首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The occurrence and removal of eight endocrine disrupting compounds (EDCs), including estrone (E(1)), 17β-estradiol (E(2)), estriol (E(3)), 17α-ethinylestradiol (EE(2)), diethylstilbestrol (DES), bisphenol A (BPA), nonylphenol (NP) and octylphenol (OP), and their estrogenicities were investigated in a sewage treatment plant in Harbin city, China. The EDCs were extracted from wastewater samples by solid phase extraction (SPE) method and analyzed with gas chromatography coupled with mass spectrometry (GC-MS). The average concentrations in the influents and effluents ranged from 6.3 (EE(2)) to 1725.8 ng L(-1) (NP) and from 相似文献   

2.
Occurrence and fate of eight kinds of selected endocrine-disrupting compounds (EDCs) in three sewage treatment plants (STPs) of Beijing, China was investigated. These EDCs, composed of 4-octylphenol (4-OP), 4-n-nonylphenol (4-n-NP), bisphenol A (BPA), estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2), in every step of STPs, were simultaneously analysed by gas chromatography/mass spectrometry after derivatisation. All the EDCs were detected in the influents of three STPs, and BPA was the most abundant compound. The concentrations of EDCs ranged from 36.6 ng/l of 17α-E2 (STP C) to 1342.3 ng/l of BPA (STP B) in the influent sewages and from below limits of detection of E2 and E3 (STP C) to 142.5 ng/l of E1 (STP B) in the effluent sewages. The STPs could not remove alkylphenols effectively from the aqueous phase with less than 40% reduction. BPA decreased over 90%, and steroid estrogens achieved considerable reductions from 64.8% of E2 to 94.9% of E3. Generally, biological treatment was more effective in removing alkylphenols, BPA and natural estrogens from the aqueous phase than primary treatment. However, the synthetic estrogen, EE2, was mostly removed by the primary treatment with about 63.5% reduction. It is the first time that the concentration of 17α-E2 in the sewage of China was reported in this paper. The compound might have a bearing with the waste effluents of dairy farms around urban area of Beijing.  相似文献   

3.
Broad scale monitoring of estrogenic compounds was performed at 19 sampling points throughout the Yeongsan and Seomjin river basins and 5 wastewater treatment plants (WWTPs) adjacent to the Gwangju area, Korea, from December 2005 to August 2007. The concentrations of estrogenic compounds, including estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), bisphenol-A, nonylphenol (NP) and 4-octylphenol (OP), in the samples was measured with gas chromatography/mass spectrometry (GC-MS). In addition, the estrogenic activities throughout the river were investigated using the E-screen assay. Of the six estrogenic chemicals, NP (114.6-336.1 ng L(-1)) and EE2 (0.23-1.90 ng L(-1)) were detected at the highest and lowest levels, respectively in both the river waters and the WWTP effluents. Bisphenol-A showed the largest concentration range, from 7.5 to 335 ng L(-1). The concentrations of E1, E2 and octylphenol ranges were 3.6-69.1, 1.2-10.7, and 2.2-16.9 ng L(-1), respectively. According to the calculated estradiol equivalent concentration (EEQ); however, no estrogenic contribution was observed due to the phenolic compounds in the river waters and effluents. E1 and E2 dominated in both the river water and effluent samples, with contributions to the calculated EEQ of over 79 and 77%, respectively. Conversely, EE2 was rarely detected in the river waters (21%) and effluents (0%). The largest contribution of EE2 to the calculated EEQ was 21% in the river water at S-7. The levels of E1, E2, and EE2 were remarkably decreased in the effluents, indicating that the 5 WWTPs did not contribute to the estrogenic effect of the receiving streams. Overall, the WWTPs did not contributed to the estrogenic activity of the receiving waters, but the livestock industry or wildlife may play an important role in the estrogenic contribution to river water.  相似文献   

