首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 593 毫秒
1.
长三角区域非道路移动机械排放清单及预测   总被引:6,自引:5,他引:1  
黄成  安静宇  鲁君 《环境科学》2018,39(9):3965-3975
基于长三角典型城市非道路移动机械实地调查成果,结合长三角各城市非道路移动机械相关指标现状及变化趋势,建立了长三角三省一市非道路移动机械大气污染源排放清单,并开展了2005~2025年区域非道路移动机械保有量、燃油消费量及污染物排放量预测.2014年长三角非道路移动机械总量约为8.23×106台,柴油消费量约9.95×106t,SO_2、NO_x、CO、VOCs、PM10和PM_(2.5)排放分别为5.5×10~3、4.9×10~5、7.6×10~5、1.1×10~5、2.9×10~4和2.7×10~4t,农用机械占长三角机械总量的93%,CO和VOCs排放贡献分别为88%和77%;建筑及市政工程机械的NO_x和PM_(2.5)排放贡献较为突出,分别占49%和35%.长三角中部和北部城市机械排放贡献相对突出.2005~2014年间,长三角地区非道路移动机械保有量、油耗及排放增幅均相对较快,预计到2020和2025年,区域非道路移动机械总量增速明显放缓,柴油消费量分别比2014年增加2%和8%.到2020年,SO_2、NO_x、CO、VOCs、PM10和PM_(2.5)排放分别比2014年下降97%、10%、3%、10%、11%和11%;到2025年分别下降97%、16%、3%、15%、21%和21%.预计未来长三角区域非道路移动机械排放将呈现逐年下降趋势,但相比机动车降幅仍相对较小,其排放贡献将日益突出,加快老旧机械淘汰并进一步提升机械排放标准对削减非道路移动机械排放总量具有十分重要的意义.  相似文献   

2.
天津市非道路移动源污染物排放清单开发   总被引:4,自引:8,他引:4  
张意  Andre Michel  李东  张欣  吴琳  张衍杰  马超  邹超  毛洪钧 《环境科学》2017,38(11):4447-4453
基于天津市非道路移动源污染管控需求,根据调研收集到的2015年非道路移动源活动水平数据,采用环保部《非道路移动污染源排放清单编制技术指南(试行)》推荐的核算方法,建立较为完整的天津市非道路移动源排放清单,分析污染物的时空分布.2015年,天津市非道路移动源排放CO 6.15×10~3t、HC 2.45×10~3t、NO_x2.90×10~4t、PM 1.45×10~3t、SO_21.37×10~4t.船舶污染物排放占比最高,为所有非道路移动源污染物排放总量的73.66%,主要分布于天津港区;其次是非道路移动机械,占21.66%,主要分布于市郊种植业和养殖业区县、城市建设和人群活动较为密集的城区;民航飞机和铁路机车占比较小,分别为3.55%和1.13%,主要分布于机场和铁路沿线.总体上,非道路移动源从3月开始排放量逐渐升高,而年底和年初(冬季)排放量相对较低.  相似文献   

3.
南昌市移动源排放清单研究   总被引:8,自引:4,他引:4  
根据收集的南昌市移动源活动水平数据,采用合适的估算方法、排放因子和GIS技术,建立了南昌市2007—2014年移动源排放清单,并对2014年移动源清单进行了空间化处理与分析,空间分辨率为1 km×1 km.结果表明,2007—2014年南昌市移动源共向大气排放CO、HC、NO_x、PM_(2.5)、PM_(10)、SO_2分别为18.26×10~4、5.07×10~4、18.46×10~4、0.99×10~4、1.08×10~4、3.31×10~4t.其中,2014年移动源向大气中排放的这6种污染物总量分别为2.14×10~4、0.76×10~4、1.97×10~4、0.08×10~4、0.09×10~4、0.55×10~4t.道路移动源中,汽油小型客车是CO、HC和SO_2最大的贡献源,排放量分别占机动车排放总量的55.1%、78.5%和56.1%;柴油重型货车是NO_x、PM_(2.5)和PM_(10)排放贡献率最大的车型,分别占43.2%、40%和40%.非道路移动源中,小型拖拉机对CO、HC、NO_x、PM_(2.5)和PM_(10)的贡献率均较大,分别占非道路移动源排放总量的29.9%、26.9%、23.4%、29.5%和29.8%;SO_2排放主要来源于船舶,占非道路移动源SO_2排放总量的45.1%.高污染排放集中的区域,主要是青山湖区、西湖区和东湖区.  相似文献   

