首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
Monitoring air quality in large urban agglomerations is the key to the prevention of air pollution-related problems in emerging mega-cities. The city of Wuhan is a highly industrialised city with >9 million inhabitants in Central China. Simultaneous PM10 sampling was performed during 1 year at one urban and one industrial site. Mean PM10 daily levels (156 microg m(-3) at the urban site and 197 microg m(-3) at the industrial hotspot) exceed the US-EPA or EU annual limit values by 3-4 times. A detailed study of daily speciation showed that the mean chemical composition of PM10 presents minimal differences between peak and low PM episodes. This implies that PM10 aerosols in the study area result from local emissions, and air quality management and abatement strategies in Wuhan should thus focus on local anthropogenic sources. The levels of some elements of environmental concern are relatively high (409-615 ngPb m(-3), 66-70 ngAs m(-3), 116-227 ngMn m(-3), 10-12 ngCd m(-3)) due to industrial, but also urban emissions. Principal component analysis identified a mineral source (probably cement and steel manufacture) and smelting as the main contributors to PM10 levels at the industrial site (34%), followed by a coal fired power plant (20%) and the anthropogenic regional background (16%). At the urban site the major PM10 source is a mixed coal combustion source (31%), followed by the anthropogenic regional background (28%) and traffic (16%).  相似文献   

2.
This paper shows the changes in PM(10) levels and chemical composition in a region in southeast Spain between two periods: September 2005-August 2006 and June 2008-May 2009. PM(10) levels in this arid region, with a great number of cement, ceramic and related industries, have decreased in the second period in concordance with the reduction of industrial production due to the economic crisis and the closure of a cement plant. Annual average levels of PM(10) decreased from 41?μg?m(-3) in 2005 to 30?μg?m(-3) in 2008 (27%) and to 23?μg?m(-3) in 2009 (23%). The relative contribution of the different sources has not changed in the area in the latter period and the elements with mineral origin are the main components of the PM(10) composition. There is a reduction in the concentration of the components that have soil-related industries and crustal material resuspension as their main sources, mainly in the case of CO(3) (2-), Ca, Sr, Tl and Pb, but the seasonal patterns were the same in both periods. As a particular case, there is an uncoupling between the seasonal evolution of SO(2) and sulphates in the two study periods, which remarks the existence of a sulphate regional background that does not depend on SO(2) local emissions. The decrease of V, Ni and Tl levels reflects the reduction of the industrial activity during the crisis period, affecting mainly the ceramic sector characterised by a great decrease of Tl levels.  相似文献   

3.
The aim of this study was to measure the concentration of some metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Ti) in PM(10) samples collected in one urban and one industrial site and to assess that PM(10) total mass measurement may be not sufficient as air quality index due to its complex composition. Metals were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and differential pulsed anodic stripping voltammetry (DPASV). The measured concentrations were used to calculate the content of metals in the PM(10) total mass, and to estimate the enrichment factors and the correlations between PM(10), metal concentrations and meteorological data for the two sites. The mean PM10 concentration during the sampling period in the urban site exceeded the annual European Union (EU) standard (40 microg/m(3)) and, for some sampling days, the daily EU standard (50 microg/m(3)) was also exceeded. In opposite, both EU standards were never exceeded in the industrial site. The overall metal content was nearly double in the industrial site compared to the urban one, and the mean Ni concentration exceeded the EU annual limit value (10 ng/m(3)). The metals with the highest enrichment factor were Cd, Cu, Ni and Pb for both sites, suggesting a dominant anthropogenic source for these metals. Metal concentrations were very low and typical of rural background during Christmas holidays, when factories were closed. PM(10) total mass measurement is not a sufficient air quality index since the metal content of PM(10) is not related to its total mass, especially in sites with industrial activities. This measurement should be associated with the analysis of toxic metals.  相似文献   