4.
Concentration levels of six natural and anthropogenic origin steroid estrogens, namely, diethylstilbestrol (DES), estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), and estradiol-17-valerate (Ev), from different effluents in Beijing were assessed. Sampling sites include two wastewater treatment plants (WWTPs), a chemical plant, a hospital, a pharmaceutical factory, a hennery, and a fish pool. In general, concentrations of estrogens in the effluents varied from no detection (nd) to 11.1 ng/l, 0.7 to 1.2 × 103 ng/l, nd to 67.4 ng/l, nd to 4.1 × 103 ng/l, nd to 1.2 × 103 ng/l, and nd to 11.2 ng/l for DES, E1, E2, EE2, E3, and Ev, respectively. The concentration levels of steroid estrogens from different effluents decreased in the order of pharmaceutical factory and WWTP inlets > hospital > hennery > chemical factory > fish pool. This study indicated that natural estrogens E1, E2, and E3 and synthetic estrogen EE2 are the dominant steroid estrogens found in the different Beijing effluents. For source identification, an indicator (hE = E3/(E1 + E2 + E3)) was used to trace human estrogen excretion. Accordingly, hE in effluents from the hospital and WWTP inlets exceeded 0.4, while much smaller values were obtained for the other effluents. Human excretions were the major contributor of natural estrogens in municipal wastewater. Estimation results demonstrated that direct discharge was the major contributor of steroid estrogen pollution in receiving waters.  相似文献   

5.
In this study, 16 polycyclic aromatic hydrocarbons (PAHs) were detected in sewage sludge samples from four wastewater treatment plants (WWTPs) in Qingdao, China. These WWTPs differ in the type of treatment used and in the origin of the wastewater. The total amounts of PAHs in digested sludges ranged from 1.9645 to 6.5752 mg/kg, which did not exceed the projected European Union cut-off limits (6 mg/kg) for sludge found in farmland, except for the Haibohe WWTP. Significant differences were observed in overall PAH values between WWTPs receiving domestic effluents and those receiving industrial effluents. The total amounts of PAHs in digested sludge from the Licunhe and Haibohe WWTPs, which mainly received industrial effluents, were markedly higher than those of the Tuandao and Huangdao WWTPs, which received only domestic effluents. The distribution of PAH compounds in digested sludges were analysed. At the Tuandao, Huangdao and Licunhe WWTPs, 2-, 3-, 4-benzene rings were predominant, accounting for 100%, 99.8% and 99.0% of the sum concentration of 16 PAHs (∑PAHs), respectively. At the Haibohe WWTP, a large number of high molecular weight PAHs (5-, 6-benzene rings) were observed, accounting for 30% of the ∑PAHs. The sum of seven carcinogenic PAHs (∑PAHs-c) ranged from 0.8694 to 3.0389 mg/kg in four WWTPs. The highest value was found in the Haibohe WWTP. Moreover, the PAH concentrations in sludges from the different treatment processes in the Licunhe and Tuandao WWTPs are discussed.  相似文献   

