首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-pressure membrane process is one of the cost-effective technologies for the treatment of groundwater containing excessive dissolved solids. This paper reports a pilot study in treating a typical groundwater in Huaibei Plain containing excessive sodium, sulfate and fluoride ions. Three membrane systems were set up and two brands of reverse osmosis (RO), four low-pressure RO (LPRO) and one tight nanofiltration (NF) membranes were tested under this pilot study. An apparent recovery rate at about 75% was adopted. Cartridge filtration, in combination with dosing antiscalent, was not sufficient to reduce the fouling potential of the raw water. All RO and LPRO systems (except for the two severely affected by membrane fouling) demonstrated similar rejection ratios of the conductivity (~98.5%), sodium (~98.5%) and fluoride (~99%). Membrane fouling substantially reduced the rejection performance of the fouled membranes. The tight NF membrane also had a good rejection on conductivity (95%), sodium (94%) and fluoride (95%). All membranes rejected sulfate ion almost completely (more than 99%). The electricity consumptions for the RO, LPRO and NF systems were 1.74, 1.10 and 0.72 kWh?m-3 treated water, respectively. The estimated treatment costs by using typical RO, LPRO and tight NF membrane systems were 1.21, 0.98 and 0.96 CNY?m-3 finished water, respectively. A treatment process consisting of either LPRO or tight NF facilities following multi-media filtration was suggested.  相似文献   

2.
Pharmaceutically active compounds in wastewater released from human consumption have received considerable attention because of their possible risks for aquatic environments. In this study, the occurrence and removal of 10 pharmaceuticals in three municipal wastewater treatment plants in southern China were investigated and the environmental risks they posed were assessed. Nifedipine, atenolol, metoprolol, valsartan and pravastatin were detected in the influent wastewater. The highest average concentration in the influents was observed for metoprolol (164.6 ng/L), followed by valsartan (120.3 ng/L) in August, while median concentrations were higher in November than in August. The total average daily mass loadings of the pharmaceuticals in the three plants were 289.52 mg/d/person, 430.46 mg/d/person and 368.67 mg/d/person, respectively. Elimination in the treatment plants studied was incomplete, with metoprolol levels increasing during biological treatment. Biological treatment was the most effective step for PhACs removal in all of the plants studied. Moreover, the removal of PhACs was observed with higher efficiencies in August than in November. The WWTP equipped with an Unitank process exhibited similar removals of most PhACs as other WWTPs equipped with an anoxic/oxic (A/O) process or various anaerobic-anoxic-oxic (A2/O) process. The environmental risk assessment concluded that all of the single PhAC in the effluents displayed a low risk (RQ<0.1) to the aquatic environments.
  相似文献   

3.
Negatively charged carboxymethylated polyethersulfone (CMPES) and positively charged quaternized polyethersulfone (QAPES) ultrafiltration (UF) membranes were prepared by bulk chemical modification and non-solvent induced phase separation method. The effects of PES membrane interfacial electrokinetic property on the bovine serum albumin (BSA) membrane fouling behavior were studied with the aid of the membrane-modified colloidal atomic force microscopy (AFM) probe. Electrokinetic test results indicated that the streaming potential (ΔE) of QAPES membrane was not consistent with its expected IEC value, however, within the pH range of 3–10, the ζ potentials of two charged-modified PES membranes were more stable than the unmodified membrane. When pH value was 3, 4.7 or 9, the interaction behavior between charged PES membrane and BSA showed that there was significant linear correlation between the jump distance r 0 of membrane-BSA adhesion force (F/R) and the ζ potential absolute value. Charged modification significantly reduced the adhesion of PES membrane-BSA, and the adhesion data was good linear correlated with the flux decline rate in BSA filtration process, especially reflected in the CMPES membrane. The above experimental facts proved that the charged membrane interfacial electric double layer structure and its electrokinetic property had strong ties with the protein membrane fouling behavior.
  相似文献   

