首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Chemistry and Ecology》2007,23(5):409-425
The use of a new sorbent developed from the husk of pomegranate, a famous fruit in Egypt, for the removal of toxic chromium from aqueous solution has been investigated. The batch experiment was conducted to determine the adsorption capacity of the pomegranate husk. The effects of initial metal concentration (25 and 50 mg l-1), pH, contact time, and sorbent concentration (2-6 g l-1) have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increased as the pH decreased, and the optimum pH value was pH 1.0. Adsorption equilibrium and kinetics were studied with different sorbent and metal concentrations. The adsorption process was fast, and equilibrium was reached within 3 h. The maximum removal was 100% for 25 mg l-1 of Cr6+ concentration on 5 g l-1 pomegranate husk concentration, and the maximum adsorption capacity was 10.59 mg g-1. The kinetic data were analysed using various kinetic models—pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion equations—and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich, and Generalized isotherm equations. The Elovich and pseudo-second-order equations provided the greatest accuracy for the kinetic data, while Langmuir and Generalized isotherm models were the closest fit for the equilibrium data. The activation energy of sorption has also been evaluated as 0.236 and 0.707 kJ mol-1 for 25 and 50 mg l-1 chromium concentration, respectively.  相似文献   

2.
Banana peels were employed for the removal of metribuzin from aqueous solution. Sorption in the batch mode was optimized regarding pH, contact time, sorbent dose, initial pesticide concentrations, and temperature. The sorption data were fitted to pseudo-first-order, pseudo-second-order, intraparticle diffusion, Elovich, and liquid film diffusion model, the pseudo-second-order exhibiting best fit (R2 = 0.9803). Of the four most common sorption isotherm models (Langmuir, Freundlich, Tempkin, and Dubinin–Radushkevich), the data followed the Langmuir isotherm with highest correlation. The maximum adsorption capacity was found to be 167 mg g?1. Gibbs free energy, enthalpy, and entropy showed that the sorption was exothermic and spontaneous.  相似文献   

3.
The ability of ackee apple (AA) seeds to remove Congo Red (CR) dye from aqueous solution was investigated. AA was characterised using thermo gravimetric analyser, scanning electron microscopy, Braunauer Emmett Teller, pHpzc, elemental analysis and Boehm titration. The effects of operational parameters such as adsorbent dosage, contact time, initial dye concentration and solution pH were studied in a batch system. pH has a profound influence on the adsorption process. Maximum dye adsorption was observed at pH 3.0. The reaction was fast, reaching equilibrium in 90 min. Adsorption data were best described by Langmuir isotherm and the pseudo-second-order kinetic model with a maximum monolayer coverage of 161.89 mg·g?1. Both boundary layer and intraparticle diffusion mechanisms were found to govern the adsorption process. Thermodynamic parameters such as standard free energy change (Δ G 0), standard enthalpy change (Δ H 0), and standard entropy change (Δ S 0) were studied. Values of Δ G 0 varied between?30.94 and?36.56 kJ·mol?1, Δ H 0 was 25.61 kJ·mol?1, and Δ S 0 was 74.84 kJ·mol?1·K?1, indicating that the removal of CR from aqueous solution by AA was spontaneous and endothermic in nature. Regeneration and reusability studies were carried out using different eluents. AA gave the highest adsorption efficiency up to four cycles when treated with 0.3 M HCl. AA was found to be an effective adsorbent for the removal of CR dye from aqueous solution.  相似文献   

4.
Chemically prepared activated carbon derived from banana stalk (BSAC) was used as an adsorbent to remove malachite green (MG) dye from aqueous solution. BSAC was characterised using thermogravimetric analyser, Brunauer Emmett Teller, Fourier transform infrared spectrometry, scanning electron microscopy, pHpzc, elemental analysis and Boehm titration. The effectiveness of BSAC in adsorbing MG dye was studied as a function of pH, contact time, temperature, initial dye concentration and repeated desorption–adsorption processes. pHpzc of BSAC was 4.5 and maximum dye adsorption occurred at pH 8.0. The rate of dye adsorption by BSAC was very fast initially, attaining equilibrium within 120 min following a pseudo-second-order kinetic model. Experimental data were analysed by Langmuir, Freundlich and Dubinin–Raduschevich isotherms. Equilibrium data fitted best into the Langmuir model, with a maximum adsorption capacity of 141.76 mg·g?1. Δ G 0 values were negative, indicating that the process of MG dye adsorption onto BSAC was spontaneous. The positive values of Δ H 0 and Δ S 0 suggests that the process of dye adsorption was endothermic. The regeneration efficiency of spent BSAC was studied using 0.5 M HCl, and was found to be in the range of 90.22–95.16% after four cycles. This adsorbent was found to be both effective and viable for the removal of MG dye from aqueous solution.  相似文献   