4.
利用IVE模型和对杭州市机动车排放管理数据库大数据的分析,得到杭州市2015年各类机动车主要温室气体高分辨率排放清单,分析了排放分担情况及时间变化特征,并利用Arc GIS及杭州市路网信息建立了1 km×1 km网格化空间分布.结果表明,杭州市道路移动源温室气体排放中CO_2、CH_4和N_2O的年排放量分别为818.11×10~4、0.85×10~4和0.07×10~4t,合计856.79×10~4t(以CO2当量计).从温室气体种类来看,CO_2占道路移动源温室气体排放总量的绝大部分,为95.5%;从机动车类型来看,小微型客车对道路移动源温室气体排放的贡献率最大,占72.8%;从道路类型的排放情况来看,杭州市市中心、城区、城郊和郊区中温室气体合计CO_2当量贡献率最高的均为主干路,分别为43.4%、61.8%、58.0%和42.4%.杭州市道路移动源温室气体排放强度均呈现由城市中心向城市边缘递减的趋势,同时温室气体排放量日变化特征明显,均出现弱双峰现象.  相似文献   

5.
成都市非道路施工机械排放清单研究   总被引:4,自引:1,他引:3  
随着大气污染控制形势的日益严峻,非道路移动源排放日益受到关注.本研究通过软件调研获得了成都市非道路施工机械保有量、功率分布,通过现场及文献调研获得了非道路施工机械活动水平数据.参照《非道路移动污染源排放清单编制技术指南(试行)》中的方法,计算了成都市2018年非道路施工机械排放清单.结果表明,2018年成都市非道路施工机械PM、HC、NO_x和CO的排放量分别为845、2898、16738、11231 t.按机械类型划分,挖掘机4项污染物排放占比最高,PM、HC、NO_x和CO分别占59%、61%、59%和62%;按排放阶段划分,国2机械4项污染物排放占比最高,PM、HC、NO_x和CO分别占55%、66%、68%和65%.排放清单结果的不确定性受到多种因素的影响,其中影响最大的为排放因子.  相似文献   

6.
廊坊市区主要大气污染源排放清单的建立   总被引:4,自引:1,他引:3  
通过调研、统计廊坊市区工业、城中村及机动车等资料,结合以往清单文献研究结果及清单编制指南中的排放因子,计算了廊坊市区主要大气污染物的排放量,得到廊坊市区2014年主要大气污染源排放清单.结果显示,2014年廊坊市区工业源(固定燃烧)NO_x、SO_2、NMVOC、CO、PM_(10)、PM_(2.5)排放总量分别为6.4×10~3、1.2×10~4、31、1.0×10~4、7.3×10~2、4.4×10~2t,其中热电行业排污贡献率最高,分别占NO_x、SO_2、CO、PM_(10)、PM_(2.5)工业源(固定燃烧)年排放总量的55%、48%、67%、63%、69%;安次区工业企业对气态污染物贡献较高,广阳区及开发区工业企业对颗粒物排污贡献较大.低矮面源(城中村)NO_x、SO_2、NMVOC、CO、PM10、PM_(2.5)年排放总量分别为1.8×10~2、3.6×10~3、3.0、4.9×10~3、1.5×10~2、72 t.道路移动源CO、HC、NO_x、PM_(2.5)年排放总量分别为2.4×10~4、1.9×10~3、2.2×10~3、44 t,其中小型客车对HC和CO贡献率较高,分别为53%和61%;NO_x年排放总量中26%由重型货车贡献;PM_(2.5)则主要由轻型货车和重型货车贡献,占比分别为39%和21%.  相似文献   

7.
珠江三角洲非道路移动源排放清单开发   总被引:46,自引:18,他引:28  
根据收集到的珠江三角洲非道路移动源活动水平数据,采用适合各类非道路移动源污染物排放量的估算方法和排放因子,建立了珠江三角洲地区2006年非道路移动源排放清单.结果表明,珠江三角洲地区2006年非道路移动源排放SO2为6.52×104t,NOx为1.24×105t,VOC为4.54×103t,CO为2.67×104t,PM10为4.51×103t.其中船舶为最大的SO2、NOx、CO和PM10排放贡献源,分别占非道路移动源排放总量的96.4%、73.8%、39.4%和50.5%.在船舶排放源中,SO2、NOx、VOC、CO和PM10排放量的89.8%、81.8%、77.3%、79.5%和81.7%来自货轮和散装干货船.非道路移动源已成为该地区第三大SO2和NOx排放贡献源,分别占珠江三角洲大气污染源SO2和NOx排放总量的8.6%和13.5%.  相似文献   

