首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modelling and mapping of copper runoff for Europe   总被引:1,自引:0,他引:1  
A predictive runoff rate model for copper has been refined and used to generate copper runoff maps for Europe. The new model is based on laboratory and field runoff data and expresses the runoff rate R (g m(-2) yr(-1)) through two contributions, both with a physical meaning: R = (0.37SO(0.5)(2) = 0.96 rain10(-0.62 pH) (cos(theta)/cos(45 degree)). Input parameters are the SO(2) concentration (microg m(-3)), pH, amount of rain (mm yr(-1)), and surface angle of inclination (theta). The first contribution originates from dry periods between rain events (the first-flush effect) and the second from the rain events. The dry term has been refined in comparison to the original model by assuming a mass balance between measured corrosion mass loss, calculated copper retention in the patina and predicted copper runoff. The refined model predicts 76% of all reported runoff rates, worldwide, within 35% from their measured value. This includes sites with low SO(2) concentration, where the original model erroneously predicted higher runoff rates than corrosion rates. Based on environmental data from the EMEP programme for the years 1980-2000, the new model has been used to derive runoff rate maps for Europe with 50 x 50 km grid resolution. The runoff mapping shows a substantial reduction in runoff rate over the investigated time period, and with copper runoff rates now generally less than 2 g m(-2) yr(-1).  相似文献   

2.
Daily measurements of sulfate, nitrate and chloride in PM(10) have been made at three geographically separated UK sites over a three year period. Chloride shows a clear seasonal pattern with highest concentrations in winter, whilst sulfate and nitrate both show highest concentrations in the spring, apparently related to weather patterns. Spatial variability of both sulfate and nitrate is low in comparison to temporal variations, with high correlations of both species between all three sites, London (North Kensington), Harwell and Belfast, despite a geographic separation of 510 km. Both SO/SO(2) and NO/NO(x) ratios are considerably higher in summer than winter, reflecting a greater oxidising capacity of the atmosphere. SO(4)(2-)/NO(3)(-) ratios are higher in summer than winter, suggesting that aqueous phase oxidation of SO(2), expected to be most important in the winter months is not appreciably influencing production of sulfate aerosol, although greater dissociation of ammonium nitrate in summer may also play a role. Regression of concentrations at London, North Kensington with those from the proximate rural site of Harwell is interpreted as showing a similar effect of regional transport at the two sites and a small influence of local formation in the urban atmosphere or primary emissions, averaging 0.46 microg m(-3) of nitrate and 0.22 microg m(-3) of sulfate.  相似文献   

3.
Atmogenic sulfur (S) deposition loading by acid rain is one of the biggest environmental problems in China. It is important to know the accumulated S stored in soil, because eventually the size (and also the "desorption" rate) determines how rapidly the soil water pH responds to decrease in S deposition. The S fractions and the ratio of total carbon/total sulfur (C/S) of forest soil in 9 catchments were investigated by comparing soils at the rural and urban sites in China. The S fractions included water-soluble sulfate-S (SO(4)-S), adsorbed SO(4)-S, insoluble SO(4)-S and organic S. The ratio of C/S in soil at the rural site was significantly (p < 0.05) greater than that at the urban site. C/S of soil in the A horizon was significantly (p < 0.05) and negatively correlated with the wet S-deposition rate. The ratio of C/S presents a better indicator for atmogenic S loading. Organic S was the dominant form in soils at rural sites; contributing more than 69% of the total S in the uppermost 30 cm soil. Organic S and adsorbed SO(4)-S were the main forms of S in soil at urban sites. High contents of water-soluble SO(4)-S and adsorbed SO(4)-S were found in uppermost 30 cm soils at urban sites but not at rural sites. Decades of acid rain have caused accumulation of inorganic SO(4)-S in Chinese forest soil especially at the urban sites. The soil at urban sites had been firstly acidified, and the impacts on the forest ecosystem in these areas should be noticed.  相似文献   

