首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, characteristics of ethanol production from a single particle composing of pretreated rice straw, cellulase, and β-glucosidase were invesitgated by simultaneous saccharification and fermentation (SSF). The experiment experienced a start-up stage for S. cerevisiae biofilm formation, which was operated at an initial pH value of 4.8 for yeast solution, culture temperature of 30°C, flow rate of 0.8 mL/min for yeast solution, and stably operating stage for ethanol production at a culture temperature of 30°C. Investigations found that the maximal ethanol yield of 9.7 mg/g and the biofilm thickness of 0.37 mm were obtained at 30 mL/min of carrier gas flow rate. Also, the optimal interval time of water supplement was 4 h for SSF. The results show that the appropriate gas flow rate and the interval time of water supplement can keep the high activities of biofilm and enzymes during SSF and result in a high ethanol yield.  相似文献   

2.
The olive mill waste (OMW) generated from olive oil extraction process constitutes a major environmental concern owing to its high organic and mineral matters and acidic pH. Anaerobic digestion (AD) is a main treatment for reducing the organic matter and toxic substances contained in OMW and generating at the same time, energy in the form of biogas. AD of OMW that contains lignocellulose is limited by the rate of hydrolysis due to their recalcitrant structure. This study is devoted to the effect of Fenton process (FP) pretreatment on olive mill wastewater (OMSW) /olive mill solid waste (OMWW) co-digestion to improve their digestibility and in this way the biogas production. The FP pretreatment was performed in batch mode at 25°C, various H2O2/[Fe2+] ratios (100–1200), catalyst concentration ([Fe2+]) ranging from 0.25 to 2 mM, reaction time varying from 30 to150 min, and different pH (3–11). The best performance was obtained with H2O2/[Fe2+] = 1000, [Fe2+] = 1.5 mM, 120 min, and pH 3. Biochemical methane potential (BMP) tests conducted in batch wise digester and at mesophilic conditions (37 °C) showed that cumulative biogas and methane production were higher without FP treatment, and correspond to 699 and 416 mL/g VS, respectively. However, pre-treated OMSW results into an increase of 24% of methane yield. After 30 days of AD, the methane yield was 63%, 54%, and 48%, respectively, for OMSW treated without iron precipitation, with iron precipitation and untreated OMSW sample.  相似文献   

3.
Generation of biodiesel from microalgae has been extensively investigated; however, its quality is often not suitable for use as fuel. Our investigation involved the evaluation of biodiesel quality using a native isolate Chlorella sorokiniana MIC-G5, as specified by American Society for Testing and Materials (ASTM), after transesterification of lipids with methanol, in the presence of sodium methoxide. Total quantity of lipids extracted from dry biomass, of approximately 410–450 mg g?1 was characterized using FTIR and 1H NMR. After transesterification, the total saturated and unsaturated fatty acid methyl esters (FAMEs) were 43% and 57%, respectively. The major FAMEs present in the biodiesel were methyl palmitate (C16:0), methyl oleate (C18:1), and methyl linoleate (C18:2), and the 1H NMR spectra matched with criteria prescribed for high-quality biodiesel. The biodiesel exhibited a density of 0.873 g cm–3, viscosity of 3.418 mm2 s?1, cetane number (CN) of 57.85, high heating value (HHV) of 40.25, iodine value of 71.823 g I2 100 g?1, degree of unsaturation (DU) of 58%, and a cold filter plugging point (CFPP) of –5.22°C. Critical fuel parameters, including oxidation stability, CN, HHV, iodine value, flash point, cloud point, pour point, density, and viscosity were in accordance with the methyl ester composition and structural configuration. Hence, C. sorokiniana can be a promising feedstock for biodiesel generation.  相似文献   

4.
Banana pseudostem biomass, traditionally incinerated and wasted, has been conserved and recycled by solid state fermentation (SSF) into plant growth stimulating soil conditioner (SC). This SC alone or combined with biofertilizers showed reduced mortality (10 and 12%) of planted suckers, enhanced chlorophyll contents (593 and 661 μg g−1), gave biomass (35.0 and 36.6 kg) at par and improved yield (54.2 and 55.0 MT ha−1), with that of the control (23%, 312 μg g−1, 36.3 kg and 49.4 MT ha−1, respectively). This has afforded (i) saving of chemical fertilizers by 50%, (ii) reduction in quantum (40%) and frequency (15%) of irrigation and (iii) reduction in cost of electricity and labor without sacrificing quality and quantity of banana. Thus, a voluminous agro-waste is converted into an eco-friendly agro-input for sustainable productivity.  相似文献   