4.
Tocopilla is located on the coast of Northern Chile, within an arid region that extends from 30 degrees S to the border with Perú. The major industrial activities are related to the copper mining industry. A measurement campaign was conducted during March and April 2006 to determine ambient PM10 and PM(2.5) concentrations in the city. The results showed significantly higher PM10 concentrations in the southern part of the city (117 microg/m3) compared with 79 and 80 (microg/m3) in the central and northern sites. By contrast, ambient PM2.5 concentrations had a more uniform spatial distribution across the city, around 20 (microg/m3). In order to conduct a source apportionment, daily PM10 and PM(2.5) samples were analyzed for elements by XRF. EPA's Positive Matrix Factorization software was used to interpret the results of the chemical compositions. The major source contributing to PM(2.5) at sites 1, 2 and 3, respectively are: (a) sulfates, with approximately 50% of PM2.5 concentrations at the three sites; (b) fugitive emissions from fertilizer storage and handling, with 16%, 21% and 10%; (c) Coal and residual oil combustion, with 15%, 15% and 4%; (d) Sea salt, 5%, 6% and 16%; (e) Copper ore processing, 4%, 5% and 15%; and (f) a mixed dust source with 11%, 7% and 4%. Results for PM10--at sites 1, 2 and 3, respectively--show that the major contributors are: (a) sea salt source with 36%, 32% and 36% of the PM10 concentration; (b) copper processing emissions mixed with airborne soil dust with 6.6%, 11.5% and 41%; (c) sulfates with 31%, 31% and 12%; (d) a mixed dust source with 16%, 12% and 10%, and (e) the fertilizer stockpile emissions, with 11%, 14% and 2% of the PM10 concentration. The high natural background of PM10 implies that major reductions in anthropogenic emissions of PM10 and SO2 would be required to attain ambient air quality standards for PM10; those reductions would curb down ambient PM(2.5) concentrations as well.  相似文献   

5.
Mass concentrations and chemical components (18 elements, 9 ions, organic carbon [OC] and elemental carbon [EC]) in atmospheric PM(10) were measured at five sites in Fushun during heating, non-heating and sand periods in 2006-2007. PM(10) mass concentrations varied from 62.0 to 226.3 μg m(-3), with 21% of the total samples' mass concentrations exceeding the Chinese national secondary standard value of 150 μg m(-3), mainly concentrated in heating and sand periods. Crustal elements, trace elements, water-soluble ions, OC and EC represented 20-47%, 2-9%, 13-34%, 15-34% and 13-25% of the particulate matter mass concentrations, respectively. OC and crustal elements exhibited the highest mass percentages, at 27-34% and 30-47% during heating and sand period. Local agricultural residuals burning may contribute to EC and ion concentrations, as shown by ion temporal variation and OC and EC correlation analysis. Heavy metals (Cr, Ni, Zn, Cu and Mn) from coal combustion and industrial processes should be paid attention to in heating and sand periods. The anion/cation ratios exhibited their highest values for the background site with the influence of stationary sources on its upper wind direction during the sand period. Secondary organic carbon were 1.6-21.7, 1.5-23.0, 0.4-17.0, 0.2-33.0 and 0.2-21.1 μg m(-3), accounting for 20-77%, 44-88%, 4-77%, 8-69% and 4-73% of OC for the five sampling sites ZQ, DZ, XH, WH and SK, respectively. From the temporal and spatial variation analysis of major species, coal combustion, agricultural residual burning and industrial emission including dust re-suspended from raw material storage piles were important sources for atmospheric PM(10) in Fushun at heating, non-heating and sand periods, respectively. It was confirmed by principal component analysis that coal combustion, vehicle emission, industrial activities, soil dust, cement and construction dust and biomass burning were the main sources for PM(10) in this coal-based city.  相似文献   

6.
Particle-bound PAHs were measured at three sites in southeastern Spain (an urban background location, a suburban-industrial site in the vicinity of two cement plants and a rural area) in order to investigate the influence of the type of location on PAH concentrations. A clear influence of cement production on particulate PAH levels could not be established since for the urban background and suburban-industrial sites the average concentrations of total PAHs in the PM2.5 fraction were very similar (1.085 and 1.151 ng m(-3), respectively), with benzo[b+k]fluoranthene and chrysene as the predominant compounds. Diagnostic ratios, used to identify PAH emission sources, pointed to traffic as the main source of particulate PAH at both locations. As expected, PAH levels at the rural site were significantly lower (0.408 ng m(-3) in the PM10 fraction) due to increasing distance from the emission sources. PAH seasonal variations at the urban background and suburban-industrial sites were the same as reported in many previous studies. Average winter to summer ratios for total PAHs were 4.4 and 4.9 for the urban background and industrial sites, in that order. This seasonal cycle could be partially explained by the higher temperature and solar radiation during summer enhancing PAH evaporation from the particulate phase and PAH photochemical degradation, respectively. The study of PAH distribution between the fine and coarse fraction at the urban site revealed that on average around 80% of total PAHs were associated with fine particles.  相似文献   