4.
Four NF membranes were compared regarding arsenate rejection and their properties. Rejection of arsenate had no relationship with membrane pore size. A more negative surface charge was favorable for arsenate rejection at neutral pH. A severe membrane fouling could lead to a great reduction of arsenic rejection. Nanofiltration (NF) has a great potential in removing arsenate from contaminated water. The performance including arsenate rejection, water permeability and resistance to fouling could however differ substantially among NF membranes. This study was conducted to investigate the influence of membrane pore size and surface properties on these aspects of membrane performance. Four fully-aromatic NF membranes with different physicochemical properties were adopted for this study. The results showed that surface charge, hydrophobicity, roughness and pore size could affect water permeability and/or arsenate rejection considerably. A more negative surface charge was desirable to enhance arsenate rejection rates. NF90 and a non-commercialized membrane (M#1) demonstrated the best performance in terms of arsenate rejection and water permeability. The M#1 membrane showed less membrane fouling than NF90 when used for filtration of real arsenic-containing groundwater. This was mainly due to its distinct chemical composition and surface properties. A severe membrane fouling could lead to a substantial reduction of arsenic rejection. The M#1 membrane showed the best performance, which indicated that membrane modification could indeed enhance the overall membrane performance for water treatment.  相似文献   

5.
Characterization of the molecular properties of soluble microbial products (SMP) is critical for understanding the membrane filtration and fouling mechanisms in anaerobic and aerobic membrane bioreactors (AnMBR & MBR). In this study, the distributions of the absolute molecular weight and intrinsic viscosity of SMP polysaccharides from an AnMBR were effectively determined by a high performance size exclusion chromatography (HPSEC) that was coupled with the refractive index (RI), diode array UV (DAUV), right and low angle light scattering (LS), and viscometer (Vis) detectors. Based on the tetra-detector HPSEC determined absolute molecular weights and intrinsic viscosity, a universal calibration relationship for the SMP polysaccharides was developed and the molecular conformations, average molecular weights, and hydrodynamic sizes of the SMP polysaccharides were also explored. Two factors which can be derived from the tetra-detector HPSEC analysis were proposed for the characterization of the viscous and osmotic pressure properties of the SMP polysaccharides. In addition, it was also extrapolated how to analyze the resistance characteristics of the concentration polarization layers formed in membrane filtration based on the molecular properties determined by the tetra-detector HPSEC analysis.
  相似文献   

6.
A novel, functionalized bubble surface can be obtained in dissolved air flotation (DAF) by dosing chemicals in the saturator. In this study, different cationic chemicals were used as bubble surface modifiers, and their effects on natural organic matter (NOM) removal from river water were investigated. NOM in the samples was fractionated based on molecular weight and hydrophobicity. The disinfection byproduct formation potentials of each fraction and their removal efficiencies were also evaluated. The results showed that chitosan was the most promising bubble modifier compared with a surfactant and a synthetic polymer. Tiny bubbles in the DAF pump system facilitated the adsorption of chitosan onto microbubble surfaces. The hydrophobic NOM fraction was preferentially removed by chitosan-modified bubbles. Decreasing the recycle water pH from 7.0 to 5.5 improved the removal of hydrophilic NOM with low molecular weight. Likewise, hydrophilic organic compounds gave high dihaloacetic acid yields in raw water. An enhanced reduction of haloacetic acid precursors was obtained with recycle water at pH values of 5.5 and 4.0. The experimental results indicate that NOM fractions may interact with bubbles through different mechanisms. Positive bubble modification provides an alternative approach for DAF to enhance NOM removal.
  相似文献   

7.
This work investigates the effect of adding pentanol with biodiesel derived from cashew nut shell on its emissions characteristics is conducted in stationery diesel engine. The main purpose of this work is intended to reduce the emissions by fuelling biodiesel derived from cashew nut shell and the pentanol blends. Cashew nut shell biodiesel is prepared by transesterification process. Oxygenated additive used in the work is Pentanol. The experiment is conducted using four test fuels such as, biodiesel derived from cashew nut shell (CNSBD), a fuel containing 90% cashew nut shell biodiesel and 10% pentanol (CNSBD90P10), a fuel containing 80% cashew nut shell biodiesel and 20% pentanol (CNSBD80P20) and neat diesel. Experimental work concluded that by adding 10% of pentanol to cashew nut shell biodiesel 10.1%, 2.6%, 5.1%and 2.1%reduction in CO, HC, NO x and Smoke emissions were observed respectively. Further by fueling with these blends, no modifications in engines were required.
  相似文献   