5.
The storage of fresh agricultural products is not easy because of its high moisture. Dehydration is an efficient preservation method. The investigation of drying modeling and transfer characteristics are important for selecting operating conditions and equipment design. The drying behavior of Lactuca sativa slices, with the thickness of 2 mm, was investigated at 60.0–80.0°C and 0.60–1.04 m sec?1 velocity in a convective hot air drier. The mass transfer during the drying process was described using six thin drying models. The convective heat transfer coefficient α and mass transfer coefficient kH were finally calculated. The results showed that the drying process could be separated into three stages including accelerating rate, constant rate, and falling rate period, which was influenced by hot air temperature and velocity, and the Modi?ed Page model agreed well with the experimental data. When the operating temperature was increased from 60.0°C to 80.0°C, α was found increased from 88.07 to 107.93 W·m?2·K?1, and kH increased from 46.32 × 10–3 to 68.04 × 10–3 kg·m?2·sec?1·ΔH?1. With the increase of air velocity from 0.60 to 1.04 m·sec?1, α was increased from 78.85 to 101.35 W·m?2·K?1, and kH was enhanced from 51.78 × 10–3 to 65.85 × 10–3 kg·m?2·sec?1·ΔH?1.  相似文献   

6.
To establish energetically and environmentally viable paddy rice-based bioethanol production systems in northern Japan, it is important to implement appropriately selected agronomic practice options during the rice cultivation step. In this context, effects of rice variety (conventional vs. high-yielding) and rice straw management (return to vs. removal from the paddy field) on energy inputs from fuels and consumption of materials, greenhouse gas emissions (fuel and material consumption-derived CO(2) emissions as well as paddy soil CH(4) and N(2)O emissions) and ethanol yields were assessed. The estimated ethanol yield from the high-yielding rice variety, "Kita-aoba" was 2.94 kL ha(-1), a 32% increase from the conventional rice variety, "Kirara 397". Under conventional rice production in northern Japan (conventional rice variety and straw returned to the paddy), raising seedlings, mechanical field operations, transportation of harvested unhulled brown rice and consumption of materials (seeds, fertilizers, biocides and agricultural machinery) amounted to 28.5 GJ ha(-1) in energy inputs. The total energy input was increased by 14% by using the high-yielding variety and straw removal, owing to increased requirements for fuels in harvesting and transporting harvested rice as well as in collecting, loading and transporting rice straw. In terms of energy efficiency, the variation among rice variety and straw management scenarios regarding rice varieties and rice straw management was small (28.5-32.6 GJ ha(-1) or 10.1-14.0 MJ L(-1)). Meanwhile, CO(2)-equivalent greenhouse gas emissions varied considerably from scenario to scenario, as straw management had significant impacts on CH(4) emissions from paddy soils. When rice straw was incorporated into the soil, total CO(2)-equivalent greenhouse gas emissions for "Kirara 397" and "Kita-aoba" were 25.5 and 28.2 Mg CO(2) ha(-1), respectively; however, these emissions were reduced notably for the two varieties when rice straw was removed from the paddy fields in an effort to mitigate CH(4) emissions. Thus, rice straw removal avers itself a key practice with respect to lessening the impacts of greenhouse gas emissions in paddy rice-based ethanol production systems in northern Japan. More crucially, the rice straw removed is available for ethanol production and generation of heat energy with a biomass boiler, all elements required for biomass-to-ethanol transformation steps including saccharification, fermentation and distillation. This indicates opportunities for further improvement in energy efficiency and reductions in greenhouse gas emissions under whole rice plant-based bioethanol production systems.  相似文献   

7.
Liquid hot water (LHW), an environmental-friendly physico-chemical treatment, was applied to pretreat the sugarcane bagasse (SCB). Tween80, a non-ionic surfactant, was used to enhance the enzymatic hydrolysis of the pretreated SCB. It found that 0.125 mL Tween80 /g dry matter could make the maximum increase (33.2%) of the glycan conversion of the LHW-pretreated SCB. A self-designed laboratory facility with a plate-and-frame impeller was applied to conduct batch hydrolysis, fed-batch hydrolysis, and the process of high-temperature (50°C) fed-batch hydrolysis following low-temperature (30°C) simultaneous saccharification and fermentation (SSF) which was adopted to overcome the incompatible optimum temperature of saccharification and fermentation in the SSF process. After hydrolyzing LHW-pretreated SCB for 120 h with commercial cellulase, the total sugar concentration and glycan conversion obtained from fed-batch hydrolysis were 91.6 g/L and 68.3%, respectively, which were 9.7 g/L and 7.3% higher than those obtained from batch hydrolysis. With Saccharomyces cerevisiae Y2034 fermenting under the non-sterile condition, the ethanol production and theoretical yield obtained from the process of SSF after fed-batch hydrolysis were 55.4 g/L and 88.3% for 72h, respectively, which were 15.5 g/L and 24.7% higher than those from separate fed-batch hydrolysis and fermentation. The result of this work was superior to the reported results obtained from the LHW-pretreated SCB.  相似文献   