7.
The concentrations of seven heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, and Pb) associated with PM10 and PM2.5 at the crossroads and the background sites have been studied in Zabrze, Poland, during smog episodes. Although the background level was unusually elevated due to both high particulate emission from the industrial and municipal sources and smog favorable meteorological conditions, significant increase of the concentration of PM2.5 and PM10 as well as associated heavy metals in the roadside air compared to the urban background has been documented. The average daily difference between the roadside and corresponding urban background aerosol concentration was equal to 39.5 μg m???3 for PM10 and 41.2 μg m???3 for PM2.5. The highest levels of the studied metals in Zabrze appeared for iron carried by PM10 particles: 1,706 (background) and 28,557 ng m???3 (crossroads). The lowest concentration level (in PM10) has been found for cadmium: 7 and 77 ng m???3 in the background and crossroads site, respectively. Also the concentrations of heavy metals carried by the fine particles (PM2.5) were very high in Zabrze during the smog episodes. Concentrations of all studied metals associated with PM10 increased at the roadside compared to the background about ten times (one order) while metals contained in PM2.5 showed two to three times elevated concentrations (except Fe—five times and Cr—no increase).  相似文献   

8.
The concentrations of total suspended particulate matter (TSP) and particulate matter less than 10 microns (PM10) were measured at various locations in a Jawaharlal Nehru port and surrounding harbour region. Meteorological data was also collected to establish the correlation with air pollutant concentration. The results are analysed from the standpoint of monthly and seasonal variations, annual trends as well as meteorological effects. The monthly mean concentration of TSP was in the range of 88.2 to 199.3 microg m(-3). The maximum and minimum-recorded value of PM10 was 135.8 and 20.3 microg m(-3), respectively. The annual average concentration of PM10 was 66.1 microg m(-3). There are clear associations between TSP and PM10 data set at all the measured three sites with a correlation coefficient of 0.89, 0.69 and 0.81, respectively. PM10 data appears to be a constant fraction of the TSP data throughout the year, indicating common influences of meteorology and sources. Particle size analysis showed PM10 to be 47% of the total TSP concentration, which is lower than reported for industrial area and traffic junctions in Mumbai. Anthropogenic sources contribute significantly to the PM10 fraction in an industrial region, while contributions from natural sources are more in a port and harbour area. Statistical analysis of air quality data shows that TSP is strongly correlated with wind speed but weakly correlated with temperature. There appears to be a simple inverse relationship between TSP and wind speed data, indicating the dilution and transport by winds.  相似文献   

9.
As part of a large epidemiologic study of lung cancer, 55,000 subjects, we have conducted a nation-wide survey of particulate exposures in the US trucking industry. The goal is to differentiate the risks from various types of particulate exposures, such as traffic emissions and general air pollution. We hypothesize that exposures defined by job and work site characteristics can be linked with subjects using their personal job histories. This report covers exposures at 36 randomly chosen large truck freight terminals in the US. Measurements were made of PM2.5, elemental carbon (EC), and organic carbon (OC) upwind of the terminal (background) and in work areas, and by personal samples. Significant differences in exposure intensity, microg m(-3), were found for work locations and jobs relative to background levels (GM[GSD]) at terminal sites: PM2.5 9.8[2.34], EC 0.5[3.24], and OC 5.0[1.76]. Using EC as a marker for diesel particles, work locations varied significantly: office 0.3[3.7], dock area 0.7[2.89] and shop area 1.5[3.52]), as did job titles (non-smokers): clerk 0.1[9.98], dock worker 0.8[2.13], and mechanic 2.0[3.82]. Cigarette smoking contributed substantially to personal exposures, approximately doubling PM2.5 and OC, but having less of an effect on EC. Large differences were seen across the terminal sites due to differences in local regional air pollution levels from traffic and other sources. We conclude that it will be possible to estimate current exposures of the cohort using an exposure assignment matrix based on job title, work location, and terminal site. This distribution overlaps substantially with the general public's exposure to these sources.  相似文献   

