首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenol and m-cresol biodegradations were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that C. tropicalis exhibited the increased capacity of phenolic compounds degradation after laser irradiation. It could degrade 2600 mg/L phenol and 300 mg/L m-cresol by 5% inoculum concentration, respectively. In the dual-substrate biodegradation system, 0-500 mg/L phenol could accelerate m-cresol biodegradation, and 300 mg/L m-cresol could be completely utilized within 46 hr at the presence of 350 mg/L phenol. Besides, the maximum biodegradation of m-cresol could reach 350 mg/L with 80 mg/L phenol within 61 hr. Obviously, phenol, as a growth substrate, could promote CTM 2 to degrade m-cresol, and was always preferentially utilized as carbon source. Comparatively, low-concentration m-cresol could result in a great inhibition on phenol degradation. In addition, the kinetic behaviors of cell growth and substrate biodegradation were described by kinetic model proposed in our laboratory.  相似文献   

2.
The phenol and m-cresol biodegradations were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that C. tropicalis exhibited the increased capacity of phenolic compounds degradation after laser irradiation. It could degrade 2600 mg/L phenol and 300 mg/L m-cresol by 5% inoculum concentration, respectively. In the dual-substrate biodegradation system, 0–500 mg/L phenol could accelerate m-cresol biodegradation, and 300 mg/L m-cresol could be completely utilized within 46 hr at the presence of 350 mg/L phenol. Besides, the maximum biodegradation of m-cresol could reach 350 mg/L with 80 mg/L phenol within 61 hr. Obviously, phenol, as a growth substrate, could promote CTM 2 to degrade m-cresol, and was always preferentially utilized as carbon source. Comparatively, low-concentration m-cresol could result in a great inhibition on phenol degradation. In addition, the kinetic behaviors of cell growth and substrate biodegradation were described by kinetic model proposed in our laboratory.  相似文献   

3.
黄孢原毛平革菌对6种染料的脱色降解   总被引:45,自引:3,他引:42  
在黄孢原毛平革菌与6种染料的液体静培养体系中,不同浓度的染料均发生脱色降解。共培育30 d时,刚果红、直接冻黄G和活性翠蓝KN-G达到92%~99%的脱色率。10,50,100 mg/L活性翠蓝KN-G,50,100 mg/L金莲橙O与天青蓝A,100 mg/L活性艳蓝KN-R的降解率达70%以上;18个样品中60%的降解率超过50%。生物吸附和生物降解是2个重要过程。研究表明,黄孢原毛平革菌对各种染料类群具有广谱有效的脱色降解能力。   相似文献   

4.
苯酚存在对生物强化系统降解2,4-二氯酚的影响   总被引:5,自引:1,他引:4  
研究了采用生物强化技术降解废水中2,4-二氯酚(简称2,4-DCP)时,不同浓度的苯酚存在对生物强化系统降解2,4-DCP的影响,并通过半连续流实验研究了苯酚长期存在下强化系统中2,4-DCP和苯酚生物降解速率的变化趋势.结果表明,苯酚浓度为10mg/L,50mg/L,100 mg/L及300mg/L时,都会对强化系统中2,4-DCP的降解速率产生一定的抑制作用,而且抑制作用随着苯酚浓度的增加而增强.不同浓度的苯酚与2,4-DCP长期共存时,2,4-DCP的降解速率表现出下降的趋势,而苯酚的降解速率则有所增强.  相似文献   

5.
黄孢原毛平革菌对三苯甲烷染料的生物脱色降解   总被引:2,自引:0,他引:2  
李慧蓉  陈武  陈和谦 《上海环境科学》2003,22(11):738-742,749
利用黄孢原毛平革菌对代表性三苯甲烷染料进行处理。菌的3种品系BKM-F-767.ME446和OGC101对10.50.100mg/L不同浓度的碱性紫5BN,碱性副品红、甲酚红.溴酚蓝和孔雀绿等5种染料具有不同程度的脱色降解能力。碱性副品红和溴酚蓝最为敏感.低浓度(10~30mg/L)孔雀绿的脱色降解效果最好.碱性紫5BN则一般.而甲酚红似乎抵御菌的进攻。紫外一可见光测定表明:碱性紫5BN在BKM-F-1767的作用下。培养液发生吸收峰朝短波方向的移动.标志着染料分子结构发生变化。  相似文献   