8.
基于全面开展大气污染源排放清单编制工作的要求,研究制定了天津市港口自有移动源排放清单.对道路和非道路移动源各源类6种大气污染物建立了分辨率为3 km×3 km的网格化排放清单,并分析其污染物排放时空分布特征,利用蒙特卡罗方法分析了清单的不确定性.结果表明,2020年港口自有移动源共排放PM10 148.22 t、 PM2.5 135.34 t、 SO2 1 061.04 t、 NOx 4 027.16 t、 CO 756.60 t和VOCs 237.07 t,其中道路和非道路移动源污染物总排放量占移动源排放量的比例分别为6.66%和93.34%.全港区自有道路移动源机动车污染物排放的主要贡献源是小型、中型、大型载客汽车(汽油)和重型载货汽车(柴油),非道路移动源排放的各污染物的主要贡献源均是船舶和工程机械.不确定性分析结果表明,移动源总体不确定性范围为-13.3%~16.53%.  相似文献   

9.
广东省非道路移动机械排放清单及不确定性研究   总被引:6,自引:0,他引:6  
随着工业源和机动车等重点污染源减排空间的下降,非道路移动机械排放已成为大气污染防治领域的研究热点之一.本研究通过资料收集与实地调研,初步构建了广东省非道路机械基于机型的活动水平数据集、综合排放因子及时空分配因子,采用自下而上的排放因子法,建立了广东省2014年非道路移动机械排放清单.并利用蒙特卡洛方法定量评估清单结果不确定性.结果表明,广东省2014年非道路移动机械的SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs和CO排放总量分别为4.9、61.1、4.8、4.5、11.6 kt和45.1 kt.其中,农业机械排放以四轮农用运输车和小型拖拉机为主,贡献率分别为38.4%和18.0%,主要分布在非珠三角的农村地区;工程机械排放以建筑运输车和挖掘机为主,贡献率分别为40.1%和33.9%,主要分布在珠三角地区.此外,不确定性分析结果显示VOCs和PM_(2.5)排放结果不确定性较大,不确定性范围分别为-25.2%~41.7%和-23.4%~32.8%.NO_x不确定性较小,不确定性范围为-15.2%~17.5%.  相似文献   

10.
基于所搜集的兰州盆地各类人为污染源排放大气污染物的活动水平数据及其排放因子,采用"自下而上"的方法建立了2009年兰州盆地(石油化工城市)1 km×1 km的7种(类)大气污染物网格化排放清单,并对其来源和空间分布特征进行了分析研究.结果显示:2009年兰州盆地NOx、SO_2、VOCs、CO、PM_(10)、PM_(2.5)和NH3的排放总量分别为1.2×10~5、8.8×10~4、4.3×10~4、4.1×10~5、9.6×10~4、4.2×10~4和1.4×10~4t;工业燃烧排放是兰州盆地NO_x和SO_2的主要贡献源,分别占其总排放量的85.70%和52.55%;工业非燃烧过程排放是VOCs的最大贡献源,占总排放量的81.25%;工业点源和工业非燃烧过程排放是CO的两大贡献源,分别占其总排放量的33.97%和28.32%;PM_(10)和PM_(2.5)主要来源于工业非燃烧过程,贡献分别为51.09%和55.12%;氮肥使用和禽畜养殖是NH_3排放最大的贡献源,分别占其总排放量的39.20%和30.70%.空间分布特征表现为:以工业源为主要排放源的NO_x、SO_2、VOCs、CO、PM_(10)、PM_(2.5)主要分布在工业和人口最为集中的兰州盆地市区一带,NH_3的排放则主要集中在榆中县和皋兰县交界的农村地区.同时,还对2014年工业燃烧源和道路移动源的7种(类)大气污染物排放量进行了估算,并与2009年进行了排放比较研究.结果表明,2014年工业污染源的7种(类)污染物排放量与2009年相比平均增幅不高,最高不超过30%,但移动源污染物排放量却大幅增加,增幅将近1倍.此外,基于排放因子及活动水平的不确定性,本研究对排放清单的结果进行了不确定性分析,并通过蒙特卡罗模拟对各污染物的排放量进行了评估.本排放清单的建立,不仅填补了兰州盆地大气污染物网格化排放清单的空白,还可为兰州盆地大气污染物排放清单更新、区域环境过程、大气复合污染成因及大气污染预警技术等相关研究提供基本方法手段及基础数据.  相似文献   

11.
以杭州市全市域为研究对象,基于机动车排放管理数据库和IVE模型本地化后计算出市区、城区、城郊和郊区4类区域及快速路、主干路和次干路3类道路的各类机动车排放清单,利用Arc GIS及杭州市路网信息建立了1 km×1 km网格化空间分布,分析了机动车污染物排放特征.结果显示,杭州市机动车各污染物NO_x、CO、PM_(2.5)和VOCs的年排放量分别为4.9×10~4、12.5×10~4、0.2×10~4、2.1×10~4t.各种车型中,中重型货车对NO_x和PM_(2.5)的贡献均最大,分别为45.8%和36.3%,其次为大中型客车、公交客运,小微型客车对CO和VOCs的排放贡献最大,分别为69.3%和51.1%.机动车各污染物排放强度均呈现由城市中心向城市边缘递减的趋势,高排放区域集中在城中心及城南和城北区域,同时各污染物排放量日变化特征明显,均出现弱双峰现象.  相似文献   