10.
Throughout 2004, PM(10) concentrations were measured at 10 min intervals at Hazelrigg, a remote location in NW England. The annual mean concentration was 6.1 microg m(-3) and likely origins were determined using directional and particle size characteristics. The fine temporal resolution of the monitoring also allowed several short periods (< 20 h) of persistently high PM(10) concentration to be identified and then 'typed' by event start time, duration, wind direction and particle size characteristics. A series of night time PM(10) anomalies (concentration < 465 microg m(-3)) of no obvious source were identified, and by elimination assumed to have originated from a ground-based fire of particle-rich fodder. A novel methodology combining Stokes' Law with systematic and rigorous modelling of source strength (using ADMS3.2) was developed to locate a possible burn site. The process was limited by the lack of previous modelling studies related to ground-based fires, and also by the capacity of ADMS3.2 to model sub-hourly time-varying emissions and fluctuations in wind speed and direction in the near field. However, modelling did suggest the source was located <400 m SSE of Hazelrigg, and investigation of this area revealed a burn site where tyres and plastic bags were piled nearby. Few studies have combined directional analysis and modelling to locate a source based on sampled data. This innovative methodology could be used by regulatory bodies to investigate the origins of unidentified PM(10) observed within the particle record.  相似文献   

11.
We report on the CuPbZn content of PM10 and PM2.5 samples collected from three sites (urban T0, suburban T1 and rural T2) during the Mexico City MILAGRO campaign of March 2006. Daytime city centre concentrations of summation operator CuZnPb(PM10) were much higher (T0 > 450 ng m(-3)) than at the suburban site (T1 < 200 ng m(-3)). Rural site (T2) summation operator CuZnPb(PM10) concentrations exceeded 50 ng m(-3) when influenced by the megacity plume but dropped to 10 ng m(-3) during clean northerly winds. Nocturnal metal concentrations more than doubled at T0, as pollutants became trapped in the nightly inversion layer, but decreased at the rural site. Transient spikes in concentrations of different metals, e.g. a "copper event" at T0 (CuPM10 281 ng m(-3)) and "zinc event" at T1 (ZnPM10 1481 ng m(-3)) on the night of March 7-8, demonstrate how industrial pollution sources produce localised chemical inhomogeneities in the city atmosphere. Most metal aerosols are <2.5 microm and SEM study demonstrates the dominance of Fe, Ti, Ba, Cu, Pb and Zn (and lesser Sn, Mo, Sb, W, Ni, V, As, Bi) in metalliferous particles that have shapes including spherical condensates, efflorescent CuZnClS particles, cindery Zn, and Cu wire. Metal aerosol concentrations do not change in concert with PM10 mass, which is more influenced by wind resuspension than industrial emissions. Metalliferous particles can induce cell damage, and PM composition is probably more important than PM mass, with respect to negative health effects, so that better monitoring and control of industrial emissions would likely produce significant improvements in air quality.  相似文献   

12.
A long-term series (2001-2008) of chemical analysis of atmospheric particulate matter (PM(10) and PM(2.5)) collected in the city of Huelva (SW Spain) is considered in this study. The impact of emission plumes from one of the largest Cu-smelters in the world on air quality in the city of Huelva is evidenced by the high daily and hourly levels of As, other potentially toxic elements (e.g. Cu, Zn, Cd, Se, Bi, and Pb) in particulate matter, as well as the high levels of some gaseous pollutants (NO(2) and SO(2)). Mean arsenic levels in the PM10 fraction were higher than the target value set by European Directive 2004/107/EC (6 ngAs m(-3)) for 1(st) January 2013. Hourly peak concentrations of As and other metals and elements (Zn, Cu, P and Se) analyzed by PIXE can reach maximum hourly levels as high as 326 ngAs m(-3), 506 ngZn m(-3), 345 ngCu m(-3), 778 ngP m(-3) and 12 ngSe m(-3). The contribution of Cu-smelter emissions to ambient PM is quantified on an annual basis in 2.0-6.7 μg m(-3) and 1.8-4.2 μg m(-3) for PM(10) and PM(2.5), respectively. High resolution outputs of the HYSPLIT dispersion model show the geographical distribution of the As ambient levels into the emission plume, suggesting that the working regime of the Cu-smelter factory and the sea breeze circulation are the main factors controlling the impact of the Cu-smelter on the air quality of the city. The results of this work improve our understanding of the behaviour of industrial emission plumes and their impact on air quality of a city, where the population might be exposed to very high ambient concentrations of toxic metals during a few hours.  相似文献   

13.
Mass Concentration of ambient particulate matter with an aerodynamic diameter less than 10µm (PM10) are reported for the first time for a range of sites in Dublin City over a 6 month period from January 1st 1996 to June 30th 1996. PM10 gravimetric mass concentration measurements are made with low flow Partisol 2000 air samplers using an impaction type PM10 inlet and 47mm diameter glass fibre filters. In addition, much finer time resolution measurements (minimum sampling frequency of 30 minutes) are made using a tapered element oscillating microbalance (TEOM) PM10 mass monitor. These PM10 mass concentrations methods are also compared with mass concentration inferred using the standard black smoke method. Analysis of the ambient mass concentration data with reference to traffic density and meteorological influences are presented. Results for the first six months of 1996 show that the average PM10 values range from a high of 49 µg m-3 at the Dublin city centre site to 14 µg m-3 at one of the suburban sites. Intercomparison between PM10 and black smoke mass concentrations show that the relationship is site specific. Statistical analysis between PM10 levels and car traffic number show a positive correlation while a weak negative correlation is found between PM10 levels and rainfall amount, wind speed and air temperature.  相似文献   

14.
Aerosol particle samples (PM10) were collected at urban, industrial and rural sites located in Rio de Janeiro, Brazil, between October 2008 and September 2009. Aerosol samples for each site were analyzed for total and soluble metals, water-soluble ions, carboxylic acids, and water-soluble organic carbon (WSOC). The results showed that the mean PM10 concentrations were 34 μg m(-3); 47 μg m(-3) and 71 μg m(-3) at the rural, urban and industrial sites, respectively. An increase in the average concentration of these particles due to air stagnation was observed during the period from May to September for all sites, and an increase in hospitalization for respiratory problems was also reported. On average, the anions species represented 4 to 14% of total content, while cations species corresponded to 1 to 11% and 7.5% for WSOC. The overall metal content at the industrial site was nearly the double that at the rural site. The concentrations of the studied species are influenced mainly by site location and the specific characteristics present at each site. However, higher concentrations of some species were observed on particular dates and were probably due to biomass burning and African dust events. The acid/aqueous percentiles showed that the most efficiently extracted metals from the aqueous phase were V and Ni (40%), while Al and Fe represented a lower percentage (<3%). Analysis of the aqueous fraction provides important information about the bioavailability of metals that is associated with the inflammatory process in the lungs.  相似文献   

15.
An intensive two month measurement campaign has been performed during a two year study of major component composition of urban PM10 and PM2.5 in Ireland (J. Yin, A. G. Allen, R. M. Harrison, S. G. Jennings, E. Wright, M. Fitzpatrick, T. Healy, E. Barry, D. Ceburnis and D. McCusker, Atmos. Res., 2005, 78(3-4), 149-165). Measurements included size-segregated mass, soluble ions, elemental carbon (EC) distributions, fine and coarse fraction organic carbon (OC) and major gases along with standard meteorological measurements. The study revealed that urban emissions in Ireland had mainly a local character and therefore were confined within a limited area of 20-30 km radius, without significantly affecting regional air quality. Gaseous measurements have shown that urban emissions in Ireland had clear, but fairly limited influence on the regional air quality due to favorable mixing conditions at higher wind speeds, in particular from the western sector. Size-segregated mass and chemical measurements revealed a clear demarcation size between accumulation and coarse modes at about 0.8 microm which was constant at all sites. Carbonaceous compounds at the urban site accounted for up to 90% of the particle mass in a size range of 0.066-0.61 microm. Nss SO4(2-) concentrations in PM2.5 were only slightly higher at the urban site compared to the rural or coastal sites, while NO3- and NH4+ concentrations were similar at the urban and coastal sites, but were a factor of 2 to 3 higher than at the rural site. OC was highly variable between the sites and revealed clear seasonal differences. Natural or biogenic OC component accounted for <10% in winter and up to 30% in summer of the PM2.5 OC at urban sites. A contribution of biogenic OC component to PM2.5 OC mass at rural site was dominant.  相似文献   