6.
Application of Ruditapes Philippinarum conglutination mud (RPM) for decolorizing synthetic dye solutions was studied. RPM showed good activity for decolorization of Methylene Blue, Crystal Violet, Malachite Green, and Ink Blue. The amount of the RPM had great effect on the decoloration rate of the dye solutions. However, the decoloration rate did not continue to increase when the amount of mud exceeded the optimum dose. The temperature of the dye solution had a remarkable effect on the decolorization rate of Ink Blue solution, but had little effect on the other three dye solutions. The initial pH of the dye solutions evidently affected the decolorization rate of Malachite Green solution, but had less effect on the other three. The decolorization rate of the dye solutions increased significantly with treatment time within 8 hr, but tended to be steady after 8 hr for Methylene Blue, Crystal Violet and Malachite Green solutions, and after 12 hr for Ink Blue solution. The decolorization efficiencies for the four dye solutions under the optimum conditions were all above 90%. Seventeen strains screened from RPM showed flocculation ability for kaolin clay suspension. Out of them, the flocculation rate of strain ZHT3-9 and strain ZHT4-13 were up to 88.14% and 86.01%, respectively. ZHT3-9 was studied, and its decolorization rate for Methylene Blue, Crystal Violet, and Malachite Green reached 90.02%, 89.21%, and 80.29%, respectively. By morphological, physiological and biochemical characteristics analysis and 16S rRNA sequencing, the strain ZHT3-9 was identified as Arthrobacter sp.  相似文献   

7.
以黄曲霉菌株A5p1为生物材料,研究其脱色染料的广谱性,并选择偶氮染料直接蓝71(DB71)为模型底物,探讨脱色特性及降解产物.该菌株对15种染料的脱色测试结果表明,染料浓度为100mg/L时脱色效率为61.7%~100%.该菌对偶氮染料DB71具有生物吸附和生物降解的双重作用,在pH值7.0,温度30℃,染料浓度300mg/L,蔗糖为碳源时对DB71 脱色率为100%.酶分析显示葡萄糖氧化酶和锰过氧化物酶参与染料的降解.FTIR、GC-MS和LC-MS分析确定代谢终产物为萘胺、叠氮萘、2-羟基-6-草酰-苯甲酸和1-萘酚.  相似文献   

8.
An acclimatized mixed microbial culture, predominantly Pseudomonas sp., was enriched from a sewage treatment plant, and its potential to simultaneously degrade mixtures of phenol and m-cresol was investigated during its growth in batch shake flasks. A 22 full factorial design with the two substrates at two different levels and different initial concentration ranges (low and high), was employed to carry out the biodegradation experiments. The substrates phenol and m-cresol were completely utilized within 21 h when present at low concentrations of 100 mg/L for each, and at high concentration of 600 mg/L for each, a maximum time of 187 h was observed for their removal. The biodegradation results also showed that the presence of phenol in low concentration range (100–300 mg/L) did not inhibit m-cresol biodegradation. Whereas the presence of m-cresol inhibited phenol biodegradation by the culture. Moreover, irrespective of the concentrations used, phenol was degraded preferentially and earlier than m-cresol. A sum kinetics model was used to describe the variation in the substrate specific degradation rates, which gave a high coefficient of determination value (R2 > 0.98) at the low concentration range of the substrates. From the estimated interaction parameter values obtained from this model, the inhibitory effect of phenol on m-cresol degradation by the culture was found to be more pronounced compared to that of m-cresol on phenol. This study showed a good potential of the indigenous mixed culture in degrading mixed substrate of phenolics.  相似文献   

