首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
乌海市是我国典型的煤焦化工业基地,大气污染物排放总量较大且近年来夏季O3污染问题逐渐突出,明确大气污染物排放特征,探究O3污染形成机制是客观认识其O3污染现状,科学制定污染控制措施的基础.基于"系数法"采用自下而上的方式构建了2018年乌海市高分辨率大气污染源排放清单(HEI-WH18),利用WRF-Chem对HEI-WH18的适用性和准确性进行评估,并结合模式诊断模块探究了乌海市夏季O3污染形成的原因.排放清单结果表明,2018年乌海市SO2、NOx、CO、PM10、PM2.5、VOCs、NH3、BC和OC的排放总量分别为65943、40934、172867、159771、47469、69191、1407、1491和1648 t ·a-1.与MEIC清单相比,利用HEI-WH18能更好地捕捉到O3及其前体物的排放变化规律和量级,适用于乌海市夏季O3的模拟及其来源分析研究.从O3及前体物的空间分布来看,乌海市海勃湾城区白天为O3高值区,3个工业园区无论白天和夜间均为O3低值区和NO2高值区,CO的空间分布特征与煤层及矸石堆自燃源一致.根据对O3污染过程的诊断分析,边界层中高层O3浓度的升高主要是平流输送和化学过程共同作用的结果,低层O3浓度的升高是垂直混合和平流输送导致的,化学过程在低层的贡献较为复杂,其正贡献起到了维持高O3浓度的作用,负贡献结合平流输送造成了O3污染的最终消散.  相似文献   

2.
乌海市臭氧传输特征与潜在源区   总被引:3,自引:0,他引:3  
乌海是典型的西北工业城市,O3污染问题突出但缺乏研究.本文基于乌海市环境监测数据、气象数据分析了乌海市O3污染特征.结果表明:乌海市O3日最大8 h平均值(MDA8O3)第90位百分数由2015年的131 μg·m-3上升至2018年的162 μg·m-3,超标天数由2015年的8 d上升到2018年的44 d,O3超标日集中出现在4—8月;2018年4—8月乌海市近地面盛行南风,O3浓度在近地面风向位于西南-南、东南、北-东北3个风向区间,风速处于2~7 m·s-1的区间时最高.为进一步研究乌海O3传输特征、潜在源区,本文基于NCEP再分析资料,使用后向轨迹、PSCF方法与CWT方法研究了2018年4—8月O3的传输特征及潜在源区.O3非污染过程中,74%的轨迹来自北方,气团移动速度快且途经的下垫面以沙漠为主,较为清洁.O3污染过程中,来自南方的轨迹占比59%,贡献了76%的污染轨迹,这些轨迹传输距离较短、移动速度较慢且经过的下垫面多为城市及工业园区;PSCF分析与CWT分析的结果较为一致,O3非污染过程的主要源区分布在乌海市以南.O3污染过程的主要源区为鄂尔多斯西部、阿拉善东部、石嘴山、银川、吴忠、榆林西部,WPSCF值均大于0.5,WCWT值均大于120 μg·m-3.乌海市O3易受区域传输影响,O3污染过程中其主要源区为距乌海400 km以内的上风向城市,O3非污染过程则主要在200 km的范围内.分过程进行气团轨迹聚类分析和潜在源区分析有利于得到更为真实的污染物传输特征和潜在源区.  相似文献   

3.
基于2019年五指山背景点、海口市和三亚市的环境空气自动监测数据和气象观测资料,分析了海南省背景区域和重点城市O3及其前体物NO2污染特征;结合挥发性有机物(VOCs)在线监测数据,分析了五指山背景点VOCs的时间变化规律、O3浓度高值月份O3及其前体物VOCs和NOx的污染特征以及VOCs的臭氧生成潜势(OFP).结果表明,O3是影响五指山背景点空气质量的关键污染物,五指山背景点O3日最大8 h浓度平均值与海口市和三亚市显著相关.背景点NO2月均浓度水平显著低于城市点,然而背景点和城市点O3月均浓度水平和变化趋势高度一致.背景点O3变化与风向密切相关,春夏季偏南风频率较高,O3浓度相对较低;秋冬季以东北风为主,易受内陆污染输送影响,O3浓度较高.五指山背景点春夏季VOCs体积分数低于秋冬季,但对应的OFP高于秋冬季;其中异戊二烯夏季体积分数显著高于秋冬季,且其夏季体积分数占总挥发性有机物的比例最高,对应的OFP贡献率可达70%以上,O3则表现出秋冬季显著高于夏季的特征.11月O3高浓度时段乙炔和芳香烃的体积分数较清洁日出现较大上升,同时其对应的OFP显著上升.VOCs优势物种和OFP主要贡献物种的分析结果表明,O3高浓度时段机动车尾气和油气挥发排放源对五指山背景点VOCs的化学组成和OFP有重要贡献.  相似文献   