6.
The occurrence and fate of fourteen androgens, four estrogens, five glucocorticoids and five progestagens were investigated in two different types of wastewater treatment plants (Plant A: activated sludge with chlorination, and Plant B: oxidation ditch with UV) of Guangdong province, China. 14, 14, and 10 of 28 target compounds were detected in the influent, effluent and dewatered sludge samples with the concentrations ranging from below 1.2 ± 0.0 ng L(-1) (stanozolol) to 1368 ± 283 ng L(-1) (epi-androsterone), below 1.0 ± 0.0 ng L(-1) (progesterone) to 23.1 ± 1.0 ng L(-1) (5α-dihydrotestosterone), 1.0 ± 0.1 ng g(-1) (estrone) to 460 ± 4.4 ng g(-1) (5α-dihydrotestosterone), respectively. The concentrations of total androgens (1554-1778 ng L(-1) in influent, 13.3-47.8 ng L(-1) in effluent, 377-923 ng g(-1) in dewatered sludge) were much higher than those of total estrogens (41.5-60.2 ng L(-1) in influent, 5.6-13.5 ng L(-1) in effluent, 13.9-57.8 ng g(-1) in dewatered sludge), glucocorticoids (171-192 ng L(-1) in influent, 2.2-6.3 ng L(-1) in effluent, N.D.-4.4 ng g(-1) in dewatered sludge), and progestagens (39.6-40.5 ng L(-1) in influent, 6.9-12.1 ng L(-1) in effluent, N.D. in dewatered sludge) in these two WWTPs. According to mass balance analysis, the removal rates of most target steroids in Plant A had exceeded 90%, while those in Plant B for nearly half of detected target steroids were lower than 80%. It is obvious that the treatment capacity of the activated sludge system (Plant A) is superior to the oxidation ditch (Plant B) in the degradation of steroids in sewage treatment systems. Androgens, estrogens and progestagens were mainly removed by sorption and degradation, while the reduction of glucocorticoids was primarily due to degradation.  相似文献   

7.
The mass flows of selected pharmaceuticals and personal care products (PPCPs) were studied in the aqueous compartment of the river Somes in Romania. PPCPs were measured in wastewater treatment effluents and in the receiving river water. The analytical method for the determination of PPCPs in river water was based on solid phase extraction and GC-ITMS. Carbamazepine, pentoxyfylline, ibuprofen, diazepam, galaxolide, tonalide and triclosan were determined in wastewater effluents with individual concentrations ranging from 15 to 774 ng L(-1). Caffeine was measured at concentrations up to 42 560 ng L(-1). Due to the high contamination of WWTP effluents, the receiving river was also polluted. The most abundant PPCPs measured in the Somes were caffeine, galaxolide, carbamazepine and triclosan. They were present at all the 15 sampling sites along the Somes, the concentrations ranging from 10 to 400 ng L(-1). The concentrations in the effluents of the different wastewater treatment plants (WWTPs) varied considerably and the differences are due to different elimination efficiencies of the studied PPCPs during sewage treatment. Only one of 5 WWTPs studied, the WWTP in Cluj-Napoca, was working properly, and therefore technical measures have to be taken for upgrading the WWTPs and reducing the environmental load of micropollutants. This study is the first overview of PPCPs along on Romanian part of river Somes.  相似文献   

8.
The presence of the anesthetic lidocaine (LDC), the analgesic tramadol (TRA), the antidepressant venlafaxine (VEN) and the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) was investigated in wastewater treatment plant (WWTP) effluents, in surface waters and in groundwater. The analytes were detected in all effluent samples and in only 64% of the surface water samples. The mean concentrations of the analytes in effluent samples from WWTPs with wastewater from only households and hospitals were 107 (LDC), 757 (TRA), 122 (ODT), 160 (VEN) and 637 ng L(-1) (ODV), while the mean concentrations in effluents from WWTPs treating additionally wastewater from pharmaceutical industries as indirect dischargers were for some pharmaceuticals clearly higher. WWTP effluents were identified as important sources of the analyzed pharmaceuticals and their metabolites in surface waters. The concentrations of the compounds found in surface waters ranged from 相似文献   

