresponding values of exergetic efficiency and exergy losses varies between 25.35% and 15.67% and between 74.65% and 84.33%, respectively. However, COP at the same evaporator temperature of ?55°C varies between 0.83 and 0.51. Furthermore, the optimum heat rejection pressure in TCVT is lower compared to that in TCEV. The results offer significant help for the optimum design and operating conditions of TCVT with refrigerant N2O.  相似文献   

19.
20.
The current sanitation technology in developed countries is based on diluting human excreta with large volumes of centrally provided potable water. This approach is a poor use of water resources and is also inefficient, expensive, and energy intensive. The goal of this study was to compare the standard sanitation technology (Scenario 1) with alternative technologies that require less or no potable water use in toilets. The alternative technologies considered were high efficiency toilets flushed with potable water (Scenario 2), standard toilets flushed with rainwater (Scenario 3), high efficiency toilets flushed with rainwater (Scenario 4), and composting toilets (Scenario 5). Cost, energy, and carbon implications of these five design scenarios were studied using two existing University of Toledo buildings. The results showed that alternative systems modeled in Scenarios 2, 4, and 5 were viable options both from an investment and an environmental performance perspective. High efficiency fixtures that use potable water (Scenario 2) is often the most preferred method in high efficiency buildings due to reduced water use and associated reductions in annual water and wastewater costs. However, the cost, energy, and CO(2)EE analyses all showed that Scenarios 4 and 5 were preferable over Scenario 2. Cost payback periods of scenarios 2, 4 and 5 were less than 10 years; in the future, increase in water and wastewater services would further decrease the payback periods. The centralized water and wastewater services have high carbon footprints; therefore if carbon footprint reduction is a primary goal of a building complex, alternative technologies that require less potable water and generate less wastewater can largely reduce the carbon footprint. High efficiency fixtures flushed with rainwater (Scenario 4) and composting toilets (Scenario 5) required considerably less energy than direct energy demands of buildings. However, the annual carbon footprint of these technologies was comparable to the annual carbon footprint from space heating. Similarly, the carbon savings that could be achieved from Scenario 4 or 5 were comparable to a recycling program that can be implemented in buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号