5.
Periwinkle shell, an abundant and inexpensive natural resource, was used to prepare activated carbon by physicochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO2) as the activating agents at 850 °C for 2 h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 25 °C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 500.00 mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue on activated carbon derived from periwinkle shell could best be described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.  相似文献   

6.
The adsorption behaviour of Basic Red 12, Acid Orange 7 and Acid Blue 1 on zinc oxide nanoparticles (ZNP) has been investigated to understand the physicochemical process involved and to explore the possible use of nanoparticles in the treatment and management of textile waste matter. The dye removal capacity of ZNP towards Basic Red 12, Acid Orange 7 and Acid Blue 1 was found to be 15.64, 6.78 and 6.38 mg g?1, respectively. The adsorption process was pH dependent and optimum pH values of 9.0, 2.0 and 4.0 were obtained for Basic Red 12, Acid Orange 7 and Acid Blue 1, respectively. Equilibrium was established after 1.0 h for all dyes. Langmuir, Freundlich and Temkin isotherm models were applied to the system. The adsorbent ZNP was characterised using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Fourier transform infrared (FTIR) techniques. SEM analysis revealed the noticeable nanoporous morphology of the material. The results of FTIR spectroscopy showed that the process is driven by an electrostatic complexation mechanism. XRD studies revealed the nanocrystalline structure of ZNP. BET surface area measurement suggested a high pore volume and large surface area for the adsorbent. The kinetic measurements suggested pseudo-second-order kinetic processes with high regression coefficients and smaller standard error of estimate values and lower residual sum of squares. The thermodynamic measurements suggested that all processes were exothermic and accompanied by negative values for Δ G0, Δ S0 and Δ H0.  相似文献   

7.
This investigation describes the use of specially cultivated, nonliving biomass of Trichoderma harzianum as a biosorbent for the batch removal of Pb(II) from a stirred system under different experimental conditions. The metal removal depended upon pH, sorbent particle size, initial Pb(II) concentration, shaking speed, and sorption time. The optimal experimental conditions for the removal of Pb(II) by T. harzianum with an initial metal concentration of 100 mg L?1 were obtained at a particle size of 53 μm, a pH of 4.5, a shaking speed of 200 rpm, and a contact time of 720 min. The results were analyzed in terms of adsorption isotherms and kinetic models. The Freundlich isotherm model and pseudo second-order model fitted well in the data. T. harzianum proved to be a good biomaterial for accumulating Pb(II) from aqueous solutions (q = 460 mg g?1).  相似文献   

8.
Cadmium (Cd) is a carcinogenic metal contaminating the environment and ending up in wastewaters. There is therefore a need for improved methods to remove Cd by adsorption. Biogenic elemental selenium nanoparticles have been shown to adsorb Zn, Cu and Hg, but these nanoparticles have not been tested for Cd removal. Here we studied the time-dependency and adsorption isotherm of Cd onto biogenic elemental selenium nanoparticles using batch adsorption experiments. We measured ζ-potential values to assess the stability of nanoparticles loaded with Cd. Results show that the maximum Cd adsorption capacity amounts to 176.8 mg of Cd adsorbed per g of biogenic elemental selenium nanoparticles. The ζ-potential of Cd-loaded nanoparticles became less negative from ?32.7 to ?11.7 mV when exposing nanoparticles to an initial Cd concentration of 92.7 mg L?1. This is the first study that demonstrates the high Cd uptake capacity of biogenic elemental selenium nanoparticles, of 176.8 mg g?1, when compared to that of traditional adsorbents such as carboxyl-functionalized activated carbon, of 13.5 mg g?1. An additional benefit is the easy solid–liquid separation by gravity settling due to coagulation of Cd-loaded biogenic elemental selenium nanoparticles.  相似文献   

