首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the sinterability to improve the technical properties of ceramic bodies made from coal bottom ash and soda-lime glass cullet. Different mixtures of bottom ash and glass cullet were formulated. The amount of bottom ash was 100, 70, 50 and 30 wt.%. The particle size distribution was the same for all formulations. The mixture containing 50 wt.% bottom ash also had its particle size distribution changed. Samples were formed by dry pressing and then fired at 950, 1050 and 1150 degrees C. Samples were evaluated for linear shrinkage, water absorption, flexural mechanical resistance, scanning electronic microscopy, pyroplastic deformation and thermodilatometric analysis. The higher firing temperature led to a decrease in water absorption and increased linear shrinkage, mechanical resistance and pyroplastic deformation. This effect was also observed for addition of glass up to 50 wt.%. The effect of smaller particles of bottom ash was more significant for linear shrinkage and mechanical resistance of ceramic bodies fired at 1150 degrees C. The use of a finer powder contributed to increase these properties. The influence of finer particles on water absorption and mechanical resistance of ceramic bodies fired at 950 and 1050 degrees C was not significant.  相似文献   

2.
This paper describes an industrial process for stabilising sewage sludge (SS) with lime and evaluates the viability of the stabilised product, denominated Neutral, as a raw material for the cement industry. Lime not only stabilised the sludge, raised the temperature of the mix to 80-100 °C, furthering water evaporation, portlandite formation and the partial oxidation of the organic matter present in the sludge.Process mass and energy balances were determined. Neutral, a white powder consisting of portlandite (49.8%), calcite (16.6%), inorganic oxides (13.4%) and organic matter and moisture (20.2%), proved to be technologically apt for inclusion as a component in cement raw mixes. In this study, it was used instead of limestone in raw mixes clinkerised at 1400, 1450 and 1500 °C. These raw meals exhibited greater reactivity at high temperatures than the limestone product and their calcination at 1500 °C yielded clinker containing over 75% calcium silicates, the key phases in Portland clinker. Finally, the two types of raw meal (Neutral and limestone) were observed to exhibit similar mineralogy and crystal size and distribution.  相似文献   

3.
From the point of view of a sustainable and environment-friendly society based on the recycling of material resources, it is preferable to utilize waste gypsum as a substitute for lime, which is currently produced by the calcination of limestone. In the present work, the reductive decomposition of CaSO4 was investigated under an atmosphere of CO: 2 vol%, CO2: 30 vol%, with N2 as a carrier gas without and with the addition of SiO2, Al2O3, or Fe2O3. It was found that the decomposition temperature of CaSO4 was significantly reduced from 1673 K to 1223 K when only 5 wt% Fe2O3 was added to CaSO4. In the case of the addition of SiO2 or Al2O3 to CaSO4, the decomposition temperature was reduced from 1673 K to 1623 K. This was due to the formation of composite oxides (calcium ferrite, calcium silicate, or calcium aluminate) during the reaction of CaSO4 with the additives at a lower temperature. In addition, the formation of unfavorable product CaS was inhibited in the presence of 5 wt% Fe2O3, and this inhibition effect further increased as the addition of Fe2O3 was increased. In contrast, no significant effect on the inhibition of CaS formation was observed on the addition of SiO2 or Al2O3.  相似文献   