8.
酚类分子结构和纳滤膜特性对截留率的影响规律   总被引:1,自引:0,他引:1  
选择21种酚类化合物作为模型污染物,分别测定了三种不同纳滤膜对酚类化合物的截留率.结果表明,酚类化合物截留率受到取代基位置、种类和膜特性的影响.对NF270膜和NF膜而言,截留率从大到小的次序为邻位>间位>对位,而NF90膜的截留率为邻位>对位;供电子取代基有增大截留率的趋势,吸电子取代基有减小截留率的趋势;孔径小、荷电量大的纳滤膜截留率更大.通过基于遗传算法的偏最小二乘回归法(GA-PLS),建立了纳滤膜对酚类化合物截留率的定量构效关系模型,通过分析回归方程,可以看出酚类化合物的pKa值对截留率影响最大,影响较大的还有偶极矩等参数.  相似文献   

9.
In the present paper, a polymer inclusion membrane (PIM) containing polyvinyl chloride (PVC), and bis-(2-ethylhexyl) phosphate (D2EHPA) which was used as extracting agent was used for the recovery of In(III) ions in hydrochloric acid medium. The effects of carrier concentration, feed phase pH, strip phase HCl concentration, temperature on the transport, and the membrane’s stability and thickness were examined. And the conditions for the selective separation of In(III) and Cu(II) were optimized. The results showed that the transport of In(III) across PIM was consistent with the first order kinetics equation, and also it was controlled by both the diffusion of the metal complex in the membrane and the chemical reaction at the interface of the boundary layers. The transport flux (J 0) was inversely proportional to the membrane thickness, however, the transport stability improved as the membrane thickness increased. The transport flux of In(III) and Cu(II) was decreased by excessive acidity of feed phase and high concentration of Cl. The selectivity separation coefficient of In(III)/Cu(II) was up to 34.33 when the original concentration of both In(III) and Cu(II) was 80 mg?L–1 as well as the pH of the feed phase and the concentration of Cl in the adjusting context were0.6 and 0.5 mol?L–1, respectively.Within the range of pH = 1–3, the separation selectivity of In(III)/Cu(II) reached the peak in the case when the Cl concentration was 0.7 mol?L–1.
  相似文献   

10.
Mercury enrichment in response to elevated atmospheric mercury concentrations in the organs of rape (Brassica napus) was investigated using an open top chamber fumigation experiment and a soil mercury enriched cultivation experiment. Results indicate that the mercury concentration in leaves and stems showed a significant variation under different concentrations of mercury in atmospheric and soil experiments while the concentration of mercury in roots, seeds and seed coats showed no significant variation under different atmospheric mercury concentrations. Using the function relation established by the experiment, results for atmospheric mercury sources in rape field biomass showed that atmospheric sources accounted for at least 81.81%of mercury in rape leaves and 32.29% of mercury in the stems. Therefore, mercury in the aboveground biomass predominantly derives from the absorption of atmospheric mercury.
  相似文献   

11.
The effects of food to microorganism (F/M) ratio and alcohol ethoxylate (AE) dosage on the methane production potential were investigated in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor (SAnMBR). The fate of AE and its acute and/or chronic impact on the anaerobic microbes were also analyzed. The results indicated that AE had an inhibitory effect to methane production potential (lag-time depends on the AE dosage) and the negative effect attenuated subsequently and methane production could recover at F/M ratio of 0.088–0.357. VFA measurement proved that AE was degraded into small molecular organic acids and then converted into methane at lower F/M ratio (F/M<0.158). After long-term acclimation, anaerobic microbe could cope with the stress of AE by producing more EPS (extracellular polymeric substances) and SMP (soluble microbial products) due to its self-protection behavior and then enhance its tolerance ability. However, the methane production potential was considerably decreased when AE was present in wastewater at a higher F/M ratio of 1.054. Higher AE amount and F/M ratio may destroy the cell structure of microbe, which lead to the decrease of methane production activity of sludge and methane production potential.
  相似文献   

12.
Benzotriazole (BTA) is an emerging contaminant that also is a recalcitrant compound. Sequential and intimate coupling of UV-photolysis with biodegradation were investigated for their impacts on BTA removal and mineralization in aerobic batch experiments. Special attention was given to the role of its main photolytic products, which were aminophenol (AP), formic acid (FA), maleic acid (MA), and phenazine (PHZ). Experiments with sequential coupling showed that BTA biodegradation was accelerated by photolytic pretreatment up to 9 min, but BTA biodegradation was slowed with longer photolysis. FA and MA accelerated BTA biodegradation by being labile electron-donor substrates, but AP and PHZ slowed the rate because of inhibition due to their competition for intracellular electron donor. Because more AP and PHZ accumulated with increasing photolysis time, their inhibitory effects began to dominate with longer photolysis time. Intimately coupling photolysis with biodegradation relieved the inhibition effect, because AP and PHZ were quickly biodegraded and did not accumulate, which accentuated the beneficial effect of FA and MA.
  相似文献   