4.
为研究石家庄市域臭氧(O3)和NO2的时空演替格局及污染来源,取2014~2017年市域18个区县(市)的O3、NO2和气象要素资料(温度、湿度、风速、降水、日照),及2017年夏季挥发性有机物(VOCs)数据,采用网络分析(network analysis)、空间插值(IDW)、Moran模型及后向轨迹方法,对市域内区县O3和NO2的空间联系、演替格局、空间影响因素及污染来源进行了分析.结果表明:①2014~2017年市域O3浓度呈上升趋势,市区O3月度变动呈单峰型态势,5~9月是O3污染(O3≥160 μg·m-3)的典型时期(TPOP),TPOP的气象特征为高温低湿弱风强光照,NO2在TPOP内的负相关性显著;②主城区O3浓度在2015年后呈逐年显著上升,主城区的污染物类型从NO2(2014~2016年)转为VOCs(2016~2017年),而县域2014~2017年均属VOCs控制区;③市域O3空间影响因子主要集中于工业、农业、经济和人口这4个维度(P≤0.05).第二产业对O3污染的高值中心出现在主城区和栾城区,与区域内工业生产活动有关;④VOCs夏季监测期间的轨迹聚类出3个来源方向,即A(东-东北,26.67%)、B(西北-西,43.33%)及C(东南-南,30%),轨迹A和C是VOCs传输的主要方向(东-东南).  相似文献   

5.
中国的近地面臭氧(O3)浓度在2015~2018年间持续升高,已成为仅次于颗粒物的重要大气污染物.基于中国337个城市2015~2018年暖季(4~9月)的实时O3浓度数据和气象数据,利用趋势分析、空间自相关、热点分析和多尺度地理加权回归(MGWR),研究了2015~2018年中国暖季地表O3浓度的空间演变格局,探讨了气象因素对其驱动的空间差异性.结果表明:①中国暖季O3浓度整体呈显著升高趋势(P<0.05),平均升高速率为0.28 μg·(m3·a)-1,其中超过55%的城市O3浓度每年升高0.50 μg·m-3;②O3浓度存在明显的区域差异,高值区(平均浓度>60 μg·m-3)分布在华东、华北、华中和西北部分地区;低值区(平均浓度<20 μg·m-3)分布在华南和西南地区;③O3浓度变化趋势在空间上存在位于华东、华北、西北以及华中地区的热点区域和位于西南、华南(广西)以及东北地区的冷点区域;④气温是中国暖季O3变化的主要气象驱动因素,其对华北、西北和东北地区O3浓度的影响显著高于其他地区;除广西、云南和江西部分地区外,O3浓度与气温呈显著正相关;O3浓度在华南、华东和华中大部分地区与风速呈显著负相关,O3浓度在华北和东北部分地区与风速呈显著正相关;除辽宁、山东、河北、甘肃、广东及西南部分地区外,O3浓度与云层覆盖度呈显著负相关;除西北和西南部分地区外,O3浓度与降水呈显著负相关.  相似文献   

6.
基于2016~2022年北京市环境监测和气象观测数据,结合后向轨迹聚类和潜在源区贡献分析北京市臭氧(O3)污染特征、气象影响和潜在源区.结果表明,2016~2022年北京市共发生41次具有跳变特征的O3污染过程,平均为5.9次·a-1,发生时间集中在5~7月,跳变当日(OJD2)较跳变前一日(OJD1)的ρ(O3-8h)平均值偏高78.3%,峰值浓度偏高78.9%,OJD2区域O3浓度高值带呈现由南向北推进的特征.北京市跳变O3污染发生主要原因可归纳为不利气象条件导致的本地积累叠加区域传输影响.跳变型O3污染发生时具有偏南风频率增加、温度上升、气压降低和降水减少的特征,偏南风频率增加为O3及其前体物的传输提供条件,在本地高温作用下快速发生光化学反应,叠加降水较少,综合推高OJD2的O3浓度水平.聚类分析得到6条气团输送路径,OJD2来自偏北方向的气团减少11.2%,来自偏南和偏东方向气团增加6.7%和4.4%,气团以短距离传输为主,偏南和偏东方向对应的O3浓度较高,对北京污染贡献较大.潜在源区分析揭示OJD2的O3污染的主要潜在源区是京津冀中南部和东部,贡献了82.6%污染轨迹.跳变型O3污染区域输送贡献明显,需要加强京津冀区域联防联控.  相似文献   