16.
遵义市PM10中元素污染特征、来源与生态风险评价   总被引:1,自引:0,他引:1  
采集2012年3月-2013年2月遵义市丁字口(市区点)、凤凰山(背景点)监测点的 PM10样品,并对 PM10中元素污染特征、来源和生态风险进行分析与评价。结果表明,遵义市 PM10质量浓度季节变化为:冬季>春季>秋季>夏季,且市区点高于背景点,冬季超标率均为100%。PM10中 As、Pb、Hg、Mn质量浓度市区点高于背景点,且均为冬季最高。富集因子分析表明,Pb、As、Cd、Hg、Mn、Cu、Zn来自人为污染,生态危害顺序为:Cd>Pb >As>Cu >Zn >Ni >Cr,其中 Cd 的潜在生态危害为极强。  相似文献   

17.
Daily measurements of sulfate, nitrate and chloride in PM(10) have been made at three geographically separated UK sites over a three year period. Chloride shows a clear seasonal pattern with highest concentrations in winter, whilst sulfate and nitrate both show highest concentrations in the spring, apparently related to weather patterns. Spatial variability of both sulfate and nitrate is low in comparison to temporal variations, with high correlations of both species between all three sites, London (North Kensington), Harwell and Belfast, despite a geographic separation of 510 km. Both SO/SO(2) and NO/NO(x) ratios are considerably higher in summer than winter, reflecting a greater oxidising capacity of the atmosphere. SO(4)(2-)/NO(3)(-) ratios are higher in summer than winter, suggesting that aqueous phase oxidation of SO(2), expected to be most important in the winter months is not appreciably influencing production of sulfate aerosol, although greater dissociation of ammonium nitrate in summer may also play a role. Regression of concentrations at London, North Kensington with those from the proximate rural site of Harwell is interpreted as showing a similar effect of regional transport at the two sites and a small influence of local formation in the urban atmosphere or primary emissions, averaging 0.46 microg m(-3) of nitrate and 0.22 microg m(-3) of sulfate.  相似文献   

18.
A study for assessment and management of air quality was carried out in the Ib Valley area of the Ib Valley coalfield in Orissa state, India. The 24 h average concentrations of suspended particulate matter (SPM), respirable particulate matter (RPM), sulfur dioxide (SO(2)) and oxides of nitrogen (NO(x)) were determined at regular intervals throughout one year at twelve monitoring stations in residential areas and six monitoring stations in mining/industrial areas. The 24 h average SPM and RPM concentrations were 124.6-390.3 microg m(-3) and 25.9-119.9 microg m(-3) in residential areas, and were 146.3-845.2 microg m(-3) and 45.5-290.5 microg m(-3) in industrial areas. During the study period, 24 h and annual average SPM and RPM concentrations exceeded the respective standards set in the Indian national ambient air quality standard (NAAQS) protocol as well as USEPA, EU, WHO and World Bank standards at most of the residential and industrial areas. However, concentrations of SO(2)(annual average: 24.6-36.1 microg m(-3) and 24 h average: 17.0-46.3 microg m(-3)) and NO(x)(annual average: 23.6-40.9 microg m(-3) and 24 h average: 18.3-53.6 microg m(-3)) were well within the prescribed limit of the NAAQS and international standards in both residential and industrial areas. The temporal variations of SPM and RPM fitted polynomial trends well and on average in the mining area 31.91% of the SPM was RPM. The linear regression correlation coefficients between SPM and RPM and between NO(x) and SO(2) were 0.94 (+/-0.04) and 0.66 (+/-0.10), respectively. The optimum interpolation technique, kriging, determined that maximal concentrations of SPM and RPM occurred within the mining site. Highest concentrations of particulate matter were observed during the winter season followed by summer, autumn and rainy seasons. An action plan is formulated for effective control of air pollution at source, and mitigative measures should include implementation of green belts around the sensitive areas where the concentration of air pollutants exceeds the standard limit.  相似文献   

