首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 591 毫秒
1.
The relationship between the rates of oxygen consumption, ammonia and phosphate excretion of a pelagic tunicate, the larvacean Oikopleura dioica Fol, 1872 were assessed as a function of size, dry weight and ash-free dry weight at 15°, 20° and 24°C. O. dioica has higher respiration and excretion rates than copepods of similar weight, but the weight exponent of the allometric power function: Y=aX b is similar to that of other poikilotherms. Temperatures above 20°C have a depressing effect on respiration and ammonia excretion. 90% of the variance in metabolic rates is explainable by body mass and temperatures Q10 values for oxygen consumption, ammonia and phosphate excretion, respectively, are 2.45, 1.86 and 1.75 between 15° and 20°C, and 3.75, 2.90 and 3.60 between 20° and 24°C. Metabolic quotients (O:N, O:P, N:P) indicate a protein-oriented diet. The results of this study suggest weak metabolic regulation in O. dioica, an energetic strategy which allows an immediate response to favourable changes in feeding conditions.  相似文献   

2.
Flatfishes of Monterey Bay, central California, undergo species replacements with increasing depth along a transect from 100 m on the continental shelf down to a depth of 1400 m on the continental slope. The Dover sole, Microstomus pacificus, differs from the other local flatfish species by undergoing an extensive ontogenetic vertical migration, occupying all depth zones at different life stages, and having its maximum spawning biomass in the oxygen minimum zone between 600 and 1000 m. Size-activity relationships and depth-activity relationships for the glycolytic enzyme lactate dehydrogenase (LDH) and for two enzymes associated with aerobic metabolism, malate dehydrogenase and citrate synthase (CS), were examined in white-muscle tissue of shallow-living, deep-living and ontogenetically-migrating species. Scaling coefficients (b) for weight-specific enzyme activity (log activity)=a+b (log wet weight), varied in sign as well as magnitude for fishes living at different depths. In the shallow-living California halibut Paralichthys californicus, LDH scaled positively (0.39) and CS scaled negatively (-0.15) with size, a pattern observed previously for most shallow-water fish species. The permanently deep-living species, the deepsea sole Embassichthys bathybius, differed in that both LDH and CS scaled strongly negative (-2.0 and-1.5, respectively). For the ontogenetically migrating Dover sole Microstomus pacificus, there was a shelf-slope transition. For the shelf specimens (200 m), LDH scaled positive (0.11) and CS negative (-0.29) and for the slope specimens (400 m), LDH scaled negative (-0.65) and CS strongly negative (-0.63). Rex sole, Glyptocephalus zachirus, showed a similar shelf-slope transition. Intraspecific depth-enzyme activity differences were not incremental, but changed abruptly between the continental shelf stations (100 to 200 m) and the continental slope (400 to 1400 m). Based on comparisons with laboratory-maintained individuals, the decline in the metabolic capacity of the white muscle of Dover sole is a phenotypic response to the low food and oxygen conditions of the continental slope. Contrary to expectation, anaerobic capacity (LDH activity) decreased in response to low oxygen conditions, suggesting that in a permanently hypoxic environment such as the oxygen minimum zone the metabolic strategy may be to not incur an oxygen debt that would be difficult to pay back.  相似文献   

3.
To evaluate the concept of metabolic cold adaptation (MCA) in fishes, we compared - in brain, red muscle, and white muscle of Antarctic notothenioid fishes and tropical/subtropical fishes - the activities of two enzymes of ATP-generating pathways, citrate synthase (CS), an indicator of citric acid cycle activity (aerobic metabolism), and lactate dehydrogenase (LDH), an indicator of potential for ATP production through anaerobic glycolysis. Brain was chosen because, unlike locomotory muscle, its metabolic activity is not likely to be influenced by a species' level of activity or nutritional status, so MCA should be readily observed if present. CS and LDH activities in brain exhibited a high level of MCA, but compensation to temperature was not complete (48% for CS; 46% for LDH). CS and LDH activities in red and white muscle varied widely among species, according to the general level of locomotory activity. The 'mode of life'-related enzymatic activities in locomotory muscle show that study of MCA at the level of whole organism metabolism is fraught with difficulties and experimental ambiguities. In contrast, the low variation among species within each group in enzymatic activities in brain, and the large differences between groups in CS and LDH activity, show that brain is an excellent study system for evaluating metabolic compensation to temperature.  相似文献   