9.
Concern over steroid estrogens has increased rapidly in recent years due to their adverse health effects. Effluent discharge from wastewater treatment plants (WWTPs) is the main pollutant source for environmental water. To understand the pollutant level and fate of steroid estrogens in WWTPs, the occurrence of estrone (E1), 17-β-estradiol (E2), estriol (E3), and 17-β-ethinylestradiol (EE2) was investigated in the Gaobeidian WWTP in Beijing, China. Water samples from influent as well as effluent from second sedimentation tanks and advanced treatment processes were taken monthly during 2006 to 2007. In influent, steroid estrogen concentrations varied from 11.6 to 1.1?×?10(2)?ng/l, 3.7 to 1.4?×?10(2)?ng/l, no detection (nd) to 7.6×10(2)?ng/l and nd to 3.3?×?10(2)?ng/l for E1, E2, E3, and EE2, respectively. Compared with documented values, the higher steroid estrogen concentrations in the WWTP influent may be due to higher population density, higher birthrate, less dilution, and different sampling time. Results revealed that a municipal WWTP with an activated sludge system incorporating anaerobic, anoxic, and aerobic processes could eliminate natural and synthetic estrogens effectively. The mean elimination efficiencies were 83.2%, 96.4%, 98.8%, and 93.0% for E1, E2, E3, and EE2, respectively. The major removal mechanism for natural estrogens and synthetic estrogen EE2 were biodegradation and sorption on the basis of mass balance in water, suspension particles, and sludge. In the WWTP effluent, however, the highest concentrations of E1, E2, E3, and EE2 attained were 74.2, 3.9, 5.1, and 4.6?ng/l, respectively. This is concerning as residual steroid estrogens in WWTP effluent could lead to pollution of the receiving water. Advanced flocculation treatment was applied in the WWTP and transformed the residual estrogen conjugates to free species, which were reduced further by filtration with removal shifting from 32% to 57% for natural estrogen, although no EE2 was removed.  相似文献   

10.
Phenolic endocrine disrupting compounds, including nonylphenol-di-ethoxylate (NP2EO), nonylphenol-mono-ethoxylate (NP1EO), 4-nonylphenol (4-NP), bisphenol A (BPA), 4-cumylphenol (4-CP) and 4-tert-octylphenol (4-t-OP), were investigated in water, surface sediment and sediment cores in Dianchi Lake to track their seasonal distributions, pollution sources and historical trends. The concentrations of NP2EO, NP1EO, 4-NP, BPA, 4-CP and 4-t-OP were up to 295.14, 448.48, 45.28, 530.33, 8.96 and 21.37 ng L(-1) in water, and up to 297.11, 809.63, 4.58, 166.87, 3.62 and 40.69 ng g(-1) dry weight in surface sediment, respectively. Except BPA in water, concentrations of all the other phenolic compounds in both of the matrices were higher in January than in July, 2011. The concentrations decreased significantly with an increase in distance from the sampling locations which were adjacent to the urban areas (Kunming City, Chenggong City and Jinning City). The pollution of phenolic EDCs came mainly from industry, agriculture and daily life. The relationships between the concentrations of target compounds and the six water quality parameters were evaluated. There were significant positive correlations between concentrations of phenolic compounds in water and in surface sediment. For sediment cores, three clearly separated maxima occurred in segments 0-5 cm (the late 2000s), 5-10 cm (the early and mid of 2000s) and 20-25 cm (the mid of 1980s), respectively. NP2EO, NP1EO and BPA were the three dominant compounds in the lake.  相似文献   

11.
The occurrence and behavior of carbamazepine (CBZ) was investigated in aquatic environment of Yangtze River Delta, East China. The water samples were enriched by solid-phase extraction and analyzed by high-performance liquid chromatography with diode array detector. The validation of the analytical method included linearity (0.1?C1 mg/L), recovery studies, and determination of limits of quantification. Limits of quantification of CBZ in various aquatic samples were in the range of 0.1?C0.2 ??g/L. CBZ was detected in the Tongji University Intramural River, the Huangpu River, and the Suzhou River with the highest concentration of 1,090 ng/L, but not detected in the Nanhengyin River and the Caojia River. In sewage water samples, CBZ was not detected in one of the sewage treatment plants (STPs) but was detected in the raw influents and effluents at the other three selected STPs in Shanghai, with the concentrations ranging from 230 to 1,110 ng/L. CBZ was not completely eliminated after secondary treatment (with the active sludge process).  相似文献   