13.
The objective of this study was to provide insight into human exposure to trace contaminants bearing red mud, derived precipitates and geopolymeric blocks due to inhalation contact and/or hand-to-mouth ingestion. The in vitro bioaccessibility behavior of trace contaminants was investigated with the PBET (physiologically based extraction test), ALF (artificial lysosomal fluid) and MGS (modified Gamble’ solution) methods. The results showed that total contents of trace contaminants and operation parameters, such as pH and chelating properties of simulated gastrointestinal phases (PBET), played a joint role in controlling the bioaccessibility efficacy for size-fractionated red mud particles. As for airborne particles (<38 μm size fractions), trace contaminants concentrations extracted by MGS was significantly higher than those by ALF. Additionally, higher bioaccessibility (PBET) values of Cu, Pb, Zn, As, V and U were obtained from red mud derived precipitates compared with those of red mud itself. Even though short-term and long-term leaching values of trace contaminants were relatively lower in the prepared geopolymeric blocks, the health risk could be significantly higher due to the more pronounced bioaccessibility characteristics.
  相似文献   

14.
A biofilm membrane bioreactor (BF-MBR) and a conventional membrane bioreactor (MBR) were parallelly operated for treating digested piggery wastewater. The removal performance of COD, TN, NH4 +-N, TP as well as antibiotics were simultaneously studied when the hydraulic retention time (HRT) was gradually shortened from 9 d to 1 d and when the ratio of influent COD to TN was changed. The results showed that the effluent quality in both reactors was poor and unstable at an influent COD/TN ratio of 1.0±0.2. The effluent quality was significantly improved as the influent COD/TN ratio was increased to 2.3±0.5. The averaged removal rates of COD, NH4 +-N, TN and TP were 92.1%, 97.1%, 35.6% and 54.2%, respectively, in the BF-MBR, significantly higher than the corresponding values of 91.7%, 90.9%, 17.4% and 31.9% in the MBR. Analysis of 11 typical veterinary antibiotics (from the tetracycline, sulfonamide, quinolone, and macrolide families) revealed that the BF-MBR removed more antibiotics than the MBR. Although the antibiotics removal decreased with a shortened HRT, high antibiotics removals of 86.8%, 80.2% and 45.3% were observed in the BF-MBR at HRTof 5–4 d, 3–2 d and 1 d, respectively, while the corresponding values were only 83.8%, 57.0% and 25.5% in the MBR. Moreover, the BF-MBR showed a 15% higher retention rate of antibiotics and consumed 40% less alkalinity than the MBR. Results above suggest that the BF-MBR was more suitable for digested piggery wastewater treatment.
  相似文献   

15.
The effect of microwave pretreatment on the anaerobic degradation of hyacinth was investigated using response surface methodology (RSM). The components of lignin and the other constituents of hyacinth were altered by microwave pretreatment. Comparison of the near-infrared spectra of hyacinth pretreated by microwave irradiation and water-heating pretreatment revealed that no new compounds were generated during hyacinth pretreatment by microwave irradiation. Atomic force microscopy observations indicated that the physical structures of hyacinth were disrupted by microwave pretreatment. The yield of methane per gram of the microwave-irradiated substrate increased by 38.3% as compared to that of the substrate pretreated via water-heating. A maximum methane yield of 221 mL?g-sub–1 was obtained under the optimum pretreatment conditions (substrate concentration (PSC) = 20.1 g?L–1 and pretreatment time (PT) = 14.6 min) using RSM analysis. A maximum methane production rate of 0.76 mL?h–1?g-sub–1 was obtained by applying PSC = 9.5 g?L–1 and PT = 11 min. Interactive item coefficient analysis showed that methane production was dependent on the PSC and PT, separately, whereas the interactive effect of the PSC and PT on methane production was not significant. The same trend was also observed for the methane production rate.
  相似文献   