9.
Functional microorganisms to high concentration phenol containing Cr^6+ and Pb^2+ were cultured and biofilm was formed on polypropylene packings in bioelectro-reactor. It was found that the biodegradation capability of such biofilm to phenol changed with the applied voltage. Under the optimal electric field conditions (voltage of 3.0 V, electric field of strength 17.7 V/m and current density of 1.98 A/m2), biodegradation efficiency of phenol aof concentration of 1200 mg/L increased 33% compared to the instance without applying electric field. However, voltage had inverse effect on biodegradation, as microorganisms were killed under strong electric field. Voltage had little effect on heavy ions elimination. Higher absorption rate of Cr^6+ and Pb^2+ was observed when changing pH fi'om acidic to neutral. The experiment results indicated that, after treatment, 10 L phenol of 2400 mg/L was biodegraded completely within 55 h and concentrations of Cr^6+ and Pb^2+ dropped to less than 1 mg/L within 12 h and 6 h, fi'om initial values of 50 mg/L and 30 mg/L, respectively.  相似文献   

10.
ATP法测定有机物好氧生物降解性的研究   总被引:13,自引:1,他引:12  
通过测定有机物生物降解过程中微生物的能量变化--ATP含量的变化来表征有机物的好氧生物降解性。采用受度物的初始浓度为100mg/L溶解性有机碳(DDC),接种生物量为500mg/L,试验周期14d,取得了较好的试验结果。给出了测试程序,采用峰值时间、峰高指数,IA指数作为定量评价指标,从而建立了TP评价方法,并对46种有机物和7种废水的好氧生物降解性进行了评价。  相似文献   

11.
从污水处理厂活性污泥中分离筛选出一株高效苯酚降解菌L5-1,经菌落形态观察和16S rDNA基因测序,结果表明菌株L5-1为蜡样芽胞杆菌(Bacillus cereus),美国国家生物信息中心(NCBI)的注册号为MN784421.将苯酚设置为唯一碳源,对其生长和苯酚降解特性展开研究.结果表明:菌株L5-1在10%接种量、温度30~35℃、pH值7~8的条件下,均能高效降解培养基中苯酚(培养基体积为100mL,初始苯酚浓度为500mg/L,14h时降解率>93%).而在最优降解条件下(10%接种量,培养温度为35℃,pH值7.0,NaCl浓度为1%),初始苯酚浓度为500mg/L,菌株在14h内的苯酚降解率可达97.1%;而当初始苯酚浓度为1000mg/L,菌株也可在46h内达到97.71%的降解率.运用Haldance方程动力学模拟菌株在不同浓度苯酚下的生长过程,其最大比生长速率为0.355h-1,半饱合常数104.27mg/L,抑制常数为322.83mg/L,R2=0.997.菌株L5-1为目前已报道的Bacillus菌属中降解苯酚能力较强的菌株,为实际处理含酚废水中提供理论参考.  相似文献   

12.
Coal gasification effluent is a typical refractory industrial wastewater with a very poor anaerobic biodegradability due to its toxicity.Methanol was introduced to improve anaerobic biodegradability of real coal gasification wastewater,and the effect of methanol addition on the performance was investigated in a mesophilic upflow anaerobic sludge bed reactor with a hydraulic retention time of 24 hr.Experimental results indicated that anaerobic treatment of coal gasification wastewater was feasible with the addition of methanol.The corresponding maximum COD and phenol removal rates were 71% and 75%,respectively,with methanol concentration of 500 mg COD/L for a total organic loading rate of 3.5 kg COD/(m3 ·day) and a phenol loading rate of 0.6 kg/(m3 ·day).The phenol removal rate was not improved with a higher methanol concentration of 1000 mg COD/L.Substrate utilization rate (SUR) tests indicated that the SURs of phenol were 106,132,and 83 mg phenol/(g VSS·day) at methanol concentrations of 250,500,and 1000 mg COD/L,respectively,and only 45 mg phenol/(g VSS·day) in the control reactor.The presence of methanol could reduce the toxicity of coal gasification wastewater and increase the biodegradation of phenolic compounds.  相似文献   