12.
Endocrine-disrupting compounds (EDCs) are exogenous substances that cause adverse health effects in an intact organism, or its progeny, subsequent to the changes in endocrine function. Recent studies have shown that wastewater treatment plant effluents play an important role in the release of EDCs into aquatic environments. Therefore, in this study, influent and effluent samples from three different wastewater treatment plants (WWTPs) in Istanbul were analysed for the presence of the principal EDCs. These chemicals include steroids and synthetic organic chemicals. Thus, the occurrence and fate of EDCs of great health concern were monitored at three WWTPs in Istanbul. Furthermore, these WWTPs are employing different treatment processes. Therefore, the EDC removal performances of different treatment regimes were also evaluated. Phytosterol was the most abundant EDC in the influent samples. Second group of compounds at high influent levels were alkyl phenols. Pesticide levels of all three WWTP influent samples were low. Pasakoy Advanced WWTP is more effective at eliminating EDCs. Kadikoy Primary WWTP exhibits the lowest EDC elimination efficiencies. To the best of our knowledge, this work comprises the first detailed report on the occurrence and behaviour of both natural and synthetic EDCs in WWTPs of Istanbul and Turkey. The steroid estrogen levels of this study are higher than the previously documented values, except the levels given for Gaobeidian WWTP in Beijing, China. This is attributed to higher population densities of Beijing and Istanbul and as well as to lower individual water consumption rates in the two cities.  相似文献   

13.
Whole effluent toxicity (WET) tests, with Daphnia magna and Selenastrum capricornutum, were introduced to evaluate the biological toxicities of effluents from the wastewater treatment plants (WWTPs) in Korea. In WET tests of WWTPs effluents, 33.3% (33/99) for D. magna and 92.6% (75/81) for S. capricornutum revealed greater than 1 toxic unit (TU), even though all the treatment plants investigated were operating in compliance with the regulations, as assessed using conventional monitoring methods (i.e., BOD and total concentration of N or P, etc). There were only minor differences in toxicities according to the types of influents (municipal and agro-industrial) in all treatment plants. However, the effluents treated by an activated sludge treatment process were found to exhibit significantly lower toxicity than those treated by rotating biological contactor (RBC) and extended aeration processes. The seasonal variations in the toxicity were lower in the summer compared to winter, which may have been due to the rainfall received to the sewage intake system during the former period. The impact of WET on river water was also investigated based on the discharge volume. At sites A and B, the total impact of toxicity to stream and river waters was observed to be 70.9% and 90.4% for D. magna and S. capricornutum, respectively. The other four small treatment plants (sites F, G, H and I), with relative discharging volumes between 0.001 and 0.002, contribute less than 1% to the total toxicity.  相似文献   

14.
Occurrence of five non-steroidal anti-inflammatory drugs (salicylic acid, ibuprofen, naproxen, indomethacin and diclofenac) and three lipid regulators (bezafibrate, clofibric acid and gemfibrozil) was investigated in wastewater, sewage sludge, and river water of the urban section of the Pearl River at Guangzhou in South China. Behavior and fate of the pharmaceuticals during treatment in two sewage treatment plants (STPs) were also studied in depth by determining concentrations in the influents and effluents at major treatment units and the sewage sludge. Concentrations of the pharmaceuticals in the raw wastewater were mostly at ng L(-1) levels except salicylic acid whose concentrations ranged from 9.6 to 23.3 μg L(-1). No significant amount of the pharmaceuticals was detected in the suspended particulate matter of wastewater and sewage sludge. Salicylic acid, indomethacin, and naproxen were almost completely removed (≥ 99%); gemfibrozil, ibuprofen and bezafibrate were significantly removed (>75%), whereas diclofenac and clofibric acid were removed by 60-70% during treatment in the STPs. Generally, biodegradation was the governing process for elimination of the investigated pharmaceuticals. Anaerobic biodegradation was responsible for most of the removal of diclofenac whereas aerobic biodegradation also played an important role in elimination of the other pharmaceuticals except SA, which was nearly completely removed after the anoxic process. In the Pearl River, the pharmaceuticals were widely detected. Both the concentrations and detection frequency were higher in March 2008 than those in the other seasons, which may be ascribed mainly to less dilution caused by lower precipitation. Besides the STPs, urban canals directly connected with the Pearl River may also be important contributors to the pharmaceutical contamination in the river.  相似文献   