8.
In the present work, a novel cellulose-based porous heterogeneous solid acid catalyst encapsulation of ferriferous oxide (Fe3O4) and sulfonated graphene (GO-SO3H) into cellulose to form composite porous microspheres catalyst (GO-SO3H/CM@Fe3O4) was synthesized and evaluated for biodiesel production from Pistacia chinensis seed oil. The SEM, EDS and FTIR analysis revealed that the catalyst GO-SO3H/CM@Fe3O4 owned stronger active sites and GO-SO3H dispersed well in porous surface and inside of cellulose support. Under the optimum conditions, microwave-assisted transesterification process was carried out with the best catalyst amount, i.e. 5 wt% GO-SO3H/CM@Fe3O4 (weight ratio of GO-SO3H/cellulose), and conversion yield reached 94%. The prepared catalyst could be easily separated from reaction solution by extra magnetic field and reclaimed at least five runs.  相似文献   

9.
As the second largest corn producer in this world, China has abundant corn straw resources. The study assessed the energy balance and global warming potential of corn straw-based bioethanol production and utilization in China from a life cycle perspective. The results revealed that bioethanol used as gasoline and diesel blend fuel could reduce global warming potential by 10%–97% and 4%–96%, respectively, as compared to gasoline and diesel for transport. The total global warming potential, net global warming potential, net energy, and Net Energy Ratio per MJ ethanol generated from corn straw-based bioethanol system are estimated to be 0.20 kg CO2-eq, 0.012 kg CO2-eq, 0.60 MJ, and 1.87, respectively. By using sensitivity analysis, we found that the collected coefficient and compressing density of straw have a more obvious influence on energy balance; transportation distance has a more obvious influence on global warming potential emission factor. The by-products may be utilized as fertilizer, animal feed, cement replacement, or high-value lignin chemicals, which make a contribution to offsetting 0.28 MJ per MJ ethanol of energy consumption.  相似文献   

10.
A pot-culture experiment was conducted in open-field conditions with highly cultivated locally transplanted (T) aman rice (Oryza sativa L.) named BR-22 in arsenic (As)-amended soil (0, 1.0, 5.0, 10.0, 20.0, 30.0, 40.0 and 50.0 mg kg−1 As) of Bangladesh to see the effect of As on the growth, yield and metal uptake of rice. Arsenic was applied to soil in the form of sodium arsenate (Na2HAsO4). Arsenic affected the plant height, tiller and panicle numbers, grain and straw yield of T-aman rice significantly (P ≤ 0.05). The grain As uptake of T-aman rice was found to increase with increase of As in soil and a high grain As uptake was observed in the treatments of 30–50 mg kg−1 As-containing soil. These levels exceed the food hygiene concentration limit of 1.0 mg kg−1 As. However, the straw As uptake varied significantly (P ≤ 0.05) from a low concentration of As in soil (5 mg kg−1) and the highest uptake was noticed in 20 mg kg−1 As treatment.  相似文献   

11.
The influence of temperature (175 to 195°C), residence time (5 to 15 min), and sulfuric acid concentration in high (2 to 4% w/w) and low (0.5 to 1.5% w/w) levels in dilute acid pretreatment of Moringa oleifera Lam is studied. Glucose recoveries in the liquid fraction and in the hydrolyzed insoluble fraction as well as the presence of inhibitors in the liquid fraction are determined. Best experimental results are achieved at 185°C, 2% w/w acid concentration, and 5 min reaction time obtaining a glucose recovery of 83.68%. An increment in 48.81% in glucose yield compared with the one of not pretreated Moringa is obtained. 0.13 g ethanol/g Moringa from fermentation of pre-hydrolysate and hydrolysate obtained at the optimal pre-treatment conditions are obtained.  相似文献   

12.
The redox state of carbon sources directly affected the ratio of NADH/NAD+ which was coupled to the hydrogen production by Bacillus sp. FS2011. The addition of the inhibitor of pyruvate dehydrogenase multi-enzyme complex (PDHc)E1 could regulate hydrogen production by FS2011 or pretreated compost in batch cultivation. With the addition of appropriate amount of inhibitor, hydrogen production via the NADH pathway was increased, leading to the higher overall hydrogen production. The maximum hydrogen yields of 307.6 ± 13.21 mL/g by FS2011 with the inhibitor of 80 ppm and 362.1 ± 10.1 mL/g by pretreated compost with the inhibitor of 60 ppm were observed, which were increased by 8.7% and 17.8% compared with the controls, respectively. Meanwhile the production of soluble metabolic byproducts such as butyrate, acetate and so on were decreased, resulting in reducing the difficulty of wastewater treatment.  相似文献   

13.
Understanding the effect of the liquid depth (z) on the acoustic generation of hydrogen is highly required for designing large-scale sonoreactors for hydrogen production because acoustic cavitation is the central event that initiates sonochemical reactions. In this paper, we present a computational analysis of the liquid-depth effect on the generation of H2 from a reactive acoustic bubble trapped in water irradiated with an attenuating sinusoidal ultrasound wave. The computations were made for different operating conditions of frequency (355–1000 kHz), acoustic intensity (1–5 W/cm2), and liquid temperature (10–30°C). The contribution of the acoustic wave attenuation on the overall effect of depth was appreciated for the different conditions. It was found that the acoustic generation of hydrogen diminished hardly with increasing depth up to z = 8 m, and the depth effect was strongly operating parameter-dependent. The sound wave attenuation played a crucial role in quenching H2 yield, particularly at higher z. The reduction of the H2 yield with depth was more pronounced at higher frequency (1000 kHz) and lower temperature (10°C) and acoustic intensity (1 W/cm2). The attenuation of the sound wave may contribute up to 100% in the overall reductive effect of depth toward H2 production rate. This parameter could be imperatively included when studying all aspects of underwater acoustic cavitation.  相似文献   

14.
The increasing consumption and excessive extraction of conventional fuels is the matter of serious concern. Nowadays, world is looking for alternative sources of fuel which can partially replace conventional fuel dependence. The current investigation intends to provide evaluation of bio-ethanol preparation from Water Hyacinth (WH) and its influence on diesel engine performance under various operating conditions. This study explores the extraction of glucose from WH (Eichhornia crassipes) pretreated with sulfuric acid (H2SO4) for production of bio-ethanol. For the production of bio-ethanol different concentrations of H2SO4 acid hydrolysate (1%, 2%, 4%, 6%, 8%, and 10%) were prepared which was then followed by fermentation with cellulose fermenting yeasts. From results, it was observed that 4% H2SO4 acid hydrolysis produces higher concentrations of ethanol than other concentrations. Bio-ethanol extracted from WH was blended with diesel in different proportions (5%, 10%, 15%, 20%, and 25%) v/v and performance and emissions were experimentally investigated on single cylinder diesel engine under various load conditions. Experimental results show that 5 BED [5% bio-ethanol (WH + 95%diesel v/v) and 10BED (10% bio-ethanol (WH + 90%diesel v/v)] produces higher brake power, brake thermal efficiency and brake mean effective pressure with improved exhaust emission profiles than any other blend.  相似文献   

15.
Biodiesel is now-a-days recognized as a real potential alternative to petroleum-derived diesel fuel due to its number of desirable characteristics. However, its higher production cost resulting mainly due to use of costly food-grade vegetable oils as raw materials is the major barrier to its economic viability. Present work is an attempt to explore the potential of Eriobotrya japonica seed oil for the synthesis of biodiesel using alkali-catalyzed transesterification. Optimization of production parameters, namely molar ratio of alcohol to oil, amount of catalyst, reaction time and temperature, was carried out using Taguchi method. Fatty acid composition of both oil and biodiesel was determined using GC and H1 NMR. Alcohol to oil molar ratio of 6:1, catalyst amount of 1% wt/wt, 2 h reaction time and 50 °C reaction temperature were found to be the optimum conditions for obtaining 94.52% biodiesel. Highest % contribution was shown by the ‘amount of catalyst’ (67.32%) followed by molar ratio of alcohol to oil (25.51%). Major fuel properties of E. japonica methyl esters produced under optimum conditions were found within the specified limits of ASTM D6751 for biodiesel, hence it may be considered a prospective substitute of petro-diesel.  相似文献   