19.
The use of hydrated magnesium carbonate hydroxide (magnesia alba) for drying the hands is a strong source for particulate matter in indoor climbing halls. Particle mass concentrations (PM10, PM2.5 and PM1) were measured with an optical particle counter in 9 indoor climbing halls and in 5 sports halls. Mean values for PM10 in indoor climbing halls are generally on the order of 200-500 microg m(-3). For periods of high activity, which last for several hours, PM10 values between 1000 and 4000 microg m(-3) were observed. PM(2.5) is on the order of 30-100 microg m(-3) and reaches values up to 500 microg m(-3), if many users are present. In sports halls, the mass concentrations are usually much lower (PM10 < 100 microg m(-3), PM2.5 < or = 20 microg m(-3)). However, for apparatus gymnastics (a sport in which magnesia alba is also used) similar dust concentrations as for indoor climbing were observed. The size distribution and the total particle number concentration (3.7 nm-10 microm electrical mobility diameter) were determined in one climbing hall by an electrical aerosol spectrometer. The highest number concentrations were between 8000 and 12 000 cm(-3), indicating that the use of magnesia alba is no strong source for ultrafine particles. Scanning electron microscopy and energy-dispersive X-ray microanalysis revealed that virtually all particles are hydrated magnesium carbonate hydroxide. In-situ experiments in an environmental scanning electron microscope showed that the particles do not dissolve at relative humidities up to 100%. Thus, it is concluded that solid particles of magnesia alba are airborne and have the potential to deposit in the human respiratory tract. The particle mass concentrations in indoor climbing halls are much higher than those reported for schools and reach, in many cases, levels which are observed for industrial occupations. The observed dust concentrations are below the current occupational exposure limits in Germany of 3 and 10 mg m(-3) for respirable and inhalable dust. However, the dust concentrations exceed the German guide lines for work places without use of hazardous substances. In addition, minimizing dust concentrations to technologically feasible values is required by the current German legislation. Therefore, substantial reduction of the dust concentration is required.  相似文献   

20.
This article presents results from the particulate monitoringcampaign conducted at Qalabotjha in South Africa during the winter of 1997. Combustion of D-grade domestic coal and low-smoke fuels were compared in a residential neighborhood to evaluate the extent of air quality improvement by switchinghousehold cooking and heating fuels.Comparisons are drawn between the gravimetric results from the two types of filter substrates (Teflon-membrane and quartz-fiber) as well as between the integrated and continuous samplers. It is demonstrated that the quartz-fiber filters reported 5 to 10% greater particulate mass than the Teflon-membrane filters, mainly due to the adsorption of organic gases onto the quartz-fiber filters. Due to heating of sampling stream to 50 °C in the TEOM continuous sampler and the high volatile content of the samples, approximately 15% of the particulate mass was lost during sampling.The USEPA 24-hr PM2.5 and PM10 National Ambient Air Quality Standards (NAAQS) of 65 g m-3 and 150 g m-3, respectively, were exceeded on several occasions during the 30-day field campaign. Average PMconcentrations are highest when D-grade domestic coal was used, and lowest between day 11 and day 20 of the experiment when a majority of the low-smoke fuels were phased in. Source impacts from residential coal combustion are also found to be influenced by changes in meteorology, especially wind velocity.PM2.5 and PM10 mass, elements, water-soluble cations (sodium, potassium, and ammonium), anions (chloride, nitrate, and sulfate), as well as organic and elemental carbonwere measured on 15 selected days during the field campaign. PM2.5 constituted more than 85% of PM10 at three Qalabotjha residential sites, and more than 70% of PM10 at the gradient site in the adjacent community of Villiers. Carbonaceous aerosol is by far the most abundant component, accounting for more than half of PM mass at the three Qalabotjha sites, and for more than a third of PM mass at the gradient site. Secondary aerosols such as sulfate, nitrate,and ammonium are also significant, constituting 8 to 12% of PM mass at the three Qalabotjha sites and 15 to 20% at the Villiers gradient site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号