15.
This study reports the first assessment of organotin pollution in the Hérault watershed, a medium size Mediterranean basin. Organotin compounds were analyzed in surface waters, wells supplying drinking water and sewage treatment plants (STPs). In surface and ground waters, a background contamination by total organotin compounds has been identified in the range of 0.51 +/- 0.02-71 +/- 2 ng(Sn) L(-1), which is of the same order of magnitude as those observed in other European areas. Organotins were systematically present in STP influents and sludge. Total or partial elimination of organotin compounds from treated wastewater was observed. STP effluents appeared nevertheless to be a non-negligible source of contamination not only of rivers but also of aquifers tapped for drinking water supply.Tributyltin concentration was higher than the maximum allowable concentration proposed by the European Commission in some surface waters and wells supplying drinking water. This could compromise the water resource and have serious and irreversible consequences for the aquatic eco-system. As it was the case for the ban of antifouling paints, a regulatory regime in decreasing point-source emissions of these harmful compounds used in household products might be applied.  相似文献   

16.
The polycyclic musk fragrance compounds HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran; trade name, e.g. galaxolide) and AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene, trade name, e.g. tonalide) and the transformation product of HHCB (HHCB-lactone) were analysed in surface water samples and sewage treatment plants (STP) effluents in the Ruhr megalopolis. The STPs were the dominant source for these pollutants. In the part of the river where the drinking water is extracted from the river, about 60 ng L(-1) HHCB, 10 ng L(-1) AHTN and 20-30 ng L(-1) HHCB-lactone were found as typical riverine concentrations, while none of the compounds were detected near the spring of the river. On the other hand sewage treatment plant effluents exhibited concentrations up to 600 ng L(-1). The STP's effluent resulted in elevated concentrations in some parts of the river and in the lakes into which they discharge. As some of the plants emit HHCB-lactone with a significantly changed enantiomeric pattern, biotransformation of HHCB to HHCB-lactone occurs in some waste water treatment plants operating with activated sludge. In those parts of the river where no relevant discharges of waste water or fresh water takes place neither the concentration nor the pattern changes significantly. This holds true especially for the HHCB versus HHCB-lactone ratios which indicates degradation less than 15% of the HHCB inventory in the river Ruhr itself. In other rivers, such as the Rhine, higher levels of HHCB-lactone in comparison to HHCB were detected (ratio 1 : 1).  相似文献   

17.
The present study investigated the occurrence of 29 selected micropollutants such as endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) in surface waters and wastewaters in Seoul (South Korea) during both dry and wet weather conditions. The study area was selected based on the lack of available information regarding the suspected contamination of rivers/creeks by EDCs and PPCPs in the Seoul region and the presence of a wastewater treatment plant (WWTP), which serves approximately 4.1 million inhabitants and has a design capacity of 1,297?×?103 m3/day. Many target compounds (83 %) were detected in samples collected from wastewater treatment influent/effluent, creek water, and combined sewer overflow (CSO). The total EDC/PPCP concentrations were as follows: WWTP influent (69,903 ng/L)?>?WWTP effluent (50,175 ng/L) >3 creek samples (16,035–44,446 ng/L) during dry weather, and WWTP influent (53,795 ng/L)?>?WWTP bypass (38,653 ng/L) >5 creek samples (15,260–29,113 ng/L) >2 CSO samples (11,109–11,498 ng/L) during wet weather. EDCs and PPCPs were found to be present at high daily loads (65.1 and 69.8 kg/day during dry and wet weather, respectively) in the WWTP effluent. Compound removal by the WWTP varied significantly by compound: caffeine, diclofenac, ibuprofen, naproxen, and propylparaben (>90 %), and acesulfame, DEET, iohexol, iopromide, and iopamidol (<5 %). These findings and literature information support the hypothesis that the efficiency of removal of EDCs and PPCPs is strongly dependent on both removal mechanism (e.g., biodegradation, adsorption to sludge, and oxidation by chlorine) and compound physicochemical properties (e.g., pK a and hydrophobicity).  相似文献   