13.
We investigated the decolorization of Orange II with and without the addition of co-substrates and nutrients under an anaerobic sequencing batch reactor (ASBR). The increase in COD concentrations from 900 to 1750 to 3730 mg/L in the system treating 100 mg/L of Orange II-containing wastewater enhanced color removal from 27% to 81% to 89%, respectively. In the absence of co-substrates and nutrients, more than 95% of decolorization was achieved by the acclimatized anaerobic microbes in the bioreactor treating 600 mg/L of Orange II. The decrease in mixed liquor suspended solids concentration by endogenous lysis of biomass preserved a high reducing environment in the ASBR, which was important for the reduction of the Orange II azo bond that caused decolorization. The maximum decolorization rate in the ASBR was approximately 0.17 g/hr in the absence of co-substrates and nutrients.  相似文献   

14.
陈韬  邹子介  李剑沣 《环境工程》2017,35(10):66-70
通过构建模拟实验,利用~(15)N同位素示踪技术研究在生物滞留系统中碳源对生物滞留系统中硝酸盐异化还原成铵(DNRA)的影响。结果表明:5个处理组(葡萄糖50,100,150,200,250 mg/L)中NO_3~-发生转化的量分别为41.1%、47.9%、50.7%、56.2%和57.6%。以葡萄糖为碳源,初始浓度为100 mg/L时,DNRA作用效果最显著,~(15)N-NH_4~+含量占初始添加~(15)N的24.7%;初始浓度为250 mg/L时,DNRA作用最弱,~(15)N-NH_4~+含量占初始添加~(15)N的13.7%。反硝化和DNRA作用同时进行,系统中~(15)N-NO_3~-含量的减少均伴随着DNRA过程中间产物~(15)N-NO_2~-含量的积累和最终产物~(15)N-NH+4含量的增加。  相似文献   

15.
A simple and efficient biosorbent prepared from powdered mycelial biomass of Ceriporia lacerata was used to removal Crystal Violet, poorly degraded as recalcitrant molecule by microorganism.  相似文献   

16.
利用羧基化碳纳米管作为催化剂,强化臭氧化脱色三苯甲烷染料废水。结果表明,当羧基化碳纳米管存在下,碱性品红废水的脱色率显著增加,在初始pH值为6.0,温度为25℃,初始染料浓度为100 mg/L,羧基化碳纳米管用量为6 mg/L时,30 min后脱色率达到94%。羧基化碳纳米管的催化性能高是由于碳纳米管特殊的纳米结构和—COOH基团,从而促进了臭氧化过程。羧基化碳纳米管可以强化臭氧化脱色三苯甲烷染料废水,对碱性品红、结晶紫、灿烂绿和孔雀石绿4种染料废水均能达到良好的脱色效果。  相似文献   

17.
Alkylphenols (APs), the breakdown products of alkylphenol polyethoxylates that are widely used as surfactants, have been proven to exert estrogenic effects. With industrial development, higher concentrations of APs are discharged into aquatic environments. Nonylphenol (NP), the most noxious AP, is included in the blacklist of several countries. The toxicity of NP to the alga Cyclotella caspia and the biodegradation of NP by C. caspia were studied in the laboratory. The median effective concentration at 96 hr (96 hr EC50 ) of NP for C. caspia was found to be 0.18 mg/L. Five toxicity and three degradation indices were selected for toxicity and biodegradation experiments, respectively, in five or three concentrations of NP set by the 96 hr EC50 of NP. The algal growth rate and chlorophyll a contents decreased as NP concentration increased. The main manifestations of morphological deformity of the cells included volume expansion and the presence of cytoplasmic inclusions (lipid droplets). The abnormality rate of the cells increased with NP concentration and time, and was 100% at 0.22 and 0.26 mg/L of NP after 192 hr of culture. Superoxide dismutase activity initially increased and then declined at a higher NP toxicity of greater than 0.18 mg/L. After 192 hr of culture, the biodegradation rates of NP by C. caspia with initial concentrations of 0.14, 0.18, and 0.22 mg/L were 37.7%, 31.7%, and 6.5%, respectively. The kinetic equation of C. caspia biodegradation on NP was correlated with algal growth rate and initial NP concentration.  相似文献   

