首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Nitrogen is commonly known as a food source for crops. However, the nitrogen compounds used in crop fertilizers, most commonly nitrate (NO3) and ammonium (NH4), are not widely understood. Blueberry plants do not take up these compounds as efficiently as organic nitrogen so varying amounts of leaching into the soil and groundwater will occur. A biogeochemical model consisting of ordinary and partial differential equations is implemented to computationally predict the concentrations of nitrate and ammonium in unsaturated soil of blueberry plants, specifically in the southern region of New Jersey. The model takes into account the type of soil of the region, the nitrate uptake of the plant, the water content in the roots region, the pressure heads in the soil pores, and the application rates of fertilizers containing nitrate, ammonium, and organic nitrogen. Computational simulations demonstrate that the model accounts for natural processes and, in addition, show that commonly used fertilizer application rates cause unnecessarily high concentrations of both nitrate and ammonium in the unsaturated soil level. Further, simulations show that decreasing nitrate fertilizer applications by 85.7% in annual and 91.8% in bi-annual schedules provides an optimal system for safe reapplication.  相似文献   

2.
Soil quality assessment provides a tool for evaluating the sustainability of alternative soil management practices. Our objective was to develop the most sensitive soil quality index for evaluating fertilizer, farm yard manure (FYM), and crop management practices on a semiarid Inceptisol in India. Soil indicators and crop yield data from a long-term (31 years) fertilizer, manure, and crop rotation (maize, wheat, cowpea, pearl millet) study at the Indian Agricultural Research Institute (IARI) near New Delhi were used. Plots receiving optimum NPK, super optimum NPK and optimum NPK + FYM had better values for all the parameters analyzed. Biological, chemical, and physical soil quality indicator data were transformed into scores (0 to 1) using both linear and non-linear scoring functions, and combined into soil quality indices using unscreened transformations, regression equation, or principal component analysis (PCA). Long-term application of optimum inorganic fertilizers (NPK) resulted in higher soil quality ratings for all methods, although the highest values were obtained for treatment, which included FYM. Correlations between wheat (Triticum aestivum L.) yield and the various soil quality indices showed the best relationship (highest r) between yield and a PCA-derived SQI. Differences in SQI values suggest that the control (no NPK, no manure) and N only treatments were degrading, while soils receiving animal manure (FYM) or super optimum NPK fertilizer had the best soil quality, respectively. Lower ratings associated with the N only and NP treatments suggest that one of the most common soil management practices in India may not be sustainable. A framework for soil quality assessment is proposed.  相似文献   

3.
The purpose of the study was to identify and quantify anthropogenic sources and sinks of greenhouse gases from forestry, land-use changes and agriculture in Tanzania. The 1990 inventory revealed that, in the land-use sector, methane (CH4) and carbon dioxide (CO2) are the primary gases emitted. Enteric fermentation in livestock production systems is the largest source of CH4. Although deforestation results in greenhouse gas emissions, the managed forests of Tanzania are a major CO2 sink.  相似文献   

4.
Alpine wetland is a source for CH4, but little is known about methane emission from such wetland, especially about its diurnal pattern. In this study we tried to probe the diurnal variation in methane emission from alpine wetland vegetation. The average methane emission rate was 9.6 ± 3.4 mg CH4 m???2 h???1. There was an apparent diurnal variation pattern in methane emission with one minor peak at 06:00 and a major one at 15:00. The sunrise peak was consistent with a two-way transport mechanism for plants (convective at daytime and diffusive at night-time). CH4 emission was found significantly correlated with redox potentials. The afternoon peak could not be explained by diurnal variation in soil temperature, but could be attributable to changes in CH4 oxidation and production driven by plant gas transport mechanism. The results have important implications for sampling and scaling strategies for estimating methane emission from alpine wetlands.  相似文献   

5.
Methane is primarily a biogenic gas, which is implicated in global climate change. Among all the sources of methane emission, paddy fields form the most dominant source. An experiment was conducted with a common paddy crop (Oryza sativa var. Vishnuparag) by amending the soils with different organic manures and biofertilizers with a view to find out an inexpensive strategy to mitigate methane emission from the rice-fields. The results revealed that there was a seasonal change in the CH4 flux, registering a peak at heading stage in all treatments. The application of rice straw before flooding and the biofertilizer after flooding enhances CH4 efflux from the rice-fields significantly, while composts of cowdung and leaves did not stimulate CH4 production and, rather, decreased CH4 fluxes. As soil pH and temperature were optimum for methanogenesis, it was likely that the organic C and the redox potential mainly modulated methane production and its emission through rice plants.  相似文献   

6.
Methane emissions from natural wetlands   总被引:3,自引:0,他引:3  
Methane is considered one of the most important greenhouse gases in the atmosphere. Because of the strict anaerobic conditions required by CH4-generating microorganisms, natural wetland ecosystems are one of the main sources of biogenic CH4. The total natural wetland area is estimated to be 5.3 to 5.7 × 1012 m2, making up less than 5% of the Earth's land surface. However, natural wetland plays a disproportionately large role in CH4 emissions. Wetlands are likely the largest natural sources of CH4 to the atmosphere, accounting for about 20% of the current global annual emission. Out of the total amount of CH4 emitted, northern wetlands contribute 34%, temperate wetlands 5%, and tropical systems about 60%.Because of the unique characteristics and high productivity, wetland ecosystems are important in the global carbon cycle. Natural wetlands are permanently or temporarily saturated. Strict anaerobic conditions consequently develop, which allows methanogenesis to occur. But the thin oxic layer and the oxic plant rhizophere promote activity of CH4-oxidizing bacteria or methanotrophs. Thus, both CH4 formation and consumption in wetland systems are microbiological processes and are controlled by many factors. Eight of the controlling factors, including carbon supply, soil oxidation-reduction status, pH, temperature, vegetation, salinity and sulfate content, soil hydrological conditions and CH4 oxidation are discussed in this paper.  相似文献   

7.
Ground-level concentrations of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored over three seasons, i.e., post-monsoon (September–October), winter (January–February), and summer (May–June) for 1 year during 2013–2014 in Nagpur City in India. The selected gases had moderate to high variation both spatially (residential, commercial, traffic intersections, residential cum commercial sites) and temporally (at 7:00, 13:00, 18:00, and 23:00 hours in all three seasons). Concentrations of gases were randomly distributed diurnally over city in all seasons, and there was no specific increasing or decreasing trend with time in a day. Average CO2 and N2O concentrations in winter were higher over post-monsoon and summer while CH4 had highest average concentration in summer. Observed concentrations of CO2 were predominantly above global average of 400 ppmv while N2O and CH4 concentrations frequently dropped down below global average of 327 ppbv and 1.8 ppmv, respectively. Two-tailed Student’s t test indicated that post-monsoon CO2 concentrations were statistically different from summer but not so from winter, while difference between summer and winter concentrations was statistically significant (P < 0.05). CH4 concentrations in all seasons were statistically at par to each other. In case of N2O, concentrations in post-monsoon were statistically different from summer but not so from winter, while difference between summer and winter concentrations was statistically significant (P < 0.05). Average ground-level concentrations of the gases calculated for three seasons together were higher in commercial areas. Environmental management priorities vis a vis greenhouse gas emissions in the city are also discussed.  相似文献   

8.
Measurements of methane emission rates and concentrations in the soil were made during four growing seasons at the International Rice Research Institute in the Philippines, on plots receiving different levels of organic input. Fluxes were measured using the automated closed chambers system (total emission) and small chambers installed between plants (water surface flux). Concentrations of methane in the soil were measured by collecting soil cores including the gas phase (soil-entrapped methane) and by sampling soil solution in situ (dissolved methane). There was much variability between seasons, but total fluxes from plots receiving high organic inputs (16–24 g CH4 m–2) always exceeded those from the low input plots (3–9 g CH4 m–2). The fraction of the total emission emerging from the surface water (presumably dominated by ebullition) was greater during the first part of the season, and greater from the high organic input plots (35–62%) than from the low input plots (15–23%). Concentrations of dissolved and entrapped methane in the low organic input plots increased gradually throughout the season; in the high input plots there was an early-season peak which was also seen in emissions. On both treatments, periods of high methane concentrations in the soil coincided with high rates of water surface flux whereas low concentrations of methane were generally associated with low flux rates.  相似文献   

9.
Present and future annual methane flux estimates out of landfills, rice paddies and natural wetlands, as well as the sorption capacity of aerobic soils for atmospheric methane, are assessed. The controlling factors and uncertainties with regard to soil methanogenesis and methanotrophy are also briefly discussed.The actual methane emission rate out of landfills is estimated at about 40 Tg yr–1. Changes in waste generation, waste disposal and landfill management could have important consequences on future methane emissions from waste dumps. If all mitigating options can be achieved towards the year 2015, the CH4 emission rate could be reduced to 13 Tg yr–1. Otherwise, the emission rate from landfills could increase to 63 Tg yr–1 by the year 2025. Methane emission from rice paddies is estimated at 60 Tg yr–1. The predicted increase of rice production between the years 1990 and 2025 could cause an increase of the CH4 emission rate to 78 Tg yr–1 by the year 2025. When mitigating options are taken, the emission rate could be limited to 56 Tg yr–1. The methane emission rate from natural wetlands is about 110 Tg yr–1. Because changes in the expanse of natural wetland area are difficult to assess, it is assumed that methane emission from natural wetlands would remain constant during the next 100 years. Because of uncertainties with regard to large potential soil sink areas (e.g. savanna, tundra and desert), the global sorption capacity of aerobic soils for atmospheric methane is not completely clear. The actual estimate is 30 Tg yr–1.In general, the net contribution of soils and landfills to atmospheric methane is estimated at 180 Tg yr–1 (210 Tg yr–1 emission, 30 Tg yr–1 sorption). This is 36% of the global annual methane flux (500 Tg yr–1).  相似文献   

10.
There is worldwide concern over the increase use of nanoparticles (NPs) and their ecotoxicological effect. It is not known if the annual production of tons of industrial nanoparticles (NPs) has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding the NPs particularly the metal oxide (CuO, ZnO) on CH4 oxidation activity in vertisol and the abundance of heterotrophs, methane oxidizers, and ammonium oxidizers. Soil samples collected from the agricultural field located at Madhya Pradesh, India, were incubated with either CuO and ZnO NPs or ionic heavy metals (CuCl2, ZnCl2) separately at 0, 10, and 20 μg g?1 soil. CH4 oxidation activity in the soil samples was estimated at 60 and 100 % moisture holding capacity (MHC) in order to link soil moisture regime with impact of NPs. NPs amended to soil were highly toxic for the microbial-mediated CH4 oxidation, compared with the ionic form. The trend of inhibition was Zn 20?>?Zn 10?>?Cu 20?>?Cu 10. NPs delayed the lag phase of CH4 oxidation to a maximum of 4-fold and also decreased the apparent rate constant k up to 50 % over control. ANOVA and Pearson correlation analysis (α?=?0.01) revealed significant impact of NPs on the CH4 oxidation activity and microbial abundance (p?<?0.0001, and high F statistics). Principal component analysis (PCA) revealed that PC1 (metal concentration) rendered 76.06 % of the total variance, while 18.17 % of variance accounted by second component (MHC). Biplot indicated negative impact of NPs on CH4 oxidation and microbial abundance. Our result also confirmed that higher soil moisture regime alleviates toxicity of NPs and opens new avenues of research to manage ecotoxicity and environmental hazard of NPs.  相似文献   

11.
Biotic landfill cover treatments for mitigating methane emissions   总被引:2,自引:0,他引:2  
Landfill methane (CH4) emissions have been cited as one ofthe anthropogenic gas releases that can and should be controlledto reduce global climate change. This article reviews recent research that identifies ways to enhance microbial consumptionof the gas in the aerobic portion of a landfill cover. Use of these methods can augment CH4 emission reductions achievedby gas collection or provide a sole means to consume CH4 atsmall landfills that do not have active gas collection systems.Field studies indicate that high levels of CH4 removal can be achieved by optimizing natural soil microbial processes. Further, during biotic conversion, not all of the CH4 carbonis converted to carbon dioxide (CO2) gas and released to theatmosphere; some of it will be sequestered in microbial biomass.Because biotic covers can employ residuals from other municipalprocesses, financial benefits can also accrue from avoided costsfor residuals disposal.  相似文献   

12.
To estimate the greenhouse gas emissions from paddy fields of Cambodia, the methodology of the Intergovernmental Panel on Climate Change (IPCC) guidelines, IPCC coefficients, and emission factors from the experiment in Thailand and another country were used. Total area under rice cultivation during the years 2005–2006 was 2,048,360 ha in the first crop season and 298,529 ha in the second crop season. The emission of methane from stubble incorporation with manure plus fertilizer application areas in the first crop season was estimated to be 192,783.74 ton higher than stubble with manure, stubble with fertilizer, and stubble without fertilizer areas. The fields with stubble burning emitted the highest emission of methane (75,771.29 ton) followed by stubble burning with manure (22,251.08 ton), stubble burning with fertilizer (13,213.27 ton), and stubble burning with fertilizer application areas (3,222.22 ton). The total emission of methane from rice field in Cambodia for the years 2005–2006 was approximately 342,649.26 ton (342.65 Gg) in the first crop season and 36,838.88 ton (36.84 Gg) in the second crop season. During the first crop season in the years 2005–2006, Battambang province emitted the highest amount of CH4 (38,764.48 ton) and, in the second crop season during the years 2005–2006, the highest emission (8,262.34 ton) was found in Takeo province (8,262.34 ton). Nitrous oxide emission was between 2.70 and 1,047.92 ton in the first crop season and it ranged from 0 to 244.90 ton in the second crop season. Total nitrous oxide emission from paddy rice field was estimated to be 9,026.28 ton in the first crop season and 1,091.93 ton in the second crop season. Larger area under cultivation is responsible for higher emission of methane and nitrous oxide. Total emission of nitrous oxide by using IPCC default emission coefficient was approximately 2,328.85 ton. The total global warming potential of Cambodian paddy rice soil is 11,723,217.03 ton (11,723 Gg) equivalents of CO2.  相似文献   

13.
A loamy soil contaminated with 137CsCl 40 years ago was investigated by a sequential extraction technique to determine the effect of ageing on chemical availability of 137Cs. The soil samples were sequentially extracted with H2O, NH4Ac, NH2OH·HCl, H2O2, and HNO3. Extractability of 137Cs decreased in the order: HNO3 > Residual > H2O2 > NH4Ac > NH2OH·HCl > H2O. Only 0.94% in labile fractions (H2O and NH4Ac), while more than 96% was found in the strongly bound fraction (HNO3 and residual). However, the activity percentage in labile fractions was increased to 1.34% after autoclaving treatment, while those in the other fractions did not significantly differ. This indicates that the microbial activity played a role in the 137Cs retention. In the subsequent pot experiments with ryegrass and leek, specific activities in both plants were significantly higher in autoclaved soil than in non-autoclaved soil, and uptake of 137Cs in the five cuts by ryegrass was 25% of the labile 137Cs in the soil. In addition, a positive correlation was found between the amount of 137Cs in labile fractions and that by plant uptake.  相似文献   

14.
Manual closed chamber methods are widely used for CH4 measurement from rice paddies. Despite diurnal and seasonal variations in CH4 emissions, fixed sampling times, usually during the day, are used. Here, we monitored CH4 emission from rice paddies for one complete rice-growing season. Daytime CH4 emission increased from 0800 h, and maximal emission was observed at 1200 h. Daily averaged CH4 flux increased during plant growth or fertilizer application and decreased upon drainage of plants. CH4 measurement results were linearly interpolated and matched with the daily averaged CH4 emission calculated from the measured results. The time when daily averaged emission and the interpolated CH4 curve coincided during the daytime was largely invariant within each of the five distinctive periods. One-hourly sampling during each of these five periods was utilized to estimate the emission during each period, and we found that five one-hourly samples during the season accurately reflected the CH4 emission calculated based on all 136 hourly samples. This new sampling scheme is simple and more efficient than current sampling practices. Previously reported sampling schemes yielded estimates 9 to 32% higher than the measured CH4 emission, while our suggested scheme yielded an estimate that was only 5% different from that based on all 136-h samples. The sampling scheme proposed in this study can be used in rice paddy fields in Korea and extended worldwide to countries that use similar farming practices. This sampling scheme will help in producing more accurate global methane budget from rice paddy fields.  相似文献   

15.
Nitrous oxide (N2O) accounts for 5%of the total enhanced greenhouse effect and responsiblefor the destruction of the stratospheric ozone. The rice-wheat cropping system occupying 26 million ha ofproductive land in Asia could be a major source ofN2O as most of the fertilizer N in this region isconsumed by this system. Emission of N2O asinfluenced by application of urea, urea plus farm yardmanure (FYM), and urea plus dicyandiamide (DCD), anitrification inhibitor, was studied in rice-wheatsystems of Indo-Gangetic plains of India. Total emissionof N2O-N from the rice-wheat systems varied between654 g ha-1 in unfertilized plots and 1570 g ha-1 in urea fertilized plots. Application of FYM and DCDreduced emission of N2O-N in rice. The magnitude ofreduction was higher with DCD. In wheat also N2O-Nemission was reduced by DCD. FYM applied in rice had noresidual effect on N2O-N emission in wheat. In riceintermittent wetting and drying condition of soilresulted in higher N2O-N emission than that ofsaturated soil condition. Treatments with 5 irrigationsgave higher emissions in wheat than those with 3irrigations. In rice-wheat system, typical of a farmer'sfield in Indo-Gangetic plains, where 240 kg N isgenerally applied through urea, N2O-N emission is1570 g ha-1 (0.38% of applied N) and application ofFYM and DCD reduced it to 1415 and 1096 g ha-1,respectively.  相似文献   

16.
Methane concentrations and stable carbon isotope ratios of water samples from the East Pacific Rise (EPR) at 21°S and the Arabian Sea (24°N, 65°E) have been determined. EPR surface water is in equilibrium (ca. 50 nl/L and –50<13CH4<–46) with atmospheric methane. Deep background water has the signature of the remaining fraction of atmospheric methane partially oxidized in the water column by bacteria. Bottom near, hydrothermally influenced vent methane (>100nl/L and –30<13CH4<–22) is detectable only close to the seep site. There is no input of hydrothermal methane into the atmosphere. EPR water is considered to be rather a sink than a source of atmospheric methane. Surface waters of the Arabian Sea are enriched in methane relative to the atmosphere (source for atmospheric methane). Carbon isotope ratios point to a bacterial origin of methane (13CH4<–55) that is generated in the surface waters. Concentration changes and variations of carbon isotope ratios also suggest that methane seeping from the sea floor sediments of the Arabian Sea is oxidized by bacterial activity and does not reach the atmosphere.  相似文献   

17.
In the peri-urban areas of central India, sewage water is a valuable resource for agricultural production. In this study, impact of domestic sewage water irrigation for 5 years on Vertisol with no previous history of sewage irrigation was investigated in an ongoing field experiment at Bhopal (India) under subtropical monsoon type climate. The wheat (Triticum aestivum) crop was grown during post-rainy winter season with 30 cm of irrigation (groundwater or sewage water) and four nutrient treatments (T1, 0; T2, 100%; T3, 50%; and T4, 50% of general recommended doses of NPK + FYM at 10 Mg/ha). Results showed that sewage irrigation of about 150 cm over a period of 5 years resulted significant increases in salinity as well as available fractions of N, P, K, and micronutrients, viz., Zn, Fe, and Mn in soils. Carbon and phosphorus applied through sewage water were accumulated more in subsoil layer compared to topmost plough layer. Soil microbiological activity, as indicated by soil respiration, microbial biomass C, as well as dehydrogenase enzyme activity was higher in sewage water-irrigated soils. There was also significant increase in fungal and actinomycetes as well as total coliform population in such soils. Nutrients supplied through sewage water were not able to raise the productivity of wheat to the level that obtained through fertilizers at the recommended level which indicated that additional nutrients through fertilizers are required to obtain higher productivity of wheat under sewage farming. Protein and Zn content in wheat grains were more when the crop was grown with sewage irrigation. Overall results show that except for increase in coliform population, short duration (5 years) of municipal sewage water irrigation did not have any appreciable harmful effect on soil quality as well as crop productivity; rather, it proved beneficial in improving soil fertility, wheat productivity, and produce quality.  相似文献   

18.
The projected increase in atmospheric N deposition and air/soil temperature will likely affect soil nutrient dynamics in boreal ecosystems. The potential effects of these changes on soil ion fluxes were studied in a mature balsam fir stand (Abies balsamea [L.] Mill) in Quebec, Canada that was subjected to 3 years of experimentally increased soil temperature (+4 °C) and increased inorganic N concentration in artificial precipitation (three times the current N concentrations using NH4NO3). Soil element fluxes (NO3, NH4, PO4, K, Ca, Mg, SO4, Al, and Fe) in the organic and upper mineral horizons were monitored using buried ion-exchange membranes (PRS? probes). While N additions did not affect soil element fluxes, 3 years of soil warming increased the cumulative fluxes of K, Mg, and SO4 in the forest floor by 43, 44, and 79 %, respectively, and Mg, SO4, and Al in the mineral horizon by 29, 66, and 23 %, respectively. We attribute these changes to increased rates of soil organic matter decomposition. Significant interactions of the heating treatment with time were observed for most elements although no clear seasonal patterns emerged. The increase in soil K and Mg in heated plots resulted in a significant but small K increase in balsam fir foliage while no change was observed for Mg. A 6–15 % decrease in foliar Ca content with soil warming could be related to the increase in soil-available Al in heated plots, as Al can interfere with the root uptake of Ca.  相似文献   

19.
Enteric methane (CH4) emission in ruminants, which is produced via fermentation of feeds in the rumen and lower digestive tract by methanogenic archaea, represents a loss of 2% to 12% of gross energy of feeds and contributes to global greenhouse effects. Globally, about 80 million tonnes of CH4 is produced annually from enteric fermentation mainly from ruminants. Therefore, CH4 mitigation strategies in ruminants have focused to obtain economic as well as environmental benefits. Some mitigation options such as chemical inhibitors, defaunation, and ionophores inhibit methanogenesis directly or indirectly in the rumen, but they have not confirmed consistent effects for practical use. A variety of nutritional amendments such as increasing the amount of grains, inclusion of some leguminous forages containing condensed tannins and ionophore compounds in diets, supplementation of low-quality roughages with protein and readily fermentable carbohydrates, and addition of fats show promise for CH4 mitigation. These nutritional amendments also increase the efficiency of feed utilization and, therefore, are most likely to be adopted by farmers. Several new potential technologies such as use of plant secondary metabolites, probiotics and propionate enhancers, stimulation of acetogens, immunization, CH4 oxidation by methylotrophs, and genetic selection of low CH4-producing animals have emerged to decrease CH4 production, but these require extensive research before they can be recommended to livestock producers. The use of bacteriocins, bacteriophages, and development of recombinant vaccines targeting archaeal-specific genes and cell surface proteins may be areas worthy of investigation for CH4 mitigation as well. A combination of different CH4 mitigation strategies should be adopted in farm levels to substantially decrease methane emission from ruminants. Evidently, comprehensive research is needed to explore proven and reliable CH4 mitigation technologies that would be practically feasible and economically viable while improving ruminant production.  相似文献   

20.
Methane (CH4) is one of the most relevant greenhouse gases and it has a global warming potential 25 times greater than that of carbon dioxide (CO2), risking human health and the environment. Microbial CH4 oxidation in landfill cover soils may constitute a means of controlling CH4 emissions. The study was intended to quantify CH4 and CO2 emissions rates at the Sungai Sedu open dumping landfill during the dry season, characterize their spatial and temporal variations, and measure the CH4 oxidation associated with the landfill cover soil using a homemade static flux chamber. Concentrations of the gases were analyzed by a Micro-GC CP-4900. Two methods, kriging values and inverse distance weighting (IDW), were found almost identical. The findings of the proposed method show that the ratio of CH4 to CO2 emissions was 25.4 %, indicating higher CO2 emissions than CH4 emissions. Also, the average CH4 oxidation in the landfill cover soil was 52.5 %. The CH4 and CO2 emissions did not show fixed-pattern temporal variation based on daytime measurements. Statistically, a negative relationship was found between CH4 emissions and oxidation (R 2?=?0.46). It can be concluded that the variation in the CH4 oxidation was mainly attributed to the properties of the landfill cover soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号