16.
利用田间小区试验,系统研究了基于缓释肥料的侧条施肥技术对水稻产量和氮素利用效率的影响。试验结果表明:与农民常规施肥处理(FP)比较,侧条施肥技术高缓释肥处理(HF)水稻氮素投入比农民常规施肥处理(FP)降低约40%,水稻产量没有显著降低,穗粒数比农民常规施肥处理增加了8.36%。侧条施肥技术显著提高了水稻地上部吸氮量和氮肥偏生产力,降低了氮素的表观损失量。侧条施肥各处理氮肥偏生产力在39.1~67.8之间,显著高于FP处理的23.7。FP处理氮素表观损失量高达174.2 kg·hm-2,侧条施肥各处理表观损失量在23.2~61.9 kg·hm-2之间。综合考虑水稻产量和环境因素,基于缓释肥料的侧条施肥技术是一种资源节约和环境友好的施肥技术。  相似文献   

17.
It is well known that dilute sulfuric acid pretreatment of the lignicellulosisc biomass is an effective approach used for the production of the ethanol. However, there are less studies on the biogas production from the pretreated lignocellulosics and hardly data available on the codigestion of cattle manure with the pretreated lignocellulosisc material. The aim of this study was to evaluate biomethane production potential of codigestion of cattle manure with dilute acid pretreated lignocellulosic biomass. Sugarcane bagasse and rice husk was pretreated with dilute sulfuric acid or phosphoric acid at 121°C for 20 minutes and subsequently subjected to anaerobic digestion alone or codigested with cattle manure.

The results showed that codigestion of 1% phosphoric acid pretreated rice husk with cattle manure led to the highest methane production of 115 Nmlg?1VS while monodigestion of cattle manure and phosphoric acid pretreated rice husk produced 98 and 87 Nmlg?1VS, respectively. An inhibition was observed in anaerobic digestion of sulfuric acid pretreated rice husk and sugarcane bagasse during monodigestion and codigestion with cattle manure.

The study concludes that dilute phosphoric acid pretreated lignocellulosics like sugarcane bagasse and rice husk can be used as a cosubstrate with cattle manure in anaerobic digestion for enhanced methane production. Dilute sulfuric acid pretreatment, which is effective method for the bioethanol production, causes inhibition during anaerobic digestion of the pretreated lignocellulosics.  相似文献   

18.
In this study, the size of tobacco rob (TR) particle was considered as a major factor in determining the mass loss in thermogravimetric analysis (TGA) and product yield and composition at different reactor temperatures in the fixed-bed reactor. The TGA results showed that the conversion rate increased and the activation energy (ranged from 53.29 to 58.25 kJ/mol) decreased with a decrease in particle size. The experiments demonstrated that fuel gas yield (from 0.76 to 0.82 Nm3/kg at 900 °C) increased with a decrease in particle size while char and tar yield decreased. Smaller particle sizes resulted in higher H2 (25.68%) and CO (27.36%) contents. Minimizing the size of raw materials is an alternative method to improve the gas quality of TR pyrolysis. The increase of gas yield was attributed to the decomposition of char and tar vapor as temperature increased.  相似文献   

19.
In this research study, biodiesel has been successfully produced from vegetable seed oil of an indigenous plant Salvadora persica L. that meets the international biodiesel standard (ASTM D6751). The biodiesel yield was 1.57 g/5 g (31.4% by weight) and the in-situ transesterification ester content conversion was 97.7%. The produced biodiesel density was 0.894 g/mL, its kinematic viscosity 5.51 mm2/s, HHV 35.26 MJ/kg, flash point 210°C, cetane no. 61, and sulfur content 0.0844%. Thermal analysis of the biodiesel showed that 97% weight loss was achieved at 595°C with total oxidation of the biodiesel. The production energy efficiency was 0.46% with a lab scale setup, assuming the volume fraction ratio (volume of the sample/total volume of the equipment used). The results revealed that single-step in-situ transesterification method is suitable for the production of biodiesel from S. persica seed oil.  相似文献   

20.
The LCA emissions from four renewable energy routes that convert straw/corn stover into usable energy are examined. The conversion options studied are ethanol by fermentation, syndiesel by oxygen gasification followed by Fischer Tropsch synthesis, and electricity by either direct combustion or biomass integrated gasification and combined cycle (BIGCC). The greenhouse gas (GHG) emissions of these four options are evaluated, drawing on a range of studies, and compared to the conventional technology they would replace in a western North American setting. The net avoided GHG emissions for the four energy conversion processes calculated relative to a “business as usual” case are 830 g CO2e/kWh for direct combustion, 839 g CO2e/kWh for BIGCC, 2,060 g CO2e/L for ethanol production, and 2,440 g CO2e/L for FT synthesis of syndiesel. The largest impact on avoided emissions arises from substitution of biomass for fossil fuel. Relative to this, the impact of emissions from processing of fossil fuel, e.g., refining of oil to produce gasoline or diesel, and processing of biomass to produce electricity or transportation fuels, is minor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号