4.
The metabolic enzyme activities were determined in larvae of red drum, Sciaenops ocellatus, and lane snapper, Lutjanus synagris, to determine the effect of temperature and nutrition on metabolic enzyme activities and to evaluate if metabolic enzyme activities are useful in assessing the feeding condition of larval fish. During experiments conducted during the spring of 1990, lactate dehydrogenase (LDH) activities in both red drum and lane snapper were approximately an order of magnitude lower than values typical for adult fish; LDH and citrate synthase (CS) activities increased during early developmental stages, but nutritional effects were apparent. Clear differences (up to 4-fold) between well-fed and starving fish were evident in both LDH and CS activity in red drum. Differences between well-fed and poorly fed larvae were evident until 9 d after hatching. Lane snapper larvae reared at a 25°C had significantly lower LDH activities than larvae reared at 28°C.  相似文献   

5.
The oxygen consumption rates ( VO2) of 6 specimens (6 to 13 kg) of the albacore tuna Thunnus alalunga were measured at sea, using specimens collected 300 km west of San Diego, California (USA) during July and August, 1981. Fish were tested in a closed continuous-flow respirometer, where they swam at about 1.3 body lengths s-1 velocity in 15° to 19°C water. The albacore tuna is a temperate pelagic species experiencing water temperatures from about 10° to 20°C and attaining a maximum weight of 45 kg. The VO2 ranged from 1 249 to 3 336 ml h-1 (the mean VO2 for the 6 fish was 2 228 ml h-1); such values approach those of mammals of a similar size and are 3 to 4 times those of most active fishes (e.g. sockeye salmon). Among fishes, the only higher VO2 values yet recorded were for the skipjack tuna Katsuwonus pelamis, a tropical species. The remarkably high metabolic rates of tunas are presumably correlated with their continuous swimming activity and the maintenance of endothermy. The exponent relating VO2 to body weight (1.18), although large, is not statistically different from the exponents for most other active vertebrates.  相似文献   

6.
Antarctic fishes contain large quantities of lipid in adipose tissue, blood and oxidative muscle. In this study, the fatty acyl compositions of free fatty acids (FFA) and triacylglycerol (TAG) in serum, adipose tissue and oxidative muscle were determined in two species of Antarctic fishes, Trematomus newnesi Boulenger, 1902, and Notothenia gibberifrons Lönnberg, 1905, collected off the Antarctic Peninsula in February and March 1987. Total lipid contents of serum and oxidative muscle in each species also were measured. T. newnesi, a mesopelagic species, has significantly more lipid in the serum than N. gibberifrons, a demersal species (17.6±2.4 and 10.4±1.0 mg lipid g-1 serum, respectively). The oxidative muscle of T. newnesi also contains more lipid than does that of N. gibberifrons (12.5 and 9.3% by dry weight, respectively). Fatty acids comprising greater than 5% of one or more of the lipid pools assayed in both species include 14:0, 16:0, 16:1, 16:2, 18:0, 18:1, 20:5 and 22:6. The percentages of 16:1 were lower (p<0.05) in oxidative muscle FFA than in all other assayed lipid pools in both species, suggesting a catabolic preference for some monoenes in oxidative muscle of these fishes. The percentage of 14:0 was two-to three-fold higher in adipose tissue TAG than in all other lipid pools in both species. Differences in fatty acid compositions between lipid pools indicate than proteins involved in the mobilization, transport or catabolism of fatty acids exhibit differential recognition of fatty acids in T. newnesi and N. gibberifrons.  相似文献   

7.
T. Ikeda 《Marine Biology》1990,107(3):453-461
The abundance and vertical distribution pattern of a halocyprid ostracod,Conchoecia pseudodiscophora, were investigated in the Japan Sea in 1985, 1987 and 1989. Vertical sampling from 500 m depth to the surface in the water around Yamato Rise revealed that this ostracod was second in dominance by number and third to fourth by biomass of the total zooplankton collected with a 0.35 mm mesh Norpac net. Horizontal net tows in Toyama Bay indicated that the major population ofC. pseudodiscophora was distributed below 250 to 300 m depth. No diel migration pattern was evident. Its contribution to total zooplankton there was 5 to 10% or more in terms of biomass. A total of five subadult instars (II to VI) and adult males and females were identified from instar analysis based on sizes and morphological characteristics of specimens collected with 0.10 mm mesh Norpac nets. Data on body length, wet weight and dry weight of each instar are presented. Carbon content of 35 to 48% of dry weight, and nitrogen content of 5.3 to 7.3% of dry weight, were recorded on fresh, freeze-dried specimens of selected instars (subadult Instars IV to VI, adult females). Water and ash contents of mixed specimens of these four instars were 76% of wet weight and 25% of dry weight, respectively. Feasibility of laboratory maintenance ofC. pseudodiscophora was tested, and it produced characteristic J shaped faecal pellets. Oxygen consumption rates of subadult instars V and VI, and adult female ranged 0.011 to 0.021µl O2 ind.–1 h–1 at 1 °C, or 2.9 to 6.1µl O2 (mg body N)–0.85 h–1 in terms of Adjusted Metabolic Rate (AMRo 2). There was no appreciable metabolic reduction inC. pseudodiscophora compared to other ostracods, despite their mesopelagic life mode. Subdominance in total zooplankton and nonreduced metabolic activity ofC. pseudodiscophora suggest that this species may be an important link in mesopelagic energy-flow and matter cycling in the Japan Sea.  相似文献   

8.
Filtration rates and the extent of phagocytosed food particles were determined in the offshore lamellibranchs Artica islandica and Modiolus modiolus in relation to particle concentration, body size and temperature. Pure cultures of the algae Chlamydomonas sp. and Dunaliella sp. were used as food. A new method for determining filtration rates was developed by modifying the classical indirect method. The concentration of the experimental medium (100%) was kept constant to ±1%. Whenever the bivalves removed algae from the medium, additional algae were added and the filtration rate of the bivalves expressed in terms of percentage amount of algae added per unit time. The concentration of the experimental medium was measured continuously by a flow colorimeter. By keeping the concentration constant, filtration rates could be determined even in relation to different definite concentrations and over long periods of time. The amount of phagocytosed food was measured by employing the biuret-method (algae cells ingested minus algae cells in faeces). Filtration rates vary continuously. As a rule, however, during a period of 24 h, two phases of high food consumption alternate with two phases of low food consumption during which the mussels' activities are almost exclusively occupied by food digestion. Filtration rate and amount of phagocytosed algae increase with increasing body size. Specimens of A. islandica with a body length of 33 to 83 mm filter between 0.7 to 71/h (30–280 mg dry weight of algae/24 h) and phagocytose 21 to 122 mg dry weight of algae during a period of 24 h. The extent of food utilization declines from 75 to 43% with increasing body size. In M. modiolus of 40 to 88 mm body length, the corresponding values of filtration rate and amount of phagocytosed algae range between 0.5 and 2.5 l/h (20–100 mg dry weight of algae) and 17 to 90 mg dry weight of algae, respectively; the percentage of food utilization does not vary much and lies near 87%. Filtration rate and amount of phagocytosed algae follow the allometric equation y=a·x b. In this equation, y represents the filtration rate (or the amount of phagocytosed algae), a the specific capacity of a mussel of 1 g soft parts (wet weight), x the wet weight of the bivalves' soft parts, and b the specific form of relationship between body size and filtration rate (or the amount of phagocytosed algae). The values obtained for b lie within a range which indicates that the filtration rate (or the amount of phagocytosed algae) is sometimes more or less proportional to body surface area, sometimes to body weight. Temperature coefficients for the filtration rate are in Arctica islandica Q10 (4°–14°C)=2.05 and Q10 (10°–20°C)=1.23, in Modiolus modiolus Q10 (4°–14°C)=2.33 and Q10 (10°–20°C)=1.63. In A. islandica, temperature coefficients for the amount of phagocytosed algae amount to Q10 (4°–14°C)=2.15 and Q10 (10°–20°C)=1.55, in M. modiolus to Q10 (4°–14°C)=2.54 and Q10 (10°–20°C)=1.92. Upon a temperature decrease from 12° to 4°C, filtration rate and amount of phagocytosed algae are reduced to 50%. At the increasing concentrations of 10×106, 20×106 and 40×106 cells of Chlamydomonas/l offered, filtration rates of both mollusc species decrease at the ratios 3:2:1. At 12°C, pseudofaeces production occurs in both species in a suspension of 40×106, at 20°C in 60×106 cells of Chlamydomonas/l. At 12°C and 10–20×106 cells of Chlamydomonas/l, the maximum amount of algae is phagocytosed. At 40×106 cells/l, the amount of phagocytosed cells is reduced by 26% as a consequence of low filtration rates and intensive production of pseudofaeces. At 20°C and 20–50×106 cells of Chlamydomonas/l, the maximum amount of algae is sieved out and phagocytosed; the concentration of 10×106 cells/l is too low and cannot be compensated for by increased activity of the molluscs. With increasing temperatures, the amount of suspended matter, allowing higher rates of filtration and food utilization, shifts toward higher particle concentrations; but at each temperature a threshold exists, above which increase in particle density is not followed by increase in the amount of particles ingested. Based on theoretical considerations and facts known from literature, 7 different levels of food concentration are distinguishable. Experiments with Chlamydomonas sp. and Dunaliella sp. used as food, reveal the combined influence of particle concentration and particle size on filtration rate. Supplementary experiments with Mytilus edulis resulted in filtration rates similar to those obtained for M. modiolus, whereas, experiments with Cardium edule, Mya arenaria, Mya truncata and Venerupis pullastra revealed low filtration rates. These species, inhabiting waters with high seston contents, seem to be adapted to higher food concentrations, and unable to compensate for low concentrations by higher filtration activities. Adaptation to higher food concentrations makes it possible to ingest large amounts of particles even at low filtration rates. Suspension feeding bivalves are subdivided into four groups on the basis of their different food filtration behaviour.  相似文献   

9.
Stable isotope (SI) ratios of carbon (δ13C) and nitrogen (δ15N) were measured in omnivorous and carnivorous deep-sea copepods of the families Euchaetidae and Aetideidae across the Atlantic sector of the Southern Ocean to establish their trophic positions. Due to high and variable C/N ratios related to differences in lipid content, δ13C was corrected using a lipid-normalisation model. δ15N signals ranged from 3.0–6.9‰ in mesopelagic species to 7.0–9.5‰ in bathypelagic congeners. Among the carnivorous Paraeuchaeta species, the epi- to mesopelagic species Paraeuchaeta antarctica had lower δ15N values than the mesopelagic P. rasa and bathypelagic P. barbata. The same trend was observed among omnivorous Aetideidae, but was not significant. In the most abundant species P. antarctica, individuals from the western Atlantic had higher δ13C and δ15N values than specimens at the eastern stations. These longitudinal changes in δ13C and δ15N values were attributed to regional differences in hydrography and sea surface temperature (SST), in particular related to a northward extension of the Antarctic Polar Front (APF) at the easternmost stations. The results indicate that even in a mesopelagic carnivorous species, the changes in surface stable isotope signatures are pronounced.  相似文献   

10.
Activities of lactate dehydrogenase (LDH), pyruvate kinase (PK), malate dehydrogenase (MDH) and citrate synthase (CS) were measured in the white skeletal muscle of marine fishes having different depths of occurrence and different feeding and locomotory strategies. There were significant depth-related differences in the two glycolytic enzymes, LDH and PK. LDH activity was most variable, and differed by 3 orders of magnitude between the most active shallow-living species and certain deep-sea fishes likely to have only minimal capacities for active locomotion. Superimposed on the depth-related patterns was a high degree of interspecific variation (up to 20-fold) in enzymic activity among species from any given range of depth of occurrence. Variation of both LDH and PK activities, noted for shallow- and deep-living fishes, seems to be largely accounted for by differences in feeding habits and locomotory performance. Active pelagic swimmers have much higher activities of LDH and PK than, for example, deep-living sit-and-wait predators. Benthopelagic fishes like rattails and the sablefish have the highest activities found among deep-living fishes, suggesting that these species engage in relatively active food-searching behavior compared to most other deep-sea fishes. The activity of CS, an enzyme of the citric acid cycle and an indicator of aerobic metabolism, varied little among species. Thus, the large interspecific variation in glycolytic potential (LDH and PK) among species is not associated with a similar variation in aerobic metabolism of white muscle. The much higher and more variable activity of MDH relative to CS suggests that, in addition to its function in the citric acid cycle, MDH may play an important role in redox balance in fish white muscle. In a comparison of white muscle composition between the shallow- and deep-living species, water content did not differ significantly, but protein content was significantly higher in shallow- than in deep-living fishes (211 and 130 mg g-1 wet wt of muscle, respectively). The differences in muscle protein content are small relative to the differences between shallow- and deep-living species in LDH, PK and MDH activities. Thus, depthrelated differences in muscle enzymic activity are caused by factors other than enzyme dilution. Enzyme activities (LDH, PK and CS) in brain tissue were relatively constant among species regardless of depth of occurrence or feeding and locomotory habits. Habitat and lifestyle do not seem to influence the demands for overall metabolic function in brain. The utility of muscle enzymic activity data for making predictions about the ecological characteristics of difficult-to-observe, deep-living, fishes is discussed.  相似文献   

11.
Evidence is presented that a simple power equation of the formX t X m b(|tt m|)B can describe growth in length and weight of fishes, whereX t denotes fish length or weight at aget, X m is length or weight (L m orW m ) at a reference aget m , andb andB are parameters to be estimated by the least squares. The optimum age of fish populations (t y ) may be estimated by the equationMW m /b=±y B (B/y-M) whereM denotes natural mortality and wherey=t y -t m .  相似文献   

12.
Sand shrimp, Crangon septemspinosa Say, are important to the trophic dynamics of coastal systems in the northwestern Atlantic. To evaluate predatory impacts of sand shrimp, daily energy requirements (J ind.–1 day–1) were calculated for this species from laboratory estimates of energy losses due to routine (RR), active (RA), and feeding (RSDA) oxygen consumption rates (J ind.–1 h–1), coupled with measurements of diel motile activity. Shrimp used in this study were collected biweekly from the Niantic River, Connecticut (41°33N; 72°19W) during late spring and summer of 2000 and 2001. The rates of shrimp energy loss due to RR and RA increased exponentially with increasing temperature, with the magnitude of increase greater between 6°C and 10°C (Q10=3.01) than between 10°C and 14°C (Q10=2.85). Rates of RR doubled with a twofold increase in shrimp mass, and RSDA was 0.130 J h–1+RR, irrespective of shrimp body size. Shrimp motile activity was significantly greater during dark periods relative to light periods, indicating nocturnal behavior. Nocturnal activity also increased significantly at higher temperatures, and at 20°C shifted from a unimodal to a bimodal pattern. Laboratory estimates of daily metabolic expenditures (1.7–307.4 J ind.–1 day–1 for 0.05 and 1.5 g wet weight shrimp, respectively, between 0°C and 20°C) were combined with results from previous investigations to construct a bioenergetic model and make inferences regarding the trophic positioning of C. septemspinosa. Bioenergetic model estimates indicated that juvenile and adult shrimp could meet daily energy demands via opportunistic omnivory, selectively preying upon items of high energy content (e.g. invertebrate and fish tissue) and compensating for limited prey availability by ingesting readily accessible lower energy food (e.g. detritus and plant material).Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.P. Grassle, New Brunswick  相似文献   

13.
Anaerobic heat-production rates of two co-occurring species of estuarine bivalves (a clam and a mussel) were measured with double-twin heat-flow calorimeters, one at 20°C, the other at 30°C. There is no significant difference between the two species in metabolic rates. There is evidence of initial aerobic metabolism in some individuals, as shown by high initial rates exponentially decreasing with time, while others had fluctuating but stable average metabolic activity from the beginning. During aerobic as well as anaerobic metabolism, the bivalves showed rhythmic periods of activity and quiescence. The two species differed in their rhythmic pattern of active and resting metabolism. In the case ofPolymesoda caroliniana, periods of resting metabolism tend to be longer and periods of active metabolism shorter at 30°C than at 20°C. There is a similarity between thermograms ofModiolus demissus at 20° and 30°C. Following acute temperature changes from 5° to 20° and 30°C, the bivalves showed stable metabolic rates in a matter of hours. The stabilized average rates [pooled averages for both species of 1.34×10-4 (standard error of the mean=0.17×10-4) W g-1 dry weight of tissue at 20°C and 2.10×10-4 (SE=0.20×10-4) W g-1 at 30°C] signify a temperature coefficient (Q10) of 1.56 between 20° and 30°C, or partial temperature acclimation. Subtracting heat production as a result of physical activity, i.e., considering only resting metabolism, the corresponding means and standard errors of the means are 1.24×10-4 and 0.14×10-4 W g-1 at 20°C and 1.91×10-4 and 0.077×10-4 W g-1 at 30°C. Anaerobic heat production rate at 20°C is proportional to body size (r=0.84, 9 degrees of freedom, DF). ForM. demissus, measured anaerobic heat production is on the order of 7.5% of the level of aerobic respiration reported in the literature.  相似文献   

14.
Activities of the primary enzyme responsible for monovalent ion regulation, Na+-K+-adenosine triphosphatase (Na+-K+-ATPase), were measured in gills of marine teleost fishes with different depths of occurrence (0 to 4800 m), body weights (a range of five orders of magnitude), and locomotory capacities. Specimens were collected off the coasts of California and Oregon in 1983–1989, and at the Galápagos Spreading Center and 13°N East Pacific Rise hydrothermal vent sites in 1987 and 1988, respectively. Except for two hydrothermal vent fishes, deep-sea species had much lower Na+-K+-ATPase activities g–1 gill filament than shallow-living species, indicating that osmoregulatory costs, like total metabolic rate, are greatly reduced in most deep-living fishes. Within a species, the total branchial Na+-K+-ATPase activity per individual was dependent on size; the average allometric scaling exponent was 0.83. Using published values for oxygen consumption rates, and the total branchial Na+-K+-ATPase activities as an index of osmoregulatory costs, we estimated the maximal cost (as percent of ATP turnover) for osmoregulation in ten teleosts. Osmoregulatory costs averaged about 10% of total ATP turnover among these species, and maximal costs were no greater than about 20%. The percent costs of osmoregulation did not differ between shallow- and deep-living fishes. The reduced total ATP expenditure for osmoregulation in deep-living fishes is proposed to result from the sluggish locomotory habits of these fishes, not from selection for reduced osmotic coastper se. Thus, the reduced swimming abilities of these fishes lead to lower rates of water flow over the gills and less blood flow through the gills due to reduced demands for oxygen. Consequently, passive flux of water and ions through the gills is much lower than in more active fishes, and osmotic costs are thereby minimized. The relatively high activities of Na+-K+-ATPase in gills of the two hydrothermal vent fishes suggest that these fishes may be more active and have higher metabolic rates than other deep-sea fishes.  相似文献   

15.
Constructing realistic energy budgets for Antarctic krill, Euphausia superba, is hampered by the lack of data on the metabolic costs associated with swimming. In this study respiration rates and pleopod beating rates were measured at six current speeds. Pleopod beating rates increased linearly with current speed, reaching a maximum of 6 beats s–1 at 17 cm s–1. There was a concomitant linear increase in respiration rate, from 1.8 mg O2 gD–1 h–1 at 3 cm s–1 to 8.0 mg O2 gD–1 h–1 at 17 cm s–1. The size of the group tested (50, 100 and 300 krill) did not have a significant effect on pleopod beating rates or oxygen consumption (ANCOVA, F=0.264; P>0.05). The cost of transport reached a maximum of 75 J g–1 km–1 at 5 cm s–1, and then decreased with increasing current speed to 29 J g–1 km–1. When considered in light of energy budgets for E. superba, these data indicate that the cost of swimming could account for up to 73% of total daily metabolic expenditure during early summer.Communicated by G.F. Humphrey, Sydney  相似文献   

16.
N2-fixation associated with the green macroalgaCodium fragile subsp.tomentosoides (van Goor) Silva from Long Island, New York, USA, was attributable to several species of endophytic cyanobacteria. Rates of N2-fixation ranged from 0.03 to 3.2µg N g–1 dry wt h–1 in freshly collected plants from several sites. Growth of the cyanobacteria appeared to be light-limited, due to the transmission of only 5 to 10% of incident light through the pigmented surface-layer of the macroalga. Daily irradiance was the most important factor determining both abundance of cyanobacterial cells and rate of N2-fixation. The rate was also affected by instantaneous irradiance, and increased twofold from dark to ambient surface irradiance. Rates were reduced at low temperature (8°C) but showed no temperature effect between 12° and 26°C. External concentrations of dissolved inorganic nitrogen (DIN) up to 20µM did not influence N2-fixation rate, but long-term exposure to 60µmol l–1 d–1 of NH 4 + caused a reduction in the rate. InC. fragile grown under high daily irradiance and low external DIN concentration, ~50% of the assimilated-N was attributable to N2-fixation. However, chlorophyllb extracted from plants grown with15N2 showed an atom % excess15N of less than 0.1, suggesting that only a small proportion of the bacterially fixed-N was transferred to the seaweed. The association betweenC. fragile and its endophytic cyanobacteria appears to be based primarily on microhabitat suitability, rather than mutual metabolic dependence. It is doubtful that N2-fixation by cyanobacteria is important to the ecological success of this seaweed species.  相似文献   

17.
Oxygen consumption studies were undertaken with 3 mullet species to determine b, the exponent of w, as well as a, as indices of metabolic rate in the equation M=aw bwhere M=metabolic rate, a=the intensity of metabolism, W=body weight, and b=the exponent of w. This was done under 5 experimental temperatures (13°, 18°, 23°, 28°, 33°C) for Mugil cephalus and Liza dumerili at 1 and at 35 S, and for L. richardsoni at 35S only. Mean b values were approximately 0.85. The a values depended on temperature, and increased according to Van't Hoff's law except for L. dumerili (1 S) and L. richardsoni (35 S) for a temperature increase from 23° to 28°C. It was found that handling had a profound influence on metabolic rate and led to considerably increased consumption rates during the first 8 h after introduction into the respiration chambers. Fasting in L. dumerili resulted in a total drop of 27% in oxygen consumption over a period of 6 days, of which 10% occurred over the first 24 h. Oxygen consumption displayed diurnal rhythms during the 6 day period, with lowest consumption rates at midday and midnight and highest just after sunrise and sunset.  相似文献   

18.
The nature of protein catabolism in a wide range of species of midwater zooplankton was investigated. The weight-specific ammonia excretion rates (g NH3–N g–1 dry wt h–1, y) decline exponentially with minimum depth of occurreece (MDO, x), y=163.4 x–0.479±0.212 (95%ci) (CI=confidence interval), when temperature is held constant. The change in ammonia excretion can be partially explained by the decrease in percent protein (%P) with MDO, %P=80.17 MDO–0.148±0.122 (95%ci) The atomic O:N ratio of freshly caught zooplankters ranged from 9.1 to 91, with most measurements between 9 and 25. Detailed studies were carried out on the response of one of the species studied (Gnathophausia ingens) to starvation (28 d). After 14 d of starvation the average ammonia excretion rate declined by more than 75% to less than 1 g NH3–N g–1 wet wt h–1, although the average oxygen consumption declined by only 13% within the first 7 d of starvation and then remained stable. This differential response of oxygen consumption and ammonia excretion to starvation resulted in an increase in the average O:N ratio of starved animals from an initial 33 to 165 after 21 d. The average O:N ratios of fed mysids remained below 38 during the experiment. G. ingens maintains a relatively uniform metabolic rate during starvation by relying more heavily on its large lipid stores than when being fed.  相似文献   

19.
Maximal rates of oxygen consumption in vitro have been measured under standardized conditions at three test temperatures (5°, 15°, 25°C) on minced preparations of red muscle from 10 species of shallow-water marine teleost fishes. These fishes came from three different geographic areas, two with cool average water temperatures (near 15°C: coastal southern California, Galápagos Islands) and one with warm average water temperatures (near 25°C: Hawaiian Islands). The group is made up of post-juvenile or adult epipelagic fishes, which are moderately or very active in terms of their locomotor activities. A large part of the range of phylogenetic diversity among the teleosts is represented, as is the body weight range from a few grams to several kilograms. The purpose of the work is to provide part of a set of tissue-metabolism data on shallow-water fishes for future comparison with similar results from deep-sea species. Of 8 complete curves for oxygen uptake rate versus temperature (R-T curves), 6 are normal in shape (Q101.5), 1 is normal but with a low Q10, and 1 is partly flat, partly normal. The differences between the species in terms of both absolute positions and slopes of the R-T curves are not related in any consistent way to any of the three testable variables: phylogenetic position, long-term adaptation temperature, and body size. The red muscles of a variety of adult epipelagic fishes, at ecologically realistic temperatures, are shown to be exceptions to the general rule that tissues of ectothermous lower vertebrates have lower metabolic rates than comparable tissues of non-torpid endothermous higher vertebrates. This circumstance probably is a major factor in the great capacities for sustained high-speed swimming shown by most epipelagic fishes. Other physiological and ecological implications of the results are discussed.  相似文献   

20.
Morphology and microstructure of the sagittal otoliths from three species of mesopelagic, tropical-subtropical myctophids [Benthosema suborbitale (Gilbert),Diaphus dumerilii (Bleeker)Lepidophanes guentheri (Goode and Bean)], collected from September 1984 to May 1986 in the eastern Gulf of Mexico (27°N, 86°W), were examined and described. Analysis of the microstructure revealed microincrements corresponding to the daily growth rings reported in many studies. Using marginal increment analysis, the deposition of microincrements was verified as occurring daily, the first validation of daily growth rings in the otoliths of mesopelagic fishes. In all three species, the clear central (larval growth) zone of the sagitta was sharply delimited by a dark check accompanied by a series of accessory primordia. A wide, dark, sharply defined postlarval zone (width 100 µm) radiated out from this boundary inB. suborbitale andL. guentheri. While a darkened region was also observed around the larval growth zone inD. dumerilii, it was diffuse and differed in structure from that in the other two species. Within the dark zone in the otoliths ofB. suborbitale andL. guentheri, two different microincremental structures were observed. The narrower of these was determined to be the increment deposited on a daily basis. The structure and formation of the dark region in these three species appear to be related to larval transformation and behaviors of different species of myctophid larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号