7.
为深入了解挥发性有机物(VOCs)对臭氧(O3)污染的影响,基于2019年夏季天津市O3和VOCs高时间分辨率在线监测数据,对不同O3浓度级别VOCs污染特征及来源进行分析.结果表明,2019年夏季天津市O3浓度为优、良、轻度污染和中度污染时,VOCs浓度分别为32.94、38.10、42.41和47.12μg·m-3.VOCs组分中烷烃、烯烃、炔烃和芳香烃浓度占比分别为61.72%~63.36%、14.96%~15.51%、2.73%~4.13%和18.53%~19.10%,其中烷烃在O3浓度为良和轻度污染时占比略高,烯烃和炔烃在O3浓度为优时占比最高,芳香烃在O3浓度为中度污染时占比最高.浓度较高的VOCs物种主要为丙烷、乙烷、乙烯、甲苯、正丁烷、异戊烷、间/对-二甲苯、丙烯、乙炔、正己烷、异丁烷、苯、正戊烷、异戊二烯和1,2,3-三甲苯,其中异戊烷、正戊烷、苯、乙烯、丙烯、正丁烷和异丁烷浓度贡献随O3浓度级别上升逐步增加,异戊二烯和1,2,3-三甲苯浓度贡献在轻中度污染时明显升高.烯烃和芳香烃对臭氧生成潜势(OFP)贡献较高,随着O3浓度级别上升,烯烃对OFP贡献下降,芳香烃贡献上升.乙烯、丙烯、间/对-二甲苯、1,2,3-三甲苯、甲苯、异戊二烯、反-2-丁烯和顺-2-戊烯是影响臭氧生成的关键物种,其中1,2,3-三甲苯、异戊二烯、丙烯和乙烯对OFP的贡献比例在O3为轻中度污染时明显增加.源解析结果显示,机动车排放源、溶剂使用源、LPG/汽油挥发源、燃烧源、石化工业排放源、天然源和其他工艺过程源是天津市夏季VOCs主要来源,随着O3浓度级别上升,机动车排放源、LPG/汽油挥发源、石化工业排放源和天然源贡献逐渐增加,燃烧源和其他工艺过程源贡献总体下降,溶剂使用源贡献在轻中度污染时有所下降.  相似文献   

8.
基于空气质量监测数据,研究了2014~2018年西安市O3浓度和污染的变化特征,利用GAM模型揭示了气象因素对O3浓度的影响.结果表明:①西安市O3浓度逐年上升,2016年开始O3年评价指标已连续3 a超标.但随着夏季O3污染治理的加强,2017年后O3浓度升幅趋缓.②O3月均浓度变化曲线主要呈倒V型,1~7月随气温的升高而上升,8~12月随气温的下降而下降,7月月均浓度最大.但在降水量偏大的年份,O3月均浓度常在降水量最大月出现谷值,曲线形态变为M型.③2014~2018年西安市O3污染明显加重,O3污染时段向前延长.O3超标率由2014年的1.9%上升到2018年的14.0%.2016年起,O3污染出现时间由7月提前至5月.④GAM模型拟合结果表明,气温、气压、日照时数和相对湿度与O3浓度有显著的非线性关系,各因子平滑函数拟合曲线形态差异较大,其中气温和日照时数主要呈正向影响,气压和相对湿度主要呈负向影响.降水量的影响主要表现在夏季,风速的影响不明显.西安市在气温>24℃、气压<962 hPa、日照时数>9 h、相对湿度为36%~65%且无雨时,O3污染较易发生.  相似文献   

9.
基于OSAT方法对上海2010年夏季臭氧源解析的数值模拟研究   总被引:9,自引:3,他引:6  
上海夏季臭氧浓度超标现象频繁出现,危害人体健康,已成为一个重要的大气环境问题.本文采用CAMx模型并使用OSAT方法对上海2010年夏季(8月)地面臭氧的源贡献进行了数值模拟研究,探讨了上海本地、浙江、江苏和远距离传输对上海徐汇站O3浓度的贡献,同时还详细分析了上海本地8类源(农业源、工业过程、工业锅炉、电厂、生活源、交通源和挥发源)的贡献特征.结果表明:在白天O3低浓度污染时段和夜间,上海徐汇站O3主要来自外围(最内层模拟区域之外)的贡献.而在白天高浓度O3污染时段,来自上海市本地污染源排放的贡献率显著地升高.从2010年8月6—31日期间徐汇站O3小时浓度贡献百分率的平均值来看,外围贡献了61.2%,上海本地、江苏和浙江对上海徐汇站的平均贡献率分别为22.8%、7.4%和8.6%.工业过程是上海本地O3的最大贡献源,其次是挥发源和交通源,因此,降低上海本地O3污染浓度的有效措施为控制来自工业过程、挥发源和交通源的O3前体物的排放.另外,通过OSAT方法模拟计算还得出,上海市交通源、上海电厂和工业过程是徐汇站NOx浓度(O3的重要前体物之一)的三大主要贡献源,实施针对该三大重点排放源的减排措施将有效减少上海市的NOx大气环境浓度.  相似文献   

10.
符传博  陈红  丹利  徐文帅 《环境科学》2022,43(11):5000-5008
基于2019年秋季海南省空气质量和气象监测数据,结合相关分析、HYSPLIT后向轨迹模型、PSCF (潜在源贡献因子)和CWT (浓度权重轨迹)等分析方法对海南省4次O3污染过程特征及潜在源区进行深入分析.结果表明:①过程1和过程3分别发生在9月21~30日和11月3~11日,持续时间达到了10 d和9 d,ρ(O3-8h)(最大8 h平均)分别为145.52 μg ·m-3和143.55 μg ·m-3.过程2和过程4出现在10月18~21日和11月20~25日,持续时间为4 d和6 d,ρ(O3-8h)分别为130.79 μg ·m-3和115.46 μg ·m-3.②气压偏高,降水偏少,相对湿度偏低,日照时数偏长和太阳辐射偏强,是造成海南省出现O3污染天气的有利气象条件.偏北风风场控制下有利于O3-8h浓度上升,不同风速大小会影响海南省O3-8h浓度高值区分布.③ O3污染较为严重的过程1和过程3的影响气流发散度较大,有来自内陆地区和东南沿海地区两支气流,而O3污染较轻的过程2和过程4的影响气流较为集中,多为东南沿海气流.④潜在贡献源区分析表明,浙江省、江西省、福建省和广东省等地是2019年秋季海南省O3污染外源输送的主要源区,其中珠三角地区和广东省西部WPSCF值和WCWT值分别为大于0.36和大于90 μg ·m-3.  相似文献   

11.
Based on the observation by a Regional Air Quality Monitoring Network including 16 monitoring stations, temporal and spatial variations of ozone(O3), NO2and total oxidant(Ox) were analyzed by both linear regression and cluster analysis. A fast increase of regional O3concentrations of 0.86 ppbV/yr was found for the annual averaged values from 2006 to 2011 in Guangdong, China. Such fast O3increase is accompanied by a correspondingly fast NOx reduction as indicated by a fast NO2 reduction rate of 0.61 ppbV/yr. Based on a cluster analysis, the monitoring stations were classified into two major categories – rural stations(non-urban) and suburban/urban stations. The O3concentrations at rural stations were relatively conserved while those at suburban/urban stations showed a fast increase rate of 2.0 ppbV/yr accompanied by a NO2 reduction rate of 1.2 ppbV/yr. Moreover, a rapid increase of the averaged O3 concentrations in springtime(13%/yr referred to 2006 level) was observed, which may result from the increase of solar duration, reduction of precipitation in Guangdong and transport from Eastern Central China. Application of smog production algorithm showed that the photochemical O3production is mainly volatile organic compounds(VOC)-controlled. However, the photochemical O3production is sensitive to both NOx and VOC for O3pollution episode. Accordingly, it is expected that a combined NOx and VOC reduction will be helpful for the reduction of the O3 pollution episodes in Pearl River Delta while stringent VOC emission control is in general required for the regional O3 pollution control.  相似文献   

12.
郑新梅  胡崑  王鸣  谢放尖  王艳 《环境科学》2023,44(8):4231-4240
作为中国最重要的城市群之一,近年来长江三角洲(YRD)地区大气臭氧(O3)污染问题突出.于2020年7~9月和2021年4~5月在南京市南部地区溧水站点开展了大气O3、氮氧化物(NOx)和挥发性有机物(VOCs)等污染物的在线观测.在此基础上分析了溧水站点O3的污染特征并与城区站点进行比较,发现溧水站点O3污染较城区站点更加严重.在观测期间选择了3次典型的O3污染过程,分别为2020年8月16~27日、 2020年9月3~11日和2021年5月17~25日.利用基于观测的模型(OBM)分析了这3次污染过程的O3-VOCs-NOx敏感性.基于OBM所模拟的O3前体物相对增量反应性(RIR)和NOx和VOCs削减情景下O3生成等值线(EKMA曲线)结果显示,3次污染过程中O3-VOCs-NOx敏感性分别处于N...  相似文献   

13.
基于2021年6~8月新乡市市委党校站点观测的挥发性有机物(VOCs)、常规空气污染物和气象参数,采用基于观测的模型(OBM)对臭氧(O3)超标日的O3敏感性和前体物的管控策略进行了研究.结果发现,O3超标日呈现高温、低湿和低压的气象特征.在臭氧超标日,O3及其前体物的浓度均有上升.臭氧超标日的VOCs最高浓度组分为含氧挥发性有机物(OVOCs)和烷烃,臭氧生成潜势(OFP)和·OH反应性最大的VOCs组分为OVOCs.通过相对增量反应性(RIR)分析,新乡6月O3超标日臭氧生成处于VOCs控制区,7月和8月处于VOCs和氮氧化物(NOx)协同控制区,臭氧生成对烯烃和OVOCs最为敏感.6月各前体物的RIR值在一天中会发生变化,但始终保持为VOCs控制区;7月和8月在上午为VOCs控制区,中午为协同控制区,下午分别为协同控制区和NOx控制区.通过模拟不同前体物削减情景,结果表明削减VOCs始终有利于管控臭氧,而削减NOx  相似文献   

14.
车载激光雷达对北京地区边界层污染监测研究   总被引:7,自引:2,他引:5  
介绍了自行研制的车载差分激光雷达AML-2探测原理及技术参数,于2006-08、2006-09在不同天气因素条件下对北京西南郊榆垡地区大气边界层污染物O3、NO2、SO2进行了实时监测,对比分析了3种污染物浓度垂直分布及日变化特征.结果表明,无外来污染输送时,3种污染物在阴雨天气总体浓度较小,O3和NO2浓度随高度升高而减小,SO2浓度垂直分布少见此特征,但在近地面0.6 km左右有较强SO2污染层.南部气流输送对北京地区大气环境影响明显,2006-08-23~2006-08-25这次强污染气流输送高度约1~1.5 km,3种污染物浓度垂直分布及日变化特征受到干扰,北京榆垡地区边界层O3、NO2、SO2总体浓度明显上升.  相似文献   

15.
长江三角洲夏季一次典型臭氧污染过程的模拟   总被引:1,自引:0,他引:1  
张亮  朱彬  高晋徽  康汉青  杨鹏  王红磊  李月娥  邵平 《环境科学》2015,36(11):3981-3988
利用WRF/Chem空气质量模式对长江三角洲夏季一次典型臭氧(O3)污染过程的时空分布特征和物理化学机制进行了数值模拟研究.结果表明,模式能够合理地再现这次长江三角洲夏季典型O3污染过程的时空分布特征和演变规律.2013年8月10~18日,长江三角洲主要受副热带高压影响,晴天、高温和小风的气象条件有利于光化学污染的形成.模拟结果表明,长江三角洲地区气象场、地理位置、区域输送和化学生成都对O3的时空分布有影响.敏感性实验表明,上海O3浓度在海洋性气流影响下较低,但上海排放源对长江三角洲O3浓度时空分布的影响较为显著;南京近地面高浓度O3主要贡献为化学生成(烯烃和芳香烃)和高层O3的垂直输送,杭州和苏州近地面高浓度O3主要来源于物理过程.在O3生成速率最大时(11~13h)对O3前体物减排,对长江三角洲15:00的O3峰值浓度影响较为明显.  相似文献   

16.
黄丹丹 《环境科学学报》2018,38(6):2262-2269
利用气溶胶质谱仪在上海典型城区开展了对夏季亚微米颗粒物(PM_1)浓度及化学组分的实时在线观测,旨在捕捉污染过程、研究二次污染物的形成机制及影响因素.结果发现,上海城区二次污染物,包括二次有机气溶胶(SOA)、硫酸盐与硝酸盐是PM_1的主要组成,占比为82.5%,其中,SOA(28%)、硫酸盐(27%)与硝酸盐(27%)的比重相当.观测期间捕捉到了一个清洁期与两次污染的生消过程,清洁期的二次有机与无机污染物显著受到局地日间光化学转化过程的影响,污染过程根据气象条件的不同可以分为不同的阶段,包括传输期、累积期与消散期.传输期与消散期的局地光化学过程对SOA的形成有显著的促进作用,累积期SOA受到颗粒相水含量与区域传输的共同作用.污染期硝酸盐浓度显著上升,液相反应是促进污染期硝酸盐生成的重要因素,而污染期硫酸盐主要受到区域传输的影响.  相似文献   

17.
日照市作为典型沿海城市,近年来O3污染日益严重,为探究O3污染成因和来源,基于CMAQ模型的IPR过程分析和ISAM源追踪工具分别量化不同物理化学过程,不同源追踪区域对日照市O3的贡献,并对比在O3超标日和非超标日的差异,结合HYSPLIT模式探究日照市O3的区域输送路径.结果表明,以日照市及周边为CMAQ模拟区域,O3超标日与非超标日相比,日照市和连云港市沿海附近O3、 NOx和VOCs浓度明显增加,这主要是由于超标日日照市为西风、西南风和东风的辐合区,易于污染物的输送并累积;过程分析显示,输送过程(TRAN)对日照市和连云港市沿海附近的近地面O3贡献在超标日明显增加,而对临沂以西大部分区域贡献减小.光化学反应(CHEM)在各个高度对日照市白天O3浓度均为正贡献,TRAN在离地0~60 m为正贡献,在60 m以上主要为负贡献,超标日CHEM和TRAN在离地0~60 m...  相似文献   

18.
泰安市大气臭氧污染特征及敏感性分析   总被引:1,自引:0,他引:1  
李凯  刘敏  梅如波 《环境科学》2020,41(8):3539-3546
2018年5~7月对泰安市城区站点的臭氧及前体物进行在线监测,并基于特征比值法和光化学模型分析了臭氧及前体物的污染特征及臭氧生成对前体物的敏感性.结果表明,观测期间泰安市正遭受较为严重的臭氧(O_3)污染,臭氧浓度的日变化呈典型的单峰型变化,15:00左右出现最高值,氮氧化物(NO_x)和VOCs的日变化趋势整体呈现夜间高白天低的变化特征.由O_3生成效率(OPE)、VOCs/NO_x和H_2O_2/NO_z特征比值法及基于EKMA曲线的方法均得出观测期间泰安市大气O_3光化学生成偏向于NO_x敏感区及过渡区,削减NO_x和VOCs均对O_3生成具有控制作用.同时基于EKMA曲线的方法还得出在O_3前体物浓度减排时按照丙烯等效浓度(PE)与NO_x浓度比值为8∶3进行VOCs(PE)和NO_x削减可以达到O_3浓度控制的最佳效果.  相似文献   

19.
随着京津冀区域臭氧(O3)污染问题日渐突出,探究和分析京津冀区域O3变化特征和污染过程形成原因对区域大气污染防治工作具有重要意义.观测结果显示,春夏季京津冀区域较高的O3浓度呈现南高北低的分布,北京、天津和石家庄这3座城市O3高浓度往往伴随着偏南风的影响.基于WRF-Chem模式模拟和过程分析技术对2019年京津冀区域O3变化特征和成因进行了深入分析,典型城市化学过程、垂直混合和输送的日变化有着鲜明的季节变化差异.其中在夏季午后化学过程是各城市O3浓度增加的主要来源;垂直混合导致天津和石家庄O3浓度增加,但使得北京O3浓度减少;天津和石家庄存在净输出,而北京则为净流入.通过对比分析O3污染和清洁过程结果表明,化学过程主导北京和石家庄污染过程午后O3浓度增加,天津则为垂直混合,此外,北京和石家庄存在O3净输入,天津则为净输出;而清洁过程中,垂直混合主...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号