9.
A novel cellulose-based adsorbent, iron(III)-coordinated amino-functionalised poly(glycidylmethacrylate)-grafted cellulose [Fe(III)–AM-PGMACell] was developed for the removal of phosphate from water and wastewater. The scanning electron micrograph showed that AM-PGMACell has a rougher surface than cellulose and the adsorption of Fe(III) on AM-PGMACell made the surface even rougher. Infrared spectroscopy revealed that amino groups on the surface of AM-PGMACell complexed with Fe(III) played an important role in the removal of phosphate from solutions. X-Ray diffraction patterns showed a decrease in crystallinity after graft copolymerisation onto cellulose. The effects of contact time, initial sorbate concentration, pH, agitation speed, dose of adsorbent and temperature on the removal process were investigated. Maximum removal of 99.1% was observed for an initial concentration of 25 mg·L ?1 at pH 6.0 and an adsorbent dose of 2.0 g·L ?1. A two-step pseudo-first-order kinetic model and Sips isotherm model represented the measured data very well. Complete removal of 11.6 mg·L ?1 phosphate from fertiliser industry wastewater was achieved by 1.6 g·L ?1 Fe(III)–AM-PGMACell. The adsorbent exhibited very high reusability for several cycles. Overall, the study demonstrated that Fe(III)–AM-PGMACell can be used as an efficient adsorbent for the removal and recovery of phosphate from water and wastewater.  相似文献   

10.
This study involves the utilisation of peanut husk for the removal of Drimarine Red HF-3D dye from aqueous solutions. Batch study experiments were conducted with native, HNO3-treated and Na-alginate-immobilised peanut husk biomass. Maximum dye removal (95.24 mg/g) was obtained with HNO3-treated biomass. The experimental data were successfully explained with a pseudo-second-order kinetic model for all types of biosorbents. The equilibrium data fitted well to the Freundlich adsorption isotherm model. A thermodynamic study was also carried out to check the nature of the adsorption process. A fixed-bed column study for Drimarine Red HF-3D was carried out to optimise the effect of bed height, flow rate and initial dye concentration using peanut husk biomass. The column study showed that biosorption capacity increased with the increase in initial dye concentration and bed height, but decreased with increased flow rate. Data for Drimarine Red HF-3D were in very good agreement with the bed depth service time model. Fourier transform infrared analysis demonstrated the involvement of different functional groups in dye biosorption. These results showed that peanut husk biomass possessed good potential for the removal of Drimarine Red HF-3D from aqueous solution.  相似文献   

11.
Utilization of Amberlite XAD-2 surface modified by covalent immobilization of brilliant green through an azo spacer for adsorptive enrichment of Sn(II) from environmental and biological samples was highlighted. The resulting resin was characterized by Fourier transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, and scanning electron microscopy. The resin retained Sn(II) ions at an optimum pH of 9.5 with a sorption capacity of 40 mg g?1. The modified sorbent could be reused for 10 cycles without significant changes in sorption capacity. The recovery of Sn(II) was 98% when eluted with 0.1 mol L?1 ethylenediaminetetraacetic acid. Scatchard analysis revealed that binding sites in the modified resin were homogeneous. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Temkin, and Redlich–Peterson isotherm models. The method was applied with satisfactory results for determination of Sn(II) ions in human plasma and sea water.  相似文献   

12.
Quantitative analysis of cadmium in environmental samples was achieved with a polymeric sorbent synthesized by copolymerization of N,N-dimethylacrylamide and allyl glycidyl ether/iminodiacetic acid as chelating monomers with N,N′-methylenebisacrylamide as cross-linker. The polymer was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and scanning electron microscopy. The sorption capacity of the functionalized sorbent was 70 mg g?1. The equilibrium sorption data of Cd(II) on polymeric sorbent were analyzed using Langmuir, Freundlich, Temkin, and Redlich–Peterson models. Based on equilibrium adsorption data, the constants at pH 4.2 and 20 °C were determined for the first three as 0.33 (L mg?1), 17.5 (mg g?1) (L mg?1)1/n, and 12.9 (J mol?1). Recovery of 94% of the metal ion was obtained with 0.5 mol L?1 nitric acid as an eluting agent.  相似文献   

13.
Magnetic particles prepared via co-precipitation and impregnated onto wheat husk (MN-WH) were used for the removal of methyl blue (MB) from aqueous solution. Experiments were conducted in a batch mode for optimization regarding pH, contact time, adsorbent dose, initial dye concentrations, and temperature. Maximum adsorption (98%) was achieved at pH 5. The adsorption data were fitted into pseudo-first, pseudo-second, intraparticle diffusion, and Elovich equation revealing that adsorption followed pseudo-second-order kinetics. The four most common isotherm models, i.e. the Langmuir, Freundlich, Tempkin, and Dubinin–Radushkevich (D–R), were used to evaluate the data, with the best fit to a Langmuir isotherm (R2 = 0.996), followed by a Freundlich isotherm (R2 = 0.995), indicating monolayer adsorption of MB on the surface of MN-WH. Thermodynamic parameters calculated from the Van't Hoff equation revealed that the adsorption is exothermic (ΔHº = ?19.7 kJ mol?1).  相似文献   

14.
Multi-walled carbon nanotubes (MWCNTs) were oxidized and characterized by Fourier transform infrared spectroscopy. The adsorption characteristics of the oxidized MWCNT adsorbent were examined using Janus Green (JG) as adsorbate. In batch tests, the effects of pH, adsorbent dose, contact time, and temperature were studied. The maximum adsorption capacity was found to be 56 mg g?1. The experimental data were fitted to the Langmuir, Freundlich, and Tempkin isotherm models, the first one being the most appropriate. Kinetic analysis showed that adsorption was most accurately represented by a pseudo-second-order model.  相似文献   

15.
The adsorption of copper(II) ions from aqueous solutions by the green horse-chestnut shell was studied in a batch adsorption system. It was determined how the parameters of the adsorption process, such as time, pH, copper(II) ions concentration and sorbent dose, influence the effectiveness of copper(II) ions’ removal. The adsorption process was fast and equilibrium was established about 10?min, and near 95–97% of Cu(II) ions were removed from aqueous solution. Maximum copper(II) ions’ adsorption occurred at around pH 5. The adsorption kinetics are also described, using pseudo-first-order model and pseudo-second-order model of type 1 and 2. A comparison of the kinetics models on the overall adsorption rate showed that the adsorption system was best described by the pseudo-second-order model of type 1 (r2?=?0.999) for all initial concentrations. Another key part of this study was the use of the Freundlich model to determine the adsorption isotherm and the experimental data were in strong correspondence with this model.  相似文献   

16.
In this paper, steam-produced activated carbon (STAC) from maize tassel (MT) was evaluated for its ability to remove basic dye (methylene blue MB) from aqueous solution in a batch adsorption process. The equilibrium experiments were conducted in the range of 50–300 mg/L initial MB concentrations at 30°C, for effect of pH, adsorbent dosage and contact time. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models of adsorption. Freundlich adsorption isotherm was found to have highest value of R2(R2=0.97) compared to other models of Langmuir and Temkin having (0.96 and 0.95 respectively). STAC has a high adsorptive capacity for MB dye (200 mg/g) and also showed favourable adsorption for the dye with the separation factor (RL<1) for the dye-activated carbon system. The kinetic data obtained were analysed using pseudo first-order kinetic equation and pseudo second-order kinetic equation. The experimental data fitted well into pseudo second-order kinetic equation, as demonstrated by the high value of R2.  相似文献   

17.
The adsorption of a synthetic textile dye (Remazol Brilliant Black Reactive) on cocoa pod husk-based activated carbon was investigated in batch process. The adsorbent prepared was characterized by gas adsorption surface analysis (Brunauer Emmett Teller, BET), scanning electron microscopy, and Fourier transform infrared spectroscopy. The effects of initial dye concentration, contact time, solution temperature, and solution pH were evaluated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models, the first being the best with maximum monolayer coverage of 111?mg?g?1. Kinetic data were fitted into pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models; the pseudo second-order model provided the best correlation. Maximum adsorption was observed at pH 7. Standard free energy, standard enthalpy, and standard entropy were also calculated. The adsorption interaction was found to be endothermic and spontaneous. Both the mean free energy of adsorption and the activation energy show that the mechanism is by physisorption.  相似文献   

18.
The synthesis of 1,3,5-triazine-triethylenetetramine (TATETA), its characterization by infrared spectroscopy and elemental analysis, and its application for removal of Cr(VI) ions from aqueous solution is reported. The effects of pH, contact time, initial concentration of Cr(VI), sorbent dose, and temperature on adsorption were investigated and optimized by batch adsorption experiments. Adsorption was highest at acidic conditions with an equilibration time of 25 min. The adsorption followed a Langmuir model, with an adsorption capacity of 303 mg g?1, was second order in its kinetics, and exothermic and thus spontaneous.  相似文献   

19.
Fe-pillared bentonite (Fe-Bent) was prepared by ion exchange as heterogeneous catalyst for degradation of organic contaminants in petroleum refinery wastewater. X-ray diffraction analysis showed the existence of α-Fe2O3. The effects of pH, H2O2 concentration, and catalyst dosage on the rate of lowering the chemical oxygen demand (COD) were investigated in detail. Removal efficiency of COD can be up to 92% under the following conditions: dosage of Fe-Bent 7 g L?1, pH value 3, and H2O2 concentration 10 mmol L?1. Fe-Bent showed good stability for the degradation of organics in petroleum refinery wastewater for five cycles. The adsorption of organics in wastewater onto Fe-Bent could be well described by a pseudo-second-order kinetic model.  相似文献   

20.
Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg?1 predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m2 g?1) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号