18.
Atrazine, a widely used herbicide, is increasing the agricultural production effectively, while also causing great environmental concern. Efficient atrazine-degrading bacterium is necessary to removal atrazine rapidly to keep a safe environment. In the present study, a new atrazine-degrading strain ZXY-1, identified as Pseudomonas, was isolated. This new isolated strain has a strong ability to biodegrade atrazine with a high efficiency of 9.09 mg/L/hr.Temperature, p H, inoculum size and initial atrazine concentration were examined to further optimize the degradation of atrazine, and the synthetic effect of these factors were investigated by the response surface methodology. With a high quadratic polynomial mathematical model(R~2= 0.9821) being obtained, the highest biodegradation efficiency of 19.03 mg/L/hr was reached compared to previous reports under the optimal conditions(30.71°C, pH 7.14, 4.23%(V/V) inoculum size and 157.1 mg/L initial atrazine concentration).Overall, this study provided an efficient bacterium and approach that could be potentially useful for the bioremediation of wastewater containing atrazine.  相似文献   

19.
萃取膜生物反应器处理苯酚废水的试验研究   总被引:2,自引:0,他引:2  
戴宁  张晟禹  张凤君  李隋  赵文生 《环境科学》2008,29(8):2214-2218
从经过驯化的活性污泥中筛选出苯酚降解菌.制备成菌悬液,对比活性污泥体系和菌悬液体系的萃取膜生物反应器(EMB)对苯酚废水的处理效果,考察了料液苯酚浓度、反应器温度等因素对膜萃取速率及生物降解效果的影响.结果表明,通过以苯酚为唯一碳源,逐渐提高苯酚浓度的方法对活性污泥进行驯化.当进水苯酚浓度为700 mg·L-1时,苯酚去除率达99%以上;适当提高反应器温度和料液初始浓度有利于提高膜萃取速率;当初始料液苯酚浓度为2000 mg·L-1时,膜萃取速率高于生物降解速率,生物相中产生苯酚积累;菌悬液体系EMB的生物膜厚度明显小于活性污泥体系,且水力反冲洗可有效控制生物膜厚度.对苯酚生物降解产物的GC-MS分析结果表明,苯酚的生物降解较彻底,基本无苯酚中间产物的残留.  相似文献   

20.
高盐条件下染料酸性橙7的生物降解特性   总被引:2,自引:2,他引:0       下载免费PDF全文
对偶氮染料废水厌氧-好氧生物处理中的高盐度抑制生物活性和芳香胺自氧化问题,通过多种强化策略,考察了NaCl为100g/L时酸性橙7(AO7)的生物降解特性.结果表明,加入葡萄糖(0.5g/L)、蛋白胨(1g/L)和酵母粉(0.5g/L)有利于高盐条件下AO7的生物降解.进水中加入酸性红B对AO7的脱色有加速作用.耐盐污泥中加入蒽醌形成的蒽醌-污泥自固定化体系可以促进AO7脱色,当蒽醌浓度为100mg/L时,AO7最大脱色率约为92%.以活性炭毡作为生物载体,厌氧和好氧体系均可实现稳定运行,且体系污泥沉降性良好,脱色速率达26.67mg/(L×h),且可有效抑制脱色中间产物1-氨基-2-萘酚的好氧自氧化,使COD去除率始终保持在90%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号