首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.  相似文献   

2.
The dynamics of ozone in the San Joaquin Valley of central California are studied by systematic diagnostic runs of the three-dimensional SARMAP Air Quality Model. Air quality in the San Joaquin Valley is the result of a complex combination of local and transported emissions. Simulations show that relatively brisk winds at points of inflow to the Valley produce a strong dependence of ozone in the Valley on upwind conditions. Furthermore, NOx influx from boundaries and local emissions has significantly greater impact on ozone production than ROG influx and emissions.  相似文献   

3.
This study assesses the air quality impacts of central power generation and compares them with the impacts of distributed generation (DG). The central power plant emissions factors used are from a newly installed combined cycle gas turbine system. Because location of power plants is a key parameter affecting air quality impacts, this study considers three potential locations for the installation of central power plants. Air quality impacts are evaluated for the South Coast Air Basin of California, in the year 2010, using a three-dimensional air quality model. Results are compared to air quality impacts from two potential DG scenarios to meet the same power demand as that of the central power plant case.Even though emissions from central generation are lower than emissions from the DG technology mix considered herein, central generation concentrates emissions in a small area, whereas DG spreads emissions throughout a larger cross-section of the air basin. As a result, air quality impacts from central generation are more significant than those from DG. The study also shows that assessment of air quality impacts from distributed and central generation should not only consider emissions levels, but also the spatial and temporal distribution of emissions and the air quality that results from atmospheric chemistry and transport – highly non-linear processes.Finally, analysis of population exposure to ozone and PM2.5 shows that central generation located in coastal areas upwind from populated areas would cause the highest population exposure and even though emissions from central generation are considerably lower than DG emissions spread throughout the basin, results show that central generation causes a higher pollutant exposure than DG.  相似文献   

4.
ABSTRACT

The 1995 Integrated Monitoring Study (IMS95) is part of the Phase 1 planning efforts for the California Regional PM10/PM2.5 Air Quality Study. Thus, the overall objectives of IMS95 are to (1) fill information gaps needed for planning an effective field program later this decade; (2) develop an improved conceptual model for pollution buildup (PM10, PM2.5, and aerosol precursors) in the San Joaquin Valley; (3) develop a uniform air quality, meteorological, and emissions database that can be used to perform initial evaluations of aerosol and fog air quality models; and (4) provide early products that can be used to help with the development of State Implementation Plans for PM10. Consideration of the new particulate matter standards were also included in the planning and design of IMS95, although they were proposed standards when IMS95 was in the planning process.  相似文献   

5.
Analyses of U.S. Environmental Protection Agency (EPA) certification data, California Air Resources Board surveillance testing data, and EPA research testing data indicated that EPA's MOBILE6.2 emission factor model substantially underestimates emissions of gaseous air toxics occurring during vehicle starts at cold temperatures for light-duty vehicles and trucks meeting EPA Tier 1 and later standards. An unofficial version of the MOBILE6.2 model was created to account for these underestimates. When this unofficial version of the model was used to project emissions into the future, emissions increased by almost 100% by calendar year 2030, and estimated modeled ambient air toxics concentrations increased by 6-84%, depending on the pollutant. To address these elevated emissions, EPA recently finalized standards requiring reductions of emissions when engines start at cold temperatures.  相似文献   

6.
It is estimated that there is sufficient in-state “technically” recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality.

Implications:?This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining increased biomass use. Further work involving economic assessment, seasonal or annual emissions and air quality modeling, and potential exposure analysis would help inform policy makers and industry with respect to further development and direction of biomass policy and bioenergy technology alternatives needed to meet energy and environmental goals in California.  相似文献   

7.
Abstract

The U.S. Environmental Protection Agency (EPA) mandated the use of oxygenated gasoline beginning in the winter of 1992 to reduce the unhealthful carbon monoxide concentrations in many urban areas. The California Air Resources Board (CARB), weighing the potential effects of the program on other pollutants, implemented a modified version of the federal wintertime oxygenated fuels program. In California, the number of violations of the carbon monoxide air quality standard during the three winters associated with the program was dramatically lower than during any winter prior to the program. Because meteorological conditions during the program were very favorable for dispersion of pollutants, any analysis of the impacts of the program must account for the influence of variable meteorological conditions. Analyses of ambient pollutant concentrations suggest that most of the air quality improvement was due to increased atmospheric dispersion. The analyses presented here account for the large influence of meteorology on ambient concentrations and indicate that California’s modified oxygenated fuels program was responsible for an approximately 5–10% reduction in mean ambient carbon monoxide concentrations, depending on the statistical approach used.  相似文献   

8.
ABSTRACT

Data from the 1990 San Joaquin Valley Air Quality Study/ Atmospheric Utility Signatures, Predictions, and Experiments (SJVAQS/AUSPEX) field program in California's San Joaquin Valley (SJV) suggest that both urban and rural areas would have difficulty meeting an 8-hr average O3 standard of 80 ppb. A conceptual model of O3 formation and accumulation in the SJV is formulated based on the chemical, meteorological, and tracer data from SJVAQS/ AUSPEX. Two major phenomena appear to lead to high O3 concentrations in the SJV: (1) transport of O3 and precursors from upwind areas (primarily the San Francisco Bay Area, but also the Sacramento Valley) into the SJV, affecting the northern part of the valley, and (2) emissions of precursors, mixing, transport (including long-range transport), and atmospheric reactions within the SJV responsible for regional and urban-scale (e.g., downwind of Fresno and Bakersfield) distributions of O3. Using this conceptual model, we then conduct a critical evaluation of the meteorological model and air quality model. Areas of model improvements and data needed to understand and properly simulate O3 formation in the SJV are highlighted.  相似文献   

9.
The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest under growth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources.

Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using “as-planned” (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event.

Implications: The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).  相似文献   

10.
Evidence shows that the current national primary ambient air quality standard, if attained, would still permit substantial injury to vegetation. Thus, in March 1987, the California Air Resources Board (CARB) began consideration of the evidence for the effects of ozone (O3) on vegetation, and of several possible state ambient air quality standards designed to protect vegetation, especially crops, from O3 injury. In its review, the CARB addressed a number of issues relevant to such a standard. One issue considered by the CARB is the relationship of an ambient air quality standard to natural background levels of O3, which would greatly influence the practicality of attainment. Attainment of a standard close to natural background could entail excessive costs. Another issue considered is the occurrence of oxidants other than O3 that can damage vegetation. Throughout much of California, O3 accounts for over 90% of the oxidant air pollutants, and the CARB considered whether, in keeping with current practice, O3 should be used as a surrogate for total oxidant air pollutants. A major new piece of information presented to the CARB was an assessment of the economic effects of several potential standards. This assessment, produced by University of California scientists at Riverside and Davis, calculated the benefits of the potential standards in comparison to current O3 levels and estimated natural O3 background. This assessment was developed using field chamber response data, local crop data, and local O3 concentration data as inputs to the California Agricultural Resources Model, which accounts for both supply and demand effects. Because of California's varied climate, agricultural production occurs on a year-round basis, with overlapping growing seasons for many crops. Over long periods of time, O3 levels may vary markedly because of the influence of various factors, and a 1-h standard may not be an accurate indicator of growing season O3 exposure. A moving three-month averaging time has been proposed as a way to approximate the growing seasons of California's 200 crops. However, a sufficiently stringent 1-h standard would serve as a surrogate for a growing season standard. The CARB reviewed evidence supporting both long-term and short-term standards. Agriculture dominates the economies of some regions within California but is a minor components of other regional economies. Because the San Joaquin Valley is California's most important agricultural area, the CARB reviewed evidence for a regional standard for this area that would be more stringent than standards for other parts of the state.  相似文献   

11.
With the promulgation of the National Ambient Air Quality Standards (NAAQS or standard) for 8-hr ozone (O3), the U.S. Environmental Protection Agency (EPA) issued modeling guidance that advocated the use of results from photochemical air quality models in a relative sense. In doing so, the EPA provided guidance on how to calculate relative response factors (RRFs) that can project current design value (DV) mixing ratios into the future for the purpose of determining the attainment status with respect to the O3 standard. The RRFs recommended by the EPA represent the average response of the photochemical model over a broad range of O3 mixing ratios above a specified cutoff threshold. However, it is known that O3 response to emission reductions of limiting precursors (i.e., NOx and/or VOC) is greater on days with higher O3 mixing ratios compared to days with lower mixing ratios. In this study, we present a segmented RRF concept termed band-RRF, which takes into account the different model responses at different O3 mixing ratios. The new band-RRF concept is demonstrated in the San Joaquin Valley (SJV) region of California for the 1-hr and 8-hr O3 standards. The 1-hr O3 analysis is relevant to work done in support of the SJV O3 State Implementation Plan (SIP) submitted to the EPA in 2013. The 8-hr example for the future year of 2019 is presented for illustrative purposes only. Further work will be conducted with attainment deadline of 2032 as part of upcoming SIPs for the 0.075 parts per million (ppm) 8-hr O3 standard. The applicability of the band-RRF concept to the particulate matter (PM2.5) standards is also discussed.
Implications:Results of photochemical models are used in regulatory applications in a relative sense using relative response factors (RRFs), which represent the impacts of emissions reductions over a wide range of ozone (O3) values. It is possible to extend the concept of RRFs to account for the fact that higher O3 mixing ratios (both 1-hr and 8-hr) respond more to emissions controls of limiting precursors than do lower O3 mixing ratios. We demonstrate this extended concept, termed band-RRF, for the 1-hr and 8-hr O3 National Ambient Air Quality Standard (NAAQS or standard) in the San Joaquin Valley of California. This extension can also be made applicable to the 24-hr PM2.5 and annual PM2.5 standards.  相似文献   

12.
Abstract

The California Air Resources Board recently adopted regulations for light- and medium-duty vehicles that require reductions in the ozone-forming potential or “reactivity,” rather than the mass, of nonmethane organic gas (NMOG) emissions. The regulations allow sale of all alternatively fueled vehicles (AFVs) that meet NMOG exhaust emission standards equivalent in reactivity to those set for vehicles fueled with conventional gasoline. Reactivity adjustment factors (RAFs), the ratio of the reactivity (per gram) of the AFV exhaust to that of the conventionally fueled vehicle (CFV), are used to correct the stringent exhaust emission standards. Complete chemical speciation of the exhaust and conversion of each NMOG species to an appropriate mass of ozone using the maximum incremental reactivity (MIR) scale of Carter determines the RAF. The MIR approach defines reactivity where NMOG control is the most effective strategy in reducing ozone concentrations, and assumes it is not important to define reactivity at other conditions, i.e., where NOx is the limiting precursor.

This study used the Carnegie/California Institute of Technology airshed model to evaluate whether the RAF-adjusted AFV emissions result in ozone impacts equivalent to those of CFV emissions. A matrix of two ozone episodes in the South Coast Air Basin (SoCAB) of California, two base emission inventories, and exhaust emissions from three alternative fuels that meet the first level of the low emission vehicle standards bounds the expected range of conditions. Although very good agreement was found previously for individual NMOG species,2 this study noted deviations of up to ±15 percent from the equal ozone impacts for any vehicle/fuel combination required by the California regulations. These deviations appear to be attributable to differences in spatial and temporal patterns of emissions between vehicle fleets, rather than a problem with the MIR approach. The first formally adopted RAF, a value of 0.41 for 85 percent methanol/15 percent gasoline-fueled vehicles, includes a 10 percent increase based on the airshed modeling. The correction to the RAF is different for other fuels and may be different for air basins other than the SoCAB.  相似文献   

13.
The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter < 2.5 microm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest undergrowth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources. Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using "as-planned" (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event. Implications: The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).  相似文献   

14.
Data from the 1990 San Joaquin Valley Air Quality Study/Atmospheric Utility Signatures, Predictions, and Experiments (SJVAQS/AUSPEX) field program in California's San Joaquin Valley (SJV) suggest that both urban and rural areas would have difficulty meeting an 8-hr average O3 standard of 80 ppb. A conceptual model of O3 formation and accumulation in the SJV is formulated based on the chemical, meteorological, and tracer data from SJVAQS/AUSPEX. Two major phenomena appear to lead to high O3 concentrations in the SJV: (1) transport of O3 and precursors from upwind areas (primarily the San Francisco Bay Area, but also the Sacramento Valley) into the SJV, affecting the northern part of the valley, and (2) emissions of precursors, mixing, transport (including long-range transport), and atmospheric reactions within the SJV responsible for regional and urban-scale (e.g., down-wind of Fresno and Bakersfield) distributions of O3. Using this conceptual model, we then conduct a critical evaluation of the meteorological model and air quality model. Areas of model improvements and data needed to understand and properly simulate O3 formation in the SJV are highlighted.  相似文献   

15.
Abstract

Between 1991 and 1993, the California Air Resources Board (CARB) selected 1,115 vehicles from all across the South Coast Air Basin to evaluate the effectiveness of the state's existing biennial motor vehicle Inspection/Maintenance (I/M) or Smog Check program. The vehicles were chosen to represent the population of cars that "should fail" properly conducted inspections. The cars were emissions-tested at baseline and sent undercover to licensed I/M garages throughout the basin. Federal Test Procedure (FIT) emissions were measured again for cars that were repaired. In the second year of the study, the vehicles that could be reproduced were tested at the CARB to measure the level of emissions deterioration and any underhood changes in emission control systems. In the third year, the cycle of emissions testing and undercover inspections and repair was repeated.

This paper uses data from the study to explore the relationships between super emitting vehicles (defined here as vehicles whose emissions are several times California certification standards) and diagnostics and repair of their underhood emissions control systems. Also examined is their appearance and improvement during a three-year period that includes two cycles of inspection and repair. An important finding is that once normalized to account for differences in certification standards, the super emitting vehicles do not have a unique signature in terms of their underhood emission control system failure modes, mileage, or age, when compared with the average vehicle expected to fail a Smog Check inspection. However, they are more likely to be identified, diagnosed, and repaired effectively than other vehicles, although they continue to reappear over time.  相似文献   

16.
Abstract

Combinations of total reactive organic gas (ROG) and nitrogen oxide (NOx) emissions that do not exceed the National Ambient Air Quality Standard (NAAQS) for ozone for the meteorological conditions of the August 26-28, 1987 SCAQS episode, have been determined using the California Institute of Technology (CIT) photochemical air quality model. The sensitivity of these combinations to pollutant boundary conditions is examined.  相似文献   

17.
The Interstate Air Pollution Study of the St. Louis-East St. Louis Metropolitan Area, conducted in 1963–1964, provided data for this report of air pollutant emissions related to three land-use categories: (1) residential, (2) institutional and commercial, and (3) industrial. A fourth land-use category, transportation and open space, is included in some calculations. The sources of pollutants considered are: (1) power generation, both electric utilities and industrial, (2) fuels used for space heating, (3) solid waste disposal, and (4) industrial processes. The pollutant emissions considered are particulates and sulfur oxides. Cumulative frequency distributions given are based on acres of land use and corresponding emissions per unit area. These frequency distributions—actual emission conditions that can be related to known air quality levels—provide a basis for performance standards and a guide for planners and others in future city developments, not only in St. Louis but in other similar cities as well. A suggested method for determining a different type performance zoning standard is presented. This standard is based on average conditions and thus would supplement, not replace, standards based on maximum allowable emissions. Calculations for such standards relating to St. Louis are presented.  相似文献   

18.
Quantitative information from the 1995 Integrated Monitoring Study (IMS95) is used to develop a conceptual model, which describes the chemical characteristics and the physical processes responsible for the accumulation of PM in the San Joaquin Valley of California. One significant finding of the conceptual model is the sensitivity of ammonium nitrate (46% of winter PM2.5) and nitric acid to oxidants, which may be VOC-sensitive rather than NOx-sensitive. Key gaps in current knowledge are identified using the conceptual model, e.g., the relative sensitivity of winter oxidants to VOC and NOx, mechanistic details of secondary organic aerosol formation, mechanisms of dispersion under calm conditions, and the importance of dry deposition. Some recommendations are also provided for the formulation of air quality models suitable to address the accumulation of PM in the San Joaquin Valley.  相似文献   

19.
The field measurement phase of the San Joaquin Valley Air Quality Study, which was conducted in the summer of 1990, was the largest and most sophisticated study of its kind ever conducted in this country. The San Joaquin Valley has the nation’s second worst overall air quality problem and is using the study results to conduct regional modeling to refine its control strategies. The study began in 1985 and will continue into the mid-1990s. The origins of the study, and the manner in which it is being funded and administered, reflect a unique and highly successful collaboration among several levels of government and the private sector. The temporary organizational structure formed to manage the study sets an interesting precedent for how political-level leaders can work effectively with the scientific community to conduct a long term technical study.  相似文献   

20.
To improve U.S. air quality, there are many regulations on-the-way (OTW) and on-the-books (OTB), including mobile source California Low Emission Vehicle third generation (LEV III) and federal Tier 3 standards. This study explores the effects of those regulations by using the U.S. Environmental Protection Agency's (EPA) Community Multiscale Air Quality (CMAQ) model for 8-hr ozone concentrations in the western and eastern United States in the years 2018 and 2030 during a month with typical high ozone concentrations, July. Alterations in pollutant emissions can be due to technological improvements, regulatory amendments, and changes in growth. In order to project emission rates for future years, the impacts of all of these factors were estimated. This study emphasizes the potential light-duty vehicle emission changes by year to predict ozone levels. The results of this study show that most areas have decreases in 8-hr ozone concentrations in the year 2030, although there are some areas with increased concentrations. Additionally, there are areas with 8-hr ozone concentrations greater than the current U.S. National Ambient Air Quality Standard level, which is 75 ppb.

Implications:

To improve U.S. air quality, many regulations are on the way and on the books, including mobile source California LEV III and federal Tier 3 standards. This study explores the effects of those regulations for 8-hr ozone concentrations in the western and eastern United States in the years 2018 and 2030. The results of this study show that most areas have decreases in 8-hr ozone concentrations in 2030, although there are some areas with increased concentrations. Additionally, there are areas with 8-hr ozone concentrations greater than the current U.S. National Ambient Air Quality Standard level.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号