4.
分析2001—2010年南通市区城中子站降水监测点位数据,得出降水中起致酸作用的阴离子硫酸根、硝酸根、氟离子和氯离子中除硝酸根呈现显著性上升趋势,其余上升趋势不明显;氯离子、钠离子与降水量存在高度线性负相关,硫酸根、硝酸根与降水量分别为低度非线性负相关和正相关,其他项目与降水量为显著性非线性负相关;将pH分5级,pH<4.7为重酸雨频率,pH4.7~5.0为较重酸雨频率,pH5.0~5.3为中度酸雨频率,pH5.3~5.6为轻度酸雨频率,pH≥0.56为非酸雨频率,其结果表明:南通市区2009、2010年酸雨频率降低,分别为44.1%和38.2%,主要是重酸雨频率减少,非酸雨频率增加;2003、2007年酸雨频率升高,分别为67.4%和69.8%,主要是重酸雨频率增加,非酸雨频率减小;降水量大小与电导率浓度高低没有对应性;阴阳离子浓度总量逐年、逐月同步变化;阴离子中硫酸根、硝酸根浓度逐年、逐月变化量与幅度较大;阳离子中钙离子、铵离子浓度逐年、逐月变化量与幅度较大;阴阳离子浓度逐年、逐月占比呈准对称形。  相似文献   

5.
Copper sheeting is a common roofing material used in many parts of the world. However, copper dissolved from roof sheeting represents a source of copper ions to watersheds. Researchers have studied and recently developed a simple and efficient model to predict copper runoff rates. Important input parameters include precipitation amount, rain pH, and roof angle. We hypothesized that the length of a roof also positively correlates with copper concentration (thus, runoff rates) on the basis that runoff concentrations should positively correlate with contact time between acidic rain and the copper sheet. In this study, a novel system was designed to test and model the effects of roof length (length of roof from crown to the drip edge) on runoff copper concentrations relative to rain pH and roof angle. The system consisted of a flat-bottom copper trough mounted on an apparatus that allowed run length and slope to be varied. Water of known chemistry was trickled down the trough at a constant rate and sampled at the bottom. Consistent with other studies, as pH of the synthetic rainwater decreased, runoff copper concentrations increased. At all pH values tested, these results indicated that run length was more important in explaining variability in copper concentrations than was the roof slope. The regression equation with log-transformed data (R 2 = 0.873) accounted for slightly more variability than the equation with untransformed data (R 2 = 0.834). In log-transformed data, roof angle was not significant in predicting copper concentrations.  相似文献   

6.
基于地面观测数据,分析了"十一五"和"十二五"期间宁波市酸雨污染特征变化趋势。结果表明,2015年降水pH从2010年的4.37上升到4.89;2010—2015年酸雨发生频率降低了17.4百分点;重酸雨区范围不断缩小,轻酸雨区范围不断扩大,酸雨污染程度有所改善。降水中化学组成变化显示,与"十一五"末相比,2015年除NO_3~-、Cl~-外其他离子浓度均有所下降;2015年SO_3~(2-)与NO_3~-的当量浓度之比从2010年的3.10下降到1.73,表明酸雨污染从硫酸型向硫酸与硝酸混合型转变。  相似文献   

7.
Accurate knowledge of the quality and environmental impact of the highway runoff in Pear River Delta, South China is required to assess this important non-point pollution source. This paper presents the quality characterization and environmental impact assessment of rainfall runoff from highways in urban and rural area of Guangzhou, the largest city of Pear River Delta over 1 year’s investigation. Multiple regression and Pearson correlation analysis were used to determine influence of the rainfall characteristics on water quality and correlations among the constituents in highway runoff. The results and analysis indicates that the runoff water is nearly neutral with low biodegradability. Oil and grease (O&G), suspended solids (SS) and heavy metals are the dominant pollutants in contrast to the low level of nutrient constituents in runoff. Quality of highway runoff at rural site is better than that of at urban site for most constituents. Depth and antecedent dry period are the main rainfall factors influencing quality of highway runoff. The correlation patterns among constituents in highway runoff at urban site are consistent with their dominant phases in water. Strong correlations (r ≥ 0.80) are found among chemical oxygen demand (COD), total phosphorus, Cu and Zn as well as conductivity, nitrate nitrogen and total nitrogen. O&G, COD, SS and Pb in highway runoff at urban site substantially exceed their concentrations in receiving water of Pear River. The soil directly discharged by highway runoff at rural site has contaminated seriously by heavy metals in surface layer accompanying with pH conversion from original acidic to alkaline at present.  相似文献   

8.
2003—2018年全国酸雨状况变化趋势研究   总被引:1,自引:0,他引:1  
基于2003—2018年全国291个城市降水监测结果的分析表明:全国降水酸度明显降低,其中,2003—2006年有所升高,2006年之后呈降低趋势;酸雨区面积呈减小趋势,共减少约97万km2,酸雨发生频率超过5%的面积减少了20.9个百分点;全国酸雨城市比例为21.3%~40.9%,2009年开始总体呈下降趋势,2018年降为21.6%,重酸雨城市比例在2005年之后总体呈下降趋势;全国平均酸雨频率为11.7%~25.6%,2006年之后总体呈下降趋势,2018年酸雨频率在50%以上的城市比例较2006年下降了13.9个百分点。基于174个城市的降水离子组分分析结果显示:我国降水中的主要阴离子为硫酸根,其离子当量浓度占比为19.4%~32.9%,2003年以来年平均降低0.6个百分点;降水中的主要阳离子为钙离子和铵离子;硫酸根沉降通量年平均下降0.68 t/km2,硝酸根沉降通量年平均降低0.05 t/km2,全国SO2浓度变化趋势与硫酸根沉降通量变化趋势基本一致;我国降水中的硝酸根与硫酸根离子当量浓度比值总体呈升高趋势,表明硝酸根离子对降水酸度的影响逐渐增加,酸雨类型正由硫酸型向硫酸-硝酸混合型转变。  相似文献   

9.
The Reedy River in South Carolina is affected by the urban area of Greenville, the third most populous city in the state, and by the effluents from two large-scale municipal wastewater treatment plants (WWTPs) located on the river. Riverine water chemistry was characterized using grab samples collected annually under spring season baseflow conditions. During the 4-year time period associated with this study, climatic variations included two severe drought spring seasons (2001 and 2002), one above-normal precipitation spring season (2003), and one below-normal precipitation spring season (2004). The influence of drought and human activities on the baseflow chemistry of the river was evaluated by comparing concentrations of dissolved anions, total metals, and other important water chemistry parameters for these different years. Concentrations of copper and zinc, common non-point source contaminants related to urban activities, were not substantially elevated in the river within the urban area under baseflow conditions when compared with headwater and tributary samples. In contrast, nitrate concentrations increased from 1.2–1.6 mg/l up to 2.6–2.9 mg/l through the urban stream reach. Concentrations of other major anions (e.g., sulfate, nitrate) also increased along the reach, suggesting that the river receives continuous inputs of these species from within the urban area. The highest concentrations of major cations and anions typically were observed immediately downstream from the two WWTP effluent discharge locations. Attenuation of nitrate downstream from the WWTPs did not always track chloride changes, suggesting that nitrate concentrations were being controlled by biochemical processes in addition to physical processes. The relative trends in decreasing nitrate concentrations with downstream distance appeared to depend on drought versus non-drought conditions, with biological processes presumably serving as a more important control during non-drought spring seasons.  相似文献   

10.
The chemical composition of bulk precipitation and throughfall were analyzed, during a 1-year period (2002), in rural-urban-industry gradients with similar forest cover (Eucalyptus spp.) in southern Brazil (Rio Grande and Porto Alegre cities). Values of pH varied from 5.0-5.1 in rural to 5.4-6.1 in industrial sites, and were intermediate in urban sites. The major ions in bulk precipitation were Na(+), Cl(-), [Formula: see text], [Formula: see text] and [Formula: see text], and concentrations increased in urban and industrial sites. Principal component analysis identified the local main anthropogenic sources. Estimated annual amounts of dry deposition were generally greater in both industrial and urban sites than in rural sites. Areas close to industrial activity showed greater S and N total deposition (10.4-10.9 and 20.2-30.6 kg/ha, respectively) than in urban (3.4-7.3 and 14.6-24.1 kg/ha) and in rural (1.7-2.6 and 8.9-12.1 kg/ha) sites. Annual deposition of Ca and P varied from 0.6 and 3.0 kg/ha in rural to 45.4 and 32.4 kg/ha in industrial sites, maximum values being observed closed to the phosphate fertilizer plant of Rio Grande. Deposition in urban and industrial sites may be balanced by the alkaline cations, as bulk precipitation pH varied from 5.4 to 6.1, and was greater than in rural sites (5.0-5.1).  相似文献   

11.
Bulk samples collected on a daily basis at three principal meteorological stations in central Serbia were analyzed on chloride (Cl(-)), nitrate [Formula: see text], sulfate [Formula: see text], sodium (Na(+)), ammonium [Formula: see text], potassium (K(+)), calcium (Ca(2+)), and magnesium (Mg(2+)) in addition to precipitation amount, pH and conductivity measurements over the period 1998-2004. The data were subjected to variety of analyses (linear regression, principal component analysis, time series analysis) to characterize precipitation chemistry in the study area. The most abundant ion was [Formula: see text] with annual volume weighted mean concentration of 242 microeq L(-1). Neutralization of precipitation acidity occurs both as a result of the dissolution of alkaline compounds containing Ca(2+), Mg(2+), and K(+) as well as the absorption of ammonia. The ratio of [Formula: see text] was above 5, which indicated that the combustion process of low-grade domestic lignite for electricity generation from coal-fired thermal power plants was the main source of pollution in the investigated area. A considerable mean annual bulk wet deposition of SO(4)-S determined by precipitation amount and concentrations of sulfate in the precipitation was calculated to be 12-35 kg ha(-1).  相似文献   

12.
利用荆门市2001—2010年对城区和石化区的降水监测资料,研究分析了荆门市近十年来的大气降水量、pH及电导率的变化情况。结果表明:荆门市近十年来的年均降水量为793.27 mm,降水主要集中在5—8月,年降水量变化较大,基本呈周期性的波动趋势。荆门市城区降水的pH和电导率比较稳定,没有出现酸雨。石化区的降水年平均pH比城区低,年平均电导率比城区高,有酸雨发生,但污染并不严重。  相似文献   

13.
2005-2011全国酸雨状况分析   总被引:3,自引:0,他引:3  
根据全国酸雨监测网2005-2011年的监测数据对全国酸雨状况进行分析,得出全国酸雨城市比例、酸雨发生频率及酸雨覆盖面积总体均呈降低趋势,但酸雨形式依然严峻,酸雨类型仍以硫酸型酸雨为主,硝酸盐对降水酸度的贡献逐年增加。与2005年相比,全国硫沉降通量总体呈现下降趋势,硝酸根沉降通量略有增加。中国降水pH年均值与美国、日本及其他东亚酸沉降监测网成员国相当,但主要致酸离子的酸沉降通量处于较高水平。  相似文献   

14.
Sulfate adsorption capacity of B-horizons of base-poor, predominantly stagnopodzol, soils from the Plynlimon catchments, mid-Wales was determined by combination of laboratory adsorption and desorption isotherms. Results show that sulfate adsorption capacity of a range of stagnopodzol (Histic-stagno-podzol (Leptic), WRB), brown podzolic soil (Histic-umbrisol (Leptic), WRB) and stagnohumic gley (Histic-stagno-gleysol, WRB) B-horizons was positively related to the amounts of extractable (pyrophosphate and oxalate) Fe + Al, with the stagnopodzol and brown podzolic soil Bs horizon having the largest adsorption capacity and stagnohumic gley Bg horizon the smallest adsorption capacity. Results show that dissolved organic carbon (DOC) has a negative but limited effect on sulfate adsorption in these soils. Results obtained from a set of historical soil samples revealed that the grassland brown podzolic soil Bs horizon and afforested stagnopodzol Bs horizon were highly saturated with sulfate in the 1980s, at 63% and 89% respectively, whereas data from some recently sampled soil from two sites revisited in 2010-11 indicates that percentage sulfate adsorption saturation has since fallen substantially, to 41% and 50% respectively. Between 1984 and 2009 the annual rainfall-weighted mean excess SO(4)-S concentration in bulk precipitation declined linearly from 0.37 mg S l(-1) to 0.17 mg S l(-1). Over the same period, flow weighted annual mean stream water SO(4)-S concentrations decreased approximately linearly from 1.47 mg S l(-1) to 0.97 mg S l(-1) in the plantation afforested Hafren catchment compared to a drop from 1.25 to 0.69 mg S l(-1) in the adjacent moorland catchment of the Afon Gwy. In flux terms, the mean decrease in annual stream water SO(4)-S flux has been approximately 0.4 kg S ha(-1) yr(-1), whilst the recovery in stream water quality in the Afon Cyff grassland catchment has been partly offset by loss of SO(4)-S by desorption from the soil sulfur pool of approximately 0.2 kg S ha(-1) yr(-1).  相似文献   

15.
Changes in chemical speciation of copper and the capacity of concrete pavement to retain copper in runoff water from external buildings have been investigated at urban field conditions, and in parallel laboratory experiments simulating outdoor scenarios. The research study showed the concrete surface to form a copper rich surface layer (≈50 μm thick) upon exposure, and a high capacity to significantly reduce the bioavailable fraction of released copper (20–95%). The retention capacity of copper varied between 5 and 20% during single runoff events in the laboratory, and between 10 and 40% of the total copper release during single natural runoff events. The capacity to retain and reduce the bioavailable fraction of non-retained copper increased with increasing wetness of the concrete surfaces, increasing pH of the runoff water and decreasing flow rates. Bioassay testing with bacterial and yeast bioreporters showed the bioavailable fraction of non-retained copper to be significantly lower than the total copper concentration in the runoff water, between 22 and 40% for bacteria and between 8 and 31% for yeast. The application of generated data to simulate a fictive outdoor scenario, suggests a significant reduction of bioavailable and total copper to background values during environmental entry as a result of dilution, and the interaction with solid surfaces, organic matter and complexing agents already in the drainage system.  相似文献   

16.
为了更为有效地治理酸雨污染,根据南充市环境监测中心站提供的2009—2017年降水监测数据,对南充市城区酸雨污染情况进行了分析及源解析。结果表明:2009—2017年,南充市降水pH从4.60波动上升至5.6以上,酸雨频率波动下降,酸雨污染情况有所改善;[SO4^2-]/[NO3^-]从4.92下降至0.86,酸雨污染类型从硫酸型转变为硝酸-硫酸型。同时,对比分析2014—2016年大气污染物排放源可知,NOx排放源中,工业污染源占比由14%降至11%,生活污染源由2%上升至5%;SO2排放源中,工业污染源占比由62%降至43%,生活污染源由38%上升至57%,表明南充市SO2污染已从以工业污染源为主转变为工业污染源与生活污染源并重。  相似文献   

17.
We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74 % exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water.  相似文献   

18.
The stem cuttings of the terrestrial, ornamental plant, Portulaca oleracea, grew well in distilled water by producing adventitious roots and leaves. However, when exposed to various concentrations of sulfate and nitrate salts of copper resulted in a suppression of root growth, increase in initiation time of roots and sprouts and decay of stem cuttings from the cut open end, decrease in number of leaves with an increase in concentration of copper in the growth medium. Accumulation of copper increased with increasing concentrations of both copper sulfate and copper nitrate. However, copper accumulation was greater in copper nitrate than in copper sulfate treatment. Hence, copper in the presence of nitrate is more toxic than in the presence of sulfate. The accumulation factors in all treatment concentrations were greater than 1, hence P. oleracea is a copper accumulator.  相似文献   

19.
A geographic information system was used to map and analyze nitrate, chloride, sulfate, and fluoride concentrations in 110 wells tapping the Woodbine Aquifer. The study area, covering ninecounties in north-central Texas, includes large percentages of both urban and agricultural land uses. Land use maps were compared with solute concentration data, and statistics were applied to detect associations between solutes, well depth, andland use. Anthropogenic sources such as fertilizer applications and natural sources such as gypsum, lignite, and clay deposits controlled nitrate, chloride, and sulfate concentrations, each inversely correlated with well depth. However, only one nitrate observation – from a shallow well in the aquifer's outcrop zone – surpassed the maximum contaminant level (MCL) of 44.3 mg L-1. By comparison, nearly half of the sulfate and several of the chloride observations surpassed the MCL of 250 mg L-1for each of those ions. Volcanic ash deposits influenced fluorideconcentrations, which directly correlated with well depth. There were no statistically significant associations between solute concentrations and land use. Low recharge rates and confining layers have mitigated anthropogenic impacts on solute levels in the aquifer.  相似文献   

20.
Characteristics and transport of organochlorine pesticides (OCPs) in urban multiple environments, including air, dust, rain, canopy throughfall, and runoff water, are explored in this study. Hexachlorocyclohexanes (HCHs) dominated in both air and rain water, and dichlorodiphenyltrichloroethane (DDT) related substances showed a higher affinity to dust. Relatively high concentrations of DDT and dichlorodiphenyldichloroethylene (DDE) in air, rain and dust imply that technical DDT in the environment has been degrading, and there may be unknown local or regional emission sources that contain DDTs in the study area. Source identification showed that DDTs in Beijing urban environments with a fresh signature may originate from the atmospheric transport from remote areas. The ratio of α-/γ-HCH in dust, rain, canopy throughfall and runoff were close to 1, indicating the possible use of lindane. OCPs in runoff were transported from various sources including rain, dust, and canopy throughfall. In runoff, DDTs and hexachlorobenzene (HCB) were mainly transported from dust, and HCHs were mainly from rain and canopy throughfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号