18.
Endocrine disruptor contamination is an emerging issue of concern in the field of water quality engineering. In this study, a lab-scale microfiltration (MF) and reverse osmosis (RO) based water reclamation system was set up to monitor and evaluate the removal of bisphenol A (BPA), which is a known oestrogenic compound. The identification and quantification of BPA were performed by using gas chromatography coupled with mass spectrometry. It was noted that the detection method used in this study was able to achieve an average recovery ranging from 88.2 to 94.1% of BPA with standard deviations of less than 10% in different spiked samples. The detection limit of the analytical protocol was determined at 20 ng L(-1). Based on the analytical protocol, it was noted that a low level of BPA (1.18-3.04 microg L(-1)) could be detected in feed water (effluent of an activated sludge treatment system) to the dual membrane water reclamation system. The results obtained suggested that BPA could be easily chlorinated by sodium hypochlorite with a dosage of 4 to 5 mg L(-1) and a contact time of 1 to 2 min. In this lab-scale study, a satisfactory removal of BPA was readily obtained by RO and BPA was abated to an undetectable level in the product water. It was noted that the RO rejection characteristic of BPA was not sensitive to the variations in raw feed water characteristics experienced in this study. In addition, it was noted that BPA concentration present in raw feed water did not exert any significant impact on RO performance in terms of BPA rejection. The results of this study demonstrated that membrane technology could be effectively used for BPA removal.  相似文献   

19.
This study presents the levels of endocrine disrupting chemicals (EDCs) accumulated by Paraprionospio sp. from the Yodo River mouth, Osaka Bay. Since high concentrations of nonylphenol (NP), bisphenol A (BP), octylphenol (OP), 17β-estradiol (E2), and estrone (E1) have been measured in sediment from Osaka Bay, some bioaccumulation could be expected particularly in benthic animals. EDCs were analysed in Paraprionospio sp., a dominant benthic species in Osaka Bay. The results showed that Paraprionospio sp. had accumulated varying concentrations (wet weight; w.w.) of NP at 1,460–4,410 ng/g; BP at 22.5–39.6 ng/g; OP at 18.9–45.4 ng/g; E2 at 0.89–4.35 ng/g; and E1 at 0.06–2.50 ng/g. Accumulation of NP and OP were highest among the samples gathered in summer (July 2008), while concentrations of BP, E2, and E1 did not much differs within 3 years. EDC levels in Paraprionospio sp. were apparently greater than those in sediments showing bioaccumulation.  相似文献   

20.
The Mira River is a Portuguese water body widely known for its wilderness and is advertised as one of the less polluted European rivers. On this presumption, the levels of endocrine-disrupting compounds (EDCs) in Mira waters were never measured. However, because environmentalists have claimed that the Mira could be moderately polluted, a range of 17 EDCs were measured not only at the estuary but also along the river. The targeted EDCs included natural and pharmaceutical oestrogens (17β-oestradiol, oestrone and 17α-ethynylestradiol), industrial/household pollutants (octylphenols, nonylphenols and their monoethoxylates and diethoxylates and bisphenol A), phytoestrogens (formononetin, biochanin A, daidzein, genistein) and the phytosterol sitosterol (SITO). For this propose, waters from six sampling sites were taken every 2 months, over a 1-year period (2011), and analysed by gas chromatography–mass spectrometry. Unexpectedly high levels of oestrogens and of industrial/household pollutants were measured at all sampling sites, including those located inside natural protected areas. Indeed, the annual average sum of EDCs was ≈57 ng/L for oