首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
Several hundred chemical compounds were found in workroom environments in the rubber industry, but most of the published exposure data relate to the production of tyres; information from the "non-tyre" sections are very limited, if any. This study was carried out to identify chemical substances and measure their air concentrations in the repair shop of a brown coal mine in which damaged rubber conveyor belts were repaired. GC-MS and HPLC analysis of stationary air samples resulted in identification of aliphatic and aromatic hydrocarbons to C12, PAHs, alcohols, phenols, ketones, heterocyclic nitrogen and sulfur compounds. Quantitative evaluation of occupational exposure included determination of organic compound vapours collected on charcoal (GC-MSD), polycyclic aromatic hydrocarbons (HPLC), N-nitrosoamines and other amines (GC-NPD) and DNPH derivatives of aldehydes (HPLC) in the breathing zone of workers representing all job titles. The concentrations of investigated compounds were very low. Carcinogenic substances: N-nitrosoamines, benzene, PAHs were not present in workroom air in concentrations exceeding limits of detection of the analytical methods being applied; concentrations of methylisobutylketone, tetrachloroethylene, naphtha, aromatic hydrocarbons, phthalates and aldehydes were much lower than the respective occupational exposure limit values. The results indicate much lower exposure than that reported in the production of tyres and other fabricated rubber products.  相似文献   

2.
Methylhexahydrophthalic anhydride (MHHPA) is a hardener for hot-cured epoxy resins employed as insulators in the electric industry. MHHPA has only been measured as an ingredient with other alicyclic anhydrides, albeit there are also large processes which use only MHHPA. We collected MHHPA vapour in a set of devices: Teflon filter, glass spiral, TenaxTA tube connected consecutively together. Elution was performed with a solvent mixture of methyl-tert-butyl ether (70%), acetonitrile (30%), and acetic anhydride (0.5%). By capillary GC-ECD, the regression was linear (0.9994) in the practical low concentration range of 0.04-1 microg ml(-1) being equal to 0.001-0.035 mg m(-3) in 30 l of air. The exposure was measured in two factories manufacturing electric appliances. The assembled objects were first impregnated with a liquid epoxy/hardener mixture, and then the resin hardened at elevated temperature. In condenser manufacturing, the operators' 8 h exposure ranged from 0.068 to 0.118 mg m(-3), and the short-term exposure was during operation at ovens mean 1.90 mg m(-3). The impregnation of coiled resistors and transfer of them to ovens caused the worst exposures, short-term mean 3.846 mg m(-3) and long-term mean 2.191 mg m(-3). During the 'baking', the ovens were closed and evacuated, but when the hot objects were moved out of the ovens, they continued during chilling to emit MHHPA, mean 0.366 mg m(-3). In the adjacent areas, assembling, control rooms, offices, the exposure was still significant, 0.017-0.043 mg m(3), due to leaks from the high exposure areas. Mechanical general ventilation and local exhausts were functioning. Respirators were available for short supervising of the hot equipment.  相似文献   

3.
The thermal degradation products of polyurethanes (PURs) and exposure to isocyanates were studied by stationary and personal measurements in five different occupational environments. Isocyanates were collected on glass fibre filters impregnated with 1-(2-methoxyphenyl)piperazine (2MP) and in impingers containing n-dibutylamine (DBA) in toluene. connected to a glass fibre postfilter. The derivatives formed were analysed by liquid chromatography: 2MP derivatives with UV and electrochemical detection and DBA derivatives with mass spectrometric detection. The release of aldehydes and other volatile organic compounds into the air was also studied. In a comparison of the two sampling methods, the 2MP method yielded about 20% lower concentrations for 4,4'-methylenediphenyl diisocyanate (MDI) than did the DBA method. In car repair shops, the median concentration of diisocyanates (given as NCO groups) in the breathing zone was 1.1 microg NCO m(-3) during grinding and 0.3 microg NCO m(-3) during welding, with highest concentrations of 1.7 and 16 pg NCO m(-3), respectively. High concentrations of MDI, up to 25 and 19 microg NCO m(-3), respectively, were also measured in the breathing zone during welding of district heating pipes and turning of a PUR-coated metal cylinder. During installation of PUR-coated floor covering, small amounts of aliphatic diisocyanates were detected in the air. A small-molecular monoisocyanate, methyl isocyanate, and isocyanic acid were detected only during welding and turning operations. The diisocyanate concentrations were in general higher near the emission source than in the workers' breathing zone. A sampling strategy to evaluate the risk of exposure to isocyanates is presented.  相似文献   

4.
Exposure to diesel exhaust was evaluated in summer and winter by measuring vapour and particle phase polycyclic aromatic hydrocarbons (PAHs). Fifteen PAHs were simultaneously determined from the air samples obtained from truck drivers collecting household waste and maintenance personnel at a waste handling centre. The major compounds analysed from the personal air samples of exposed workers were naphthalene, phenanthrene and fluorene. The total PAH exposure (sum of 15 PAHs) of garbage truck drivers ranged from 71 to 2,660 ng m(-3) and from 68 to 900 ng m-3 in the maintenance work. The exposure of garbage truck drivers to benzo[a]pyrene (B[a]P) ranged from the mean of 0.03 to 0.3 ng m(-3) whereas no B[a]P in control samples or in those collected from maintenance workers was detected. A statistically significant difference in diesel-derived PAH exposure between the garbage truck drivers and the control group in both seasons (in summer p = 0.0022, degrees of freedom (df) 70.5; and in winter p < 0.0001, df = 80.4) was observed. Also, a significant difference in PAH exposure between the garbage truck drivers and the maintenance workers (in summer p < 0.0001, df = 50.1; and in winter p < 0.0001, df = 44.2) was obtained.  相似文献   

5.
The effects of relative humidity (40-90% RH) and varying glutaraldehyde vapour concentrations (< 0.1 ppm) on the response of an electrochemical fuel cell sensor have been investigated over time (0-400 s). These studies have identified changes in the response of the fuel cell with time after sampling. In particular, it has been found that the maximum cell output for water vapour occurs ca. 10 s after sampling whilst the response to glutaraldehyde occurs much later (> 100 s). For mixtures containing different ratios of water and glutaraldehyde vapours, the time taken to reach maximum fuel cell response varies between 10 and 100 s, depending on the ratio of the two vapours. For instance, glutaraldehyde vapour containing higher % RH has been found to result in shorter times to reach maximum fuel cell response. A comparison was made between measuring glutaraldehyde vapour concentrations in the presence of water vapour at the maximum fuel cell response and also at a fixed interval (240 s) after sampling. Such a comparison resulted in a reduction in the standard error from 36% to 5% for a glutaraldehyde vapour sample (0.023 ppm) measured at different values of relative humidity (40 to 80%). Examination of the effect of the sample volume (30-60 ml) on the response of the fuel cell shows, as expected, an approximate doubling of the fuel cell response. Optimisation of the fuel cell measurement parameters to measure a 60 ml sample leads to a lowering of the limit of detection from 0.083 ppm (for data taken at the maximum cell response) to 0.017 ppm for data measured 240 s after sampling. In the light of recent reductions in the legal limits for exposure to glutaraldehyde, this has important implications for the measurement of glutaraldehyde vapour in the workplace.  相似文献   

6.
Methyl tert-butyl ether (MTBE) has been used as a fuel additive at levels of 2–11% in Taiwan for the past decade. The purpose of this additive is to enhance the octane, replace the use of lead-based anti-knock gasoline additives and reduce aromatic hydrocarbons. However, it is possible that oxygenated fuel has a potential health impact. To determine the air quality impact of MTBE, measurements were made of ambient MTBE and other gasoline constituents at a service station. Additionally, environmental conditions (wind speed, wind direction, and temperature, etc.) that could affect concentrations of emission constituents were measured. Gas samples were analyzed for target MTBE and volatile organic compounds, e.g., benzene and toluene. Ambient samples were collected using Tenax adsorbent tubes for mass spectrometric analysis at a service station located in Changhua County, Taiwan. The resulting measured ambient air concentrations were compared with Taiwans regulatory standards for hazardous air pollutants. Subsequently, the factors controlling the formation of high-VOC levels at the service station and in the residential neighborhoods were identified. Additionally, the results can provide the Environmental Protection Agency (EPA) of Taiwan with useful information and prompt them to mandate this gas service station to install a refueling vapor recovery system.  相似文献   

7.
The level of concentrations of polycyclic aromatic hydrocarbons (PAHs) in surface soils from petroleum handling facilities (kerosene tank, generating plant, petrol stations, mechanic workshops, leaking pipeline and air port fuel dump) from Calabar metropolis southeastern Nigeria was determined by gas chromatography/ mass spectrometry. The results show that total polycyclic aromatic hydrocarbons (PAHs) varied from 1.80 to 334.43 mg/kg with a mean of 50.31 mg/kg. The lowest value of 1.80 mg/kg was obtained from petrol station while the highest value of 334.43 mg/kg was obtained from facility characterised by petrol stations and mechanic workshops. The ratio of phenanthrene/anthracene and fluoranthene/pyrene, varied from 0.43 to 27.72 and from 0.14 to 17.76 respectively. These ratios indicate various sources for the PAH. The two to three ring PAHs are the most abundant. Based on the PAH ratios and content alone it is not possible to distinguish between contribution from motor vehicle exhaust, gasoline spillage, used engine oil or petroleum production. However, considering the area of the study, it is very likely that the major source of soil contamination is originating from petroleum product.  相似文献   

8.
The dermal exposure to the suspected allergenic monoterpenes [small alpha]-pinene, [small beta]-pinene and [capital Delta](3)-carene was assessed with a patch sampling technique. The patch used was made of activated charcoal sandwiched between two layers of cotton cloth. Patches were fastened at 12 different spots on a sampling overall and at the front of a cap to estimate the potential exposure of the body. Fastening two patches on a cotton glove, one patch representing the dorsal side and one patch representing the palm of the hand respectively, assessed the exposure on the hands. Sampling was carried out during collecting of pine and spruce boards in sawmills and during sawing of pine wood pieces in joinery shops respectively. The potential dermal exposure of the total body was 29.0-1 890 mg h(-1) with a geometric mean (GM) of 238 mg h(-1) during sawing. During collecting the GM was estimated to 100 mg h(-1) with a range of 12.2-959 mg h(-1). The hands had a mean exposure of 9.24 mg h(-1) during sawing and 3.25 mg h(-1) during collecting respectively. The good correlation between the mass of contamination on the individual body parts and the potential body exposure indicates that sampling can be performed on one body part to give a good estimation of the potential body exposure. Monoterpenes were detected at patches fastened underneath the protective clothing indicating a contamination of the skin of the worker. The patch used may overestimate the dermal exposure.  相似文献   

9.
The use of the gasoline additive methyl tert-butyl ether (MTBE) has caused serious concern about groundwater and surface water contamination. The behavior of MTBE in the two most relevant compartments, surface water and air in a generic environment and in a simulated German environment is investigated using the equilibrium criterion (EQC) model. Due to lack of literature data, the half-life time of MTBE in river water is estimated to about 80-120 d (105 d) at 18 degrees C and roughly 1.5 a (year)(533 d) at 4 degrees C from a batch experiment. The EQC model considers four compartments, air, surface water, soil and sediment in an environment of typically 100,000 km2 with about 10% of the area covered with water. The user can progress through the tiered sequence of Level I to III with increasing complexity which reveals more information about the the fate of the considered chemical. The equilibrium mass distribution of MTBE calculated with the Level I model shows that 87% partitions into air and 13% into surface water at 10 degrees C. The results of the Level II calculations indicate that 50% of MTBE in the air is transported from the system and 38% in the air is degraded at 10 degrees C. The resulting total persistence time of 3 d for MTBE in the generic environment of the Level II model can be compared to the calculated value for chlorobenzene. The MTBE input into water is significantly more sensitive to the 'mode of entry' than input into air. The MTBE concentration in surface water is almost exclusively the result of direct emission into water, whereas the atmosphere can additionally be loaded by volatilization from water. The total aquatic MTBE emission in Germany and the average MTBE concentration in German surface waters were roughly estimated to 20-80 t a(-1) (tons per year)(50 t a(-1)) and 50 ng L(-1), respectively. Surface water concentrations calculated with the underlying assumptions of the model can neither be explained by exposure through waste water and industrial effluents nor with an estimated loss of industrially used MTBE in Germany. For the year-round scenario at 10 degrees C, MTBE concentrations of 19 ng L(-1) (surface water) and 167 ng m(-3) (air) result. However, it remains unclear whether the assumptions of the model, the lack of analyses from industrial effluents or both are responsible for the difference. Additional aquatic emission sources could result from gasoline transport on and storage near rivers. The comparison of winter and summer scenarios shows that in summer, atmospheric (25%) and aqueous (50%) concentrations are lower than in winter due to higher degradation rates.  相似文献   

10.
In order to encourage more exposure measurements to be performed, a formic acid gas-phase biosensor has been developed for this purpose. In the present paper, an enzyme based biosensor has been validated with respect to analyte selectivity and on-site use. To ensure that the sampler developed measures the compound of interest the biosensor was exposed to three near structural homologues to formic acid, i.e. acetic acid, methanol and formaldehyde. These vapours were generated with and without formic acid and the only compound that was found to have an effect on the performance of the biosensor, albeit a small one, was acetic acid. The field test was performed in a factory using formic acid-containing glue for glulam products. In parallel to the measurements with the biosensor a well defined reference method was used for sampling and analysing formic acid. It was found that the biosensor worked satisfactorily in this environment when used in a stationary position. It was also shown that the biosensor could determine formic acid vapour concentrations down to 0.03 mg m(-3).  相似文献   

11.
The distribution and sources of aliphatic and polycyclic aromatic hydrocarbons (PAH) were determined in sediments at seven sites around the Slovenian coastal area. The potential toxicological significance was also assessed using biological thresholds. The results of the analyses showed higher concentrations of hydrocarbons in the Port of Koper and in the Marina of Portoroz. The influence of pollution was also evident in rather higher concentrations of hydrocarbons in the surrounding area in the Bays of Koper and Piran. Concentrations of hydrocarbons decrease toward the central part of the Gulf of Trieste. The major component of the aliphatic fraction was the unresolved complex mixture. Concentrations of the total resolved aliphatic hydrocarbons were in a range from 689 to 3,164?ng?g?1. Concentrations of the total PAHs were between 330 and 1,173?ng?g?1. Polycyclic aromatic hydrocarbons are primarily of pyrolytic origin with some smaller contributions of the petrogenic, while the aliphatic are mostly of petrogenic origin with significant amounts of biogenic derived compounds of terrestrial and marine origin. Strong evidence of the diagenetic origin of perylene in the investigated area was also found. Quite a good linear relationship between PAH concentration and TOC and between aliphatic hydrocarbon concentrations and TOC was observed. The principal component analysis showed differences between the nearshore and offshore sites. In general, the investigated area is moderately contaminated by hydrocarbons. Concentrations of PAHs, hydrocarbons of high concern, are below the levels (effects range low and the effects range median) associated with adverse biological effects.  相似文献   

12.
An assessment of the diversity and abundance of macrobenthic community in a refined-oil (petrol) impacted and fire-ravaged mangrove ecosystem within the vicinity of a marine receipt terminal facility (Atlas Cove) serving as a distribution and pump station for refined products was carried out. The mangrove ecosystem was subjected to massive petrol spillage from a leaking pipeline and eventual fire outbreak. Following rehabilitation activities, a recovery assessment of the impacted ecosystem was carried out. The field surveys revealed that the petrol leakage and fire outbreak resulted in a near complete destruction of the mangrove ecosystem around the Atlas Cove depot, with macrobenthic species diversity index ranging between 0−0.4, compared to 0.78−0.87 in the control stations. The dominant early arrivals or colonizers of the impacted stations areas were Clibanarius africanus and Callinectes amnicola. Early signs of recovery of the impacted area were observed within about two and a half (2 1/2) to three (3) months, based on diversity and abundance indices respectively. The period of early signs of recovery also coincide with an observed reduction in the total hydrocarbon content (THC) levels in the sediment collected from the impacted stations by about nine folds from 3.67 mg/kg to 0.42 mg/kg within 3 months. Despite the apparent signs of recovery, the need for long-term monitoring of the impacted stations was discussed.  相似文献   

13.
Samples of compost-amended soil from waste dumping sites in Lagos Metropolis were extracted with dichloromethane (3 × 20 cm3) and the extract was evaporated at 35 °>C. The residue was extracted with 2,2,4-trimethylpentane, and portions of the solution were applied to a column containing silica gel from which aliphatic and aromatic hydrocarbons were eluted with n-hexane and toluene respectively. Analysis of the n-hexane fraction using gas chromatography showed the presence of a mixture of aliphatic hydrocarbons, ranging from C9 to C25, while ultraviolet analysis of the toluene fraction suggested 1,2-benzanthracene; 2,3-benzphenanthrene, chrysene and pyrene as polyaromatic compounds present in samples analyzed. The crude extracts were highly coloured and viscous. Total extractable organic residues in the 2,2,4-trimethylpentane extracts ranged from 36 to 89 mg g-1 of soil.  相似文献   

14.
This article presents the results of carbon disulfide exposure measurements in a Chinese viscose rayon factory. The objectives of the study were to identify the external exposure levels at a large factory and to investigate the 2-thiothiazolidine-4-carboxylic acid (TTCA) concentrations in the urine of the subjects who were exposed to carbon disulfide in the working place atmosphere. The metabolism of carbon disulfide in the exposed subjects was also studied in order to demonstrate the best points in time for the internal exposure sampling. The measurement of the amount of personal exposure to carbon disulfide in the air of the workplace was performed by GC-FPD; the presence of TTCA in the workers urine was analyzed by use of a modified HPLC method. The kinetics of TTCA excretion was studied by analyses at different time-points both during and after exposure to carbon disulfide in the subjects. A total of 155 personal samples were obtained. The carbon disulfide concentration in the staple viscose hall was 13.72 +/- 1.12 mg m-3 in terms of the geometric mean +/- geometric standard deviation, and was 20.05 +/- 1.33 mg m-3 in the filament spinning hall. The TTCA values in the subjects who worked in the staple spinning hall were 1.18 +/- 0.43 mg g-1 creatinine and 1.07 +/- 0.38 mg g-1 creatinine for subjects working in the filament spinning hall. The best time for TTCA sampling is at the end of the working shift, the TTCA excretion was stable for a period of 4-12 h after exposure of the subjects to the carbon disulfide. It might be that the Chinese have different anthropometric characteristics; a sampling bias may therefore appear among different races.  相似文献   

15.
The mechanistic model of the Advanced Reach Tool (ART) provides a relative ranking of exposure levels from different scenarios. The objectives of the calibration described in this paper are threefold: to study whether the mechanistic model scores are accurately ranked in relation to exposure measurements; to enable the mechanistic model to estimate actual exposure levels rather than relative scores; and to provide a method of quantifying model uncertainty. Stringent data quality guidelines were applied to the collated data. Linear mixed effects models were used to evaluate the association between relative ART model scores and measurements. A random scenario and company component of variance were introduced to reflect the model uncertainty. Stratified analyses were conducted for different forms of exposure (abrasive dust, dust, vapours and mists). In total more than 2000 good quality measurements were available for the calibration of the mechanistic model. The calibration showed that after calibration the mechanistic model of ART was able to estimate geometric mean (GM) exposure levels with 90% confidence for a given scenario to lie within a factor between two and six of the measured GM depending upon the form of exposure.  相似文献   

16.
High concentrations of volatile organic compounds (VOCs) in ambient air of urban areas stress the need for the control of VOC emissions due to the toxic and carcinogenic nature of many VOCs commonly encountered in urban air. Emission inventories are an essential tool in the management of local air quality, which provide a listing of sources of air pollutant emissions within a specific area over a specified period of time. This study intended to provide a level IV emission inventory as par the United States Environmental Protection Agency (USEPA) definition for evaporative VOC emissions in the metro cities of India namely Delhi, Mumbai, Chennai, and Kolkata. The vehicular evaporative emissions are found to be the largest contributor to the total evaporative emissions of hydrocarbons followed by evaporative losses related to petrol loading and unloading activities. Besides vehicle-related activities, other major sources contributing to evaporative emissions of hydrocarbons are surface coating, dry cleaning, graphical art applications, printing (newspaper and computer), and the use of consumer products. Various specific preventive measures are also recommended for reducing the emissions.  相似文献   

17.
A procedure for the determination of atmospheric acrylic acid in air at the microgram m-3 to mg m-3 level is described. Diffusion-based sampling, designed to discriminate gaseous analytes from their particulate counterparts, has been used. Acrylic acid is collected with an efficiency of > 98% in tubular denuders coated with sodium hydroxide-barium hydroxide-hydroquinone monomethyl ether, and analyzed by high performance liquid chromatography with UV absorbance detection. The detection limit is 2.9 micrograms m-3 at a flow rate of 0.5 L min-1 and 30 min sampling time. A precision (p = 0.95, n = 10) of 7.5% of the overall procedure was achieved at the 100 micrograms m-3 level. Results of laboratory studies concerning the effect of the coating reagent and the relative humidity on the sampling efficiency as well as possible interferences, in particular by ozone, and the elimination of these interferences are discussed. This method was developed to monitor workplace atmospheres as well as ambient air in industrial environments.  相似文献   

18.
Capillary microextractor (CME) in combination with a gas chromatograph-mass spectrometer (GC-MS) was employed for the determination of trace priority hazardous substances in water. Three groups of semivolatile organic compounds (SVOCs), i.e., chlorinated hydrocarbons, pesticides and polycyclic aromatic hydrocarbons (PAHs), were simultaneously determined. SVOCs were extracted from 7 mL of water samples on a 100 cm commercial gas chromatographic column (0.32 mm id x film thickness 0.25 microm, HP-5 capillary column) and eluted with only 3 microL of acetonitrile. The extractant was analyzed by GC-MS in the selected ion monitoring mode. The method showed good linearity over the concentration range 10 ng L(-1) to 3.0 mg L(-1) with correlation coefficients (r) greater than 0.99 and low limits of detection ranged from 10 ng L(-1) to 1.0 mg L(-1). High recovery (more than 80%) was obtained with relative standard deviation less than 10%. The method was successfully applied for trace level analyses of SVOCs in water samples.  相似文献   

19.
Inhalation of emissions from petrol and diesel exhaust particulates is associated with potentially severe biological effects. In the present study, polycyclic aromatic hydrocarbons (PAHs) were identified from smokes released by the automobile exhaust from petrol and diesel. Intensive sampling of unleaded petrol and diesel exhaust were done by using 800-cm3 motor car and 3,455-cm3 vehicle, respectively. The particulate phase of exhaust was collected on Whatman filter paper. Particulate matters were extracted from filter paper by using Soxhlet. PAHs were identified from particulate matter by reverse phase high performance liquid chromatography using C18 column. A total of 14 PAHs were identified in petrol and 13 in case of diesel sample after comparing to standard samples for PAH estimation. These inhalable PAHs released from diesel and petrol exhaust are known to possess mutagenic and carcinogenic activity, which may present a potential risk for the health of inhabitants.  相似文献   

20.
A GC-MS procedure for the determination of hydrocarbons in air samples from Oviedo, Spain, was developed. Air hydrocarbons were sampled with a high volume sampler equipped with a holder containing a glass fiber filter, to trap the particulate phase, and two polyurethane foams to capture hydrocarbons of the vapour phase. Compounds were extracted with CH2Cl2 by Soxhlet extraction and then fractionated using column chromatography with alumina silica. Analyses of the fractions were performed by GC-MS in the electron ionization mode. PAHs and n-alkanes were the compounds examined in this work. Samples collected in the vicinity of the Faculty of Chemistry (a semi-urban area) were analysed. The total concentration of PAHs in the air samples analysed ranged from 28 to 76 ng m(-3). The total concentration of n-alkanes and PAHs in the vapour phase exceeded the concentration in the particulate phase in the samples analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号