16.
Inflow and infiltration (I/I) are serious problems in hybrid sewerage systems. Limited sewerage information impedes the estimation accuracy of I/I for each catchment. A new method dealing with I/I of a large-scale hybrid sewerage system with limited infrastructure facility data is proposed in this study. The catchment of representative pump stations was adopted to demonstrate the homological catchments that have similar wastewater fluctuation characteristics. Homological catchments were clustered using the self-organizing map (SOM) analysis based on long-term daily flow records of 50 pumping stations. An assessment index was applied to describe the I/I and overflow risk in the catchment based on the hourly wastewater quality and quantity data of representative pump stations. The potential operational strategy of homological catchments was determined by the assessment index of representative pump stations. The simulation results of the potential operational strategy indicated that the optimized operation strategy could reduce surcharge events and significantly improve the quality of wastewater treatment plant effluent.
  相似文献   

17.
The quantification and effects of system pH value on the interactions between Pb(II) and the biopolymer in activated sludge were investigated. The biopolymer had two protein-like fluorescence peaks (Ex/Em = 280 nm/326–338 nm for peak A; Ex/Em = 220–230 nm/324–338 nm for peak B). The fluorescence intensities of peak B were higher than those of peak A. The fluorophores of both peaks could be largely quenched by Pb(II), and the quencher dose for peak B was about half of that for peak A. The modified Stern-Volmer equation well depicted the fluorescence quenching titration. The quenching constant (Ka) values for both peaks decreased with rising system pH value, and then sharply decreased under alkaline conditions. It could be attributed to that the alkaline conditions caused the reduction of available Pb(II) due to the occurrence of Pb(OH)2 sediments. The Ka values of peak B were bigger than those for peak A at the same system pH values. Accordingly, the aromatic proteins (peak B) played a key role in the interactions between metal ions and the biopolymer.
  相似文献   

18.
When microalgae are simultaneously applied for wastewater treatment and lipid production, soluble algal products (SAP) should be paid much attention, as they are important precursors for formation of disinfection byproducts (DBPs), which have potential risks for human health. Chlorella sp. HQ is an oleaginous microalga that can generate SAP during growth, especially in the exponential phase. This study investigated the contribution of SAP from Chlorella sp. HQ to DBP formation after chlorination. The predominant DBP precursors from SAP were identified with the 3D excitation-emission matrix fluorescence. After chlorination, a significant reduction was observed in the fluorescence intensity of five specific fluorescence regions, particularly aromatic proteins and soluble microbial by-product-like regions, accompanied with slight shifting of the peak. The produced DBPs were demonstrated to include trihalomethanes and haloacetic acids. As the algal cultivation time was extended in wastewater, the accumulated SAP strengthened the formation of DBPs. The trend for DBP formation was as follows: chloroform>dichloroacetic acid>trichloroacetic acid.
  相似文献   

19.
The diffusion of municipal wastewater treatment technology is vital for urban environment in developing countries. China has built more than 3000 municipal wastewater treatment plants in the past three decades, which is a good chance to understand how technologies diffused in reality.We used a data-driven approach to explore the relationship between the diffusion of wastewater treatment technologies and collaborations between organizations. A database of 3136 municipal wastewater treatment plants and 4634 collaborating organizations was built and transformed into networks for analysis. We have found that: 1) the diffusion networks are assortative, and the patterns of diffusion vary across technologies; while the collaboration networks are fragmented, and have an assortativity around zero since the 2000s. 2) Important projects in technology diffusion usually involve central organizations in collaboration networks, but organizations become more central in collaboration by doing circumstantial projects in diffusion. 3) The importance of projects in diffusion can be predicted with a Random Forest model at a good accuracy and precision level. Our findings provide a quantitative understanding of the technology diffusion processes, which could be used for waterrelevant policy-making and business decisions.
  相似文献   

20.
Sulfamethoxzole (SMX) and trimethoprim (TMP), two combined-using sulfonamide antibiotics, have gained increasing attention in the surface water, groundwater and the drinking water because of the ecological risk. The removal of TMP and SMX by artificial composite soil treatment system (ACST) with different infiltration rates was systematically investigated using K+, Na+, Ca2+, Mg2+ hydrogeochemical indexes. Batch experiments showed that the sorption onto the low-cost and commercially available clay ceramsites was effective for the removal of SMX and TMP from water. The column with more silty clay at high infiltration rate (1.394 m·d–1) had removal rates of 80% to 90% for TMP and 60% to 70% for SMX. High SMX and TMP removal rates had a higher effluent concentration of K+, Ca2+ and Mg2+ and had a lower effluent Na+ concentration. Removal was strongly related to sorption. The results showed that the removal of SMX and TMP was related to hydrogeochemical processes. In this study, ACST is determined to be applicable to the drinking water plants.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号