12.
基于本地污染源调查的杭州市大气污染物排放清单研究   总被引:4,自引:0,他引:4  
基于实地调查数据并辅以统计数据,采用物料衡算法和排放因子法,估算了杭州市2015年大气污染物排放清单,并选取经纬度坐标、路网、航道、土地类型和人口等数据作为权重因子,研究了该地区各类排放源污染物排放空间分布特征.结果表明,杭州市2015年SO_2、NO_x、CO、VOCs、PM_(10)、PM_(2.5)和NH_3年排放总量分别为22.20×10~3、108.17×10~3、192.10×10~3、134.94×10~3、78.12×10~3、27.65×10~3和59.75×10~3t.工业源是杭州市SO_2排放的主要来源,移动源对NO_x和CO的排放贡献最为显著,扬尘源是杭州市PM_(10)和PM_(2.5)排放的最主要来源,其次为工业源;VOCs排放的主要来源依次为工业源、天然源和移动源;NH_3排放主要来自农业源.从空间分布来看,排放主要集中在中心城区及其周边的萧山、下沙、大江东、余杭和富阳等工业企业相对密集的区域.本研究建立的排放清单在污染源覆盖范围和排放因子方面仍然存在一定的不确定性,建议在后续研究中重点开展低、小、散企业及本地化排放因子调查研究工作,进一步提升大气污染物排放清单的准确度.  相似文献   

13.
成都市道路移动源排放清单与空间分布特征   总被引:4,自引:0,他引:4  
以成都市为例开展了路网、交通流、道路行驶工况和机动车保有量等数据的收集工作,运用自下而上的方法,基于实测校正和本地化的IVE模型计算了不同区域机动车在高速路、主干道、次干道和支路的排放因子,应用GIS技术建立了1 km×1 km的成都市高时空分辨率道路移动源排放清单.结果表明,2016年成都市道路移动源CO、VOCs、NO_x、SO_2、PM_(10)和NH_3排放量分别为4.2×10~5、4.5×10~4、7.2×10~4、0.4×10~3、1.1×10~4和6.2×10~3t.CO排放主要贡献车型为小型客车、中型客车和大型客车,VOCs排放主要源于小型客车和摩托车,NOx和SO2排放主要产生于小型客车和重型货车,PM10排放主要贡献车型为重型货车,NH3排放主要由小型客车贡献.污染物排放量空间分布呈现出由城市中心向卫星城市、远郊区递减趋势,中心城区和二圈层区域路网密集,排放呈片状分布,三圈层则呈带状分布.排放清单机动车技术分布数据可靠性较高,而交通流数据和排放因子存在一定不确定性.  相似文献   

14.
中国国道和省道机动车尾气排放特征   总被引:7,自引:7,他引:0  
王人洁  王堃  张帆  高佳佳  李悦  岳涛 《环境科学》2017,38(9):3553-3560
近年来,随着我国机动车保有量的持续增长,机动车排放已成为我国重要的大气污染物来源之一.现有的机动车排放研究多关注城市内的机动车大气污染物排放,针对城市间的大气污染物排放研究较少.我国城市间交通道路主要包括国道和省道,截止至2015年我国国道里程18.53万km、省道里程32.97万km,约占全国等级公路总里程的13%,因此开展我国国道和省道机动车大气污染物排放研究十分重要.本研究基于全国国道和省道交通监测站的年均监测数据,采用环境保护部发布的《道路机动车大气污染物排放清单编制技术指南(试行)》中的指导方法,计算了2015年我国国道和省道机动车的大气污染物排放清单,分析了污染物排放的时空分布特征.结果表明,我国国道和省道公路机动车排放的一氧化碳(CO)、氮氧化物(NO_x)、颗粒物(PM)和碳氢化合物(HC)排放量分别占全国机动车污染物总排放量的4.5%、27.9%、14.4%和7.7%;不同车型对国道和省道机动车大气污染物排放的分担率不同,其中大货车是NO_x、PM_(10)、PM_(2.5)的主要来源,摩托车是CO和HC的主要来源;不同道路类型中各车型的大气污染物排放分担率也不同,如高速路上大货车是NO_x、PM_(10)和PM_(2.5)的主要来源,普通道路上大客车和大货车是NO_x、PM_(10)和PM_(2.5)的主要来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号