4.
Vitrification as a waste stabilization technology has often been considered applicable only to high-level radioactive waste for which, with the use of suitable additives, it yields a vitreous material with excellent chemical durability. It has become apparent in recent years that some waste forms-notably domestic waste incineration fly-ash purification residues--contain most of the ingredients of a vitrified material, although their composition variations are difficult to control. It is thus important to ensure not only that the materials are suitable for vitrification, but also that the resulting product exhibits acceptable long-term behavior under all circumstances. An initial study showed that, allowing for the compensation changes inherent in the melting process builtby EDF**, the residue collected by a single fly-ash dust separation defines a composition range within which the suitability of the vitrified material can be verified. "Vitrified material" refers to a melted material that contains no unmelted inclusions after cooling, but that may contain a variable fraction of crystallized phases. Five composition parameters were identified for the long-term behavior assessment: the concentrations of the three major elements (silicon, aluminum and calcium), the total alkali metal (sodium and potassium) concentration, and the sum of the concentrations of two toxic elements (zinc and lead). The other elements were assumed constant at molar ratios representative of industrial wastes. The experimentation plan methodology applied to the composition range identified fourteen materials suilable for developing and validating first-order models of the material components. The fly-ash composition had a very significant effect on the degree and kinetics and crystallization in the vitrified material within the experimental composition range; the cooling rate was the determining factor for some of the fourteen materials studied. Two crystailine phases predominated: spinels rich in chromium, zinc, aluminum, magnesium and iron formed quickly on cooling, and accounted for about 2 vol% of the final material. Gehelenite (Ca2Al2SiO7) crystallized massively in some vitrified materials, accounting for more than half the final product and giving it a rock-like appearance. The effect of composition alone must therefore be distinguished from the effect of crystallization on the leaching behavior. Soxhlet tests were conducted for 14 days according to a protocol based on that of the French AFNOR draft standard NF-M 60313 to determine the maximum alteration rate in pure water at 100 degrees C. The measured rate ranged from 4 to 40 gm(-2) day(-1), illustrating the crucial role of the silicon concentration: within the test composition range, a low silicon content (< 30 wt%) tended to result in a significantly higher initial rate. However, the initial rate alone is not sufficient to assess the chemical durability of the material. Further tests will be carried out at 25 degrees C under conditions approximating those of a proposed disposal site to highlight the role of the alteration layer and the effect of rising concentrations in solution on the decreasing alteration rate.  相似文献   

5.
The characterization of the bottom ashes produced by two Portuguese municipal solid waste incinerators (MSWI) was performed with the aim of assessing the feasibility of using this waste as raw material in the production of glass that can be further processed as glass-ceramics for application in construction. Density and particle size distribution measurements were carried out for physical characterization. Chemical characterization revealed that SiO(2), a network glass former oxide, was present in a relatively high content (52-58wt%), indicating the suitability for this waste to be employed in the development of vitreous materials. CaO, Na(2)O and K(2)O, which act as fluxing agents, were present in various amounts (2-17wt%) together with several other oxides normally present in ceramic and glass raw materials. Mineralogical characterization revealed that the main crystalline phases were quartz (SiO(2)) and calcite (CaCO(3)) and that minor amounts of different alkaline and alkaline-earth aluminosilicate phases were also present. Thermal characterization showed that the decomposition of the different compounds occurred up to 1100 degrees C and that total weight loss was <10wt%. Heating both bottom ashes at 1400 degrees C for 2h resulted in a melt with suitable viscosity to be poured into a mould, and homogeneous black-coloured glasses with a smooth shiny surface were obtained after cooling. The vitrified bottom ashes were totally amorphous as confirmed by X-ray diffraction. The results from the present experimental work indicate that the examined bottom ashes can be a potential material to melt and to obtain a glass that can be further processed as glass-ceramics to be applied in construction.  相似文献   

6.
The aim of this study was to develop cost-effective, appropriate solidification technologies for treating hazardous industrial wastes that are currently disposed of in ways that may threaten the quality of local groundwater. One major objective was to use materials other than cement, and preferably materials that are themselves wastes, as the solidification additives, namely using wastes to treat wastes or locally available natural material. This research examines the cement-based and lime-based stabilization/solidification (S/S) techniques applied for waste generated at a metal-plating industry and a dye industry. For the lime-based S/S process the following binder mixtures were used: cement kiln dust/ lime, bentonite/lime and gypsum/lime. For the cement-based S/S process three binder mixtures were used: cement kiln dust/cement, bentonite/cement and gypsum/cement. The leachability of the wastes was evaluated using the toxicity characteristic leaching procedure. The applicability and optimum weight ratio of the binder mixtures were estimated using the unconfined compressive strength test. The optimum ratio mixtures were mixed with waste samples in different ratios and cured for 28 days in order to find the S/S products with the highest strength and lowest leachability at the same time. The results of this work showed that the cement-and lime-based S/S process, using cement kiln dust and bentonite as additives can be effectively used in order to treat industrial waste.  相似文献   

7.
The presence of hexavalent chromium, Cr(VI), in soil is an environmental concern due to its effect on human health. The concern arises from the leaching and the seepage of Cr(VI) from soil to groundwater. In this paper, a stabilization technology to prevent this problem was simulated on an artificial soil contaminated with hexavalent chromium. The process is a physico-chemical treatment in which the toxic pollutant is physically entrapped within a solid matrix formed by the pozzolanic reactions of lime and fly ash to reduce its leachability and, therefore, its toxicity. This paper presents the optimum ratio of fly ash and lime in order to stabilize artificial soils contaminated with 0.4 wt.% of Cr (VI) in a brief term process. The degree of chromium released from the soil was evaluated using a modified Toxicity Characteristic Leaching Procedure (TCLP) by US Environmental Protection Agency (EPA). Overall, experimental results showed reduced leachability of total and hexavalent chromium from soils treated with both fly ash and quicklime, and that leachability reduction was more effective with increasing amount of fly ash and quicklime. Stabilization percentages between 97.3% and 99.7% of the initial chromium content were achieved, with Cr(VI) concentration in the TCLP leachates below the US EPA limit for chromium of 5 mg/l. Adequate treatment was obtained after 1 day of curing with just 25% fly ash and 10% quicklime.  相似文献   

8.
The fine fraction (<14mm) of incinerator bottom ash (IBA) obtained from a UK energy from waste plant has been milled and thermally treated at 600, 700, 800 and 880 degrees C. Treated materials have been activated with Ca(OH)(2) (10wt%) and the setting times and compressive strengths at different curing times measured. In addition to decomposition of CaCO(3) to CaO, thermal treatment increases the content of gehlenite (Ca(2)Al(2)SiO(7)), wollastonite (CaSiO(3)) and mayenite (Ca(12)Al(14)O(33)). Thermally treated samples were significantly more reactive than milled IBA and heating to 700 degrees C produced a material which rapidly set. Silica, gehlenite and wollastonite were the main crystalline phases present in hydrated samples and a mixed sulphate-carbonate AFm-type phase (Ca(4)Al(2)O(6)(CO(3))(0.67)(SO(3))(0.33).11H(2)O) formed. Significant volumes of gas were generated during curing and this produced a macro-porous microstructure that limited strength to 2.8MPa. The new materials may have potential for use as controlled low-strength materials.  相似文献   

9.
In this study, the viability of using electrostatic painting residues--paint sludge--as a raw material to the red clay industry was investigated. Red clay-based ceramic masses containing electrostatic paint residues were formulated during the study. The clays were obtained from the Rio do Rastro deposit, in Gravataí, and were of the standard formulation used in industry. Different ceramic mass formulations with additions of 0.5, 1.0, 2.5 and 5.0 wt.% electrostatic painting residue in addition to a formulation with no residue addition (standard formulation), were evaluated. The samples were uniaxially pressed in a double-effect press and were fired in an electric oven at 900, 950 and 1000 degrees C. The firing at constant temperature lasted 8 h, and heating rate was 150 K h(-1). After processing the samples were characterized in terms of their physical and mechanical properties. Environmental compatibility was also considered by the evaluation of gaseous emissions and leaching and solubilization tests according to the Brazilian standards NBR 10.005 and NBR 10.006, respectively. The results showed that it was possible to produce ceramic materials containing electrostatic painting residues within their formulations.  相似文献   

10.
Treatment and recycling of incinerated ash using thermal plasma technology   总被引:11,自引:0,他引:11  
To treat incinerated ash is an important issue in Taiwan. Incinerated ashes contain a considerable amount of hazardous materials such as dioxins and heavy metals. If these hazardous materials are improperly treated or disposed of, they shall cause detrimental secondary contamination. Thermal plasma vitrification is a robust technology to treat and recycle the ash residues. Under the high temperature plasma environment, incinerated ashes are vitrified into benign slag with large volume reduction and extreme detoxification. Several one-step heat treatment processes are carried out at four temperatures (i.e. 850, 950, 1,050 and 1,150 degrees C) to obtain various "microstructure materials". The major phase to form these materials is a solid solution of gehlenite (Ca2Al2SiO7) and ?kermanite (Ca2MgSi2O7) belonging to the melilite group. The physical and mechanical properties of the microstructure materials are improved by using one-step post-heat treatment process after plasma vitrification. These microstructure materials with good quality have great potential to serve as a viable alternative for construction applications.  相似文献   

11.
Chitosan nano-composite film crosslinked by citric acid and with glycerol as plasticizer and MgO as antibacterial agent was prepared by casting method. MgO nanoparticles were synthesized via calcination method in furnace at 500 °C for 4 h and characterized by X-ray diffraction and transmission electron microscope. The chitosan nano-composite film with composition chitosan/citric/glycerol/magnesium oxide (1 wt%:1 wt%:75 vol%:10 wt%) has high mechanical properties than other films. The effects of different irradiation doses on the mechanical, thermal and antibacterial activity were investigated. The tensile strength enhanced by increasing irradiation dose up to 10 kGy and the elongation negligible changed as irradiation dose increased. The thermal stability slightly increased up to dose 2.5 kGy then decreased with dose increment. The antimicrobial activity film was studied against white mulberry-borne bacterial pathogens either Gram positive or Gram negative bacteria and has positive impact of gamma irradiation on the antimicrobial activity. The use of the selected chitosan nano-composite film which irradiated by dose of 2.5 kGy and has magnesium oxide of average particle size 54.3 nm as new packaging materials found to improve storage quality and shelf-life of mulberry fruit.  相似文献   

12.
Expanded polystyrene is one of the polymers produced in large quantities due to its versatile application in different fields. This polymer is one of the most intractable components in municipal solid waste. Disposal of polymeric material by pyrolysis or catalytic cracking yields valuable hydrocarbon fuels or monomers. Literature reports different types of reactors and arrangements that have uniform temperatures during pyrolysis and catalytic cracking. The present study focuses on reducing the temperature to maximize the quantity of styrene monomer in the liquid product. A bench scale reactor has been developed to recover the styrene monomer and other valuable chemicals. Experiments were carried under partial oxidation and vacuum conditions in the temperature range of 300-500 degrees C. In the pyrolysis optimization studies, the best atmospheric condition was determined to be vacuum, the pyrolysis temperature should be 500 degrees C, yield of liquid product obtained was 91.7% and yield of styrene obtained was 85.5%. In the characterization studies, distillation and IR spectroscopy experiments were carried out. The remaining of the liquid product comprises of benzene, ethyl benzene, and styrene dimers and trimers.  相似文献   

13.
Vacuum pyrolysis of waste tires with basic additives   总被引:3,自引:2,他引:1  
Granules of waste tires were pyrolyzed under vacuum (3.5-10kPa) conditions, and the effects of temperature and basic additives (Na(2)CO(3), NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 degrees C to 600 degrees C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48wt% was achieved at 550 degrees C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50wt% was achieved at 480 degrees C by adding 3wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) approximately 205 degrees C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na(2)CO(3) addition. Pyrolysis gas was mainly composed of H(2), CO, CH(4), CO(2), C(2)H(4) and C(2)H(6). Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5wt%) was much higher.  相似文献   

14.
In the case of plastics containing brominated flame retardants, various brominated organic compounds, including polybrominated dibenzodioxins and dibenzofurans, are yielded when they are degraded. In order to reduce the hazard that might be generated during after-live treatment, the behaviour of flame retarded high-impact polystyrene containing decabromo diphenylether and antimony oxide (Sb2O3), was investigated using several heating programs. It was found that the separation of the thermal process into two steps divided at 330?°C makes it possible to obtain an oil fraction rich in brominated compounds at low temperatures and an oil fraction depleted in brominated compounds at high temperatures. The low temperature oil contained a high concentration of SbBr3 and dibromodibenzofurans. Various brominated compounds with a low volatility and 1-bromo-1-phenylethane from the reaction of HBr with styrene were among the substances in the high temperature oil. The concentration of brominated compounds was reduced from 6?wt% for degradation in a single step to below 1?wt% in the high temperature oil in the two step process.  相似文献   

15.
新型有机钙协同脱硫脱硝技术在实际应用中存在经济代价高的问题,采用木醋废液调质处理石灰石,制得廉价醋酸钙,并对调质产物的煅烧特性进行了研究。X射线衍射分析结果表明,调质石灰石的主要成分为水合醋酸钙,其煅烧过程大致可以分为3个阶段;采用Avrami理论求解调质石灰石的煅烧反应级数,计算结果其反应级数在0.048~0.272较大范围内波动,进一步证明了反应的多阶段性与无定常性。  相似文献   

16.
Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 degrees C) and high (400 degrees C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 degrees C was firstly aromatic products and then olefin products, while at 400 degrees C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 degrees C) and 83 min (at 400 degrees C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was concluded that the characteristics of liquid product on the pyrolysis of plastic mixtures were strongly influenced by lapse time of reaction and degradation temperature.  相似文献   

17.
Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24 h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH ± 12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained below these limit values at the relatively high pH that remained after carbonation. The V-bearing di-Ca silicate (C2S) phase has been identified as the major source of the V-leaching. It is shown that the dissolution of this mineral is limited in fresh steel slag, but strongly enhanced by carbonation, which causes the observed enhanced release of V from the K3 slag. The obtained insights in the mineral transformation reactions and their effect on pH and V-leaching provide guidance for further improvement of an accelerated carbonation technology.  相似文献   

18.
In this study we performed a non-isothermal thermogravimetric analysis on three thermoplastics—ABS, PC and PE. The Coats and Redfern method (Nature 201:68–69, 1964) was then used to approximate the kinetic parameters of each material. In addition, we performed a series of pyrolysis experiments in a batch reactor, for each plastic. The experiments were performed over the temperature range of 600–1000 °C at a constant residence time. The liquid and solid products of the pyrolysis, were collected, separated and weighted. Those products were categorized as soot, tar and char (PC only), and their relative weight to initial sample weight (DAF) was plotted against the temperature. The tar measured was exclusively medium to high molecular weight (>80 g/mol). Results revealed that relative tar and soot production, for all three materials, first increases and then decreases with temperature increase. The maximum achieved tar yields for ABS, PC and PE were at 700, 650 and 800 °C, respectively; and the maximum soot yields were at 1000, 1000, 950 °C, respectively.  相似文献   

19.
Fly ash produced by coal combustion using two types of desulphurization process were studied: a conventional pulverized coal boiler equipped with lime injection (PCL ash), and a circulating fluidized bed combustion boiler with limestone injection (CFBC ash). The ashes were characterized completely: granulometry, morphology, mineralogy, chemical composition and behaviour to water contact. Both PCL ash and CFBC ash present similar features: fine granulometry, presence of anhydrite phase and sulphate content. However, PCL ash also shows lots of spherical particles, unlike CFBC ash, and a much higher lime content, due to the lower desulphurization rate in PC boilers. Unlike CFBC ash, most of the trace elements in PCL ash show an inverse concentration–particle size dependence. Leachates obtained from both samples are rich in soluble salts [CaSO4and Ca(OH)2] and arsenic and selenium are prevented from solubilizing by high lime content. In wetted PCL ash, the formation of ettringite crystals stabilizes calcium and sulphate ions. Simultaneously, arsenate, selenate and chromate anions are trapped in the crystal. CFBC ash does not really harden because the lime content is too low. However, the leached selenium concentration is cut down in wetted CFBC ash samples.  相似文献   

20.
The industrial production of wet phosphoric acid in Morocco led to controversial stockpiling of waste phosphogypsum by-products resulting in the release of significant amounts of toxic impurities in salt marshes. In the framework of fighting against global climate change and efforts to reduce toxic industrial wastes (phosphate industry), this work presents a new polymer composite based on phosphogypsum (PhG) and polypropylene (PP).The compounds were produced by twin-screw extrusion and injection molding. The morphological results show that good affinity between PhG and PP led to good particle dispersion/distribution in the polymer matrix. Thermal characterizations showed that PhG particles improved the thermal stability of PP with a 50 °C increase at 40 wt%. The optimum tensile modulus was also obtained at 40 wt% with a 74 % increase over neat PP. Dynamical mechanical analysis showed that PhG addition can improve the viscoelastic properties of PP for potential applications under dynamic stress. Overall, it can be concluded that PhG is potential reinforcing filler for the production of PP composites and represents a promising avenue for the valorization of this waste as a new raw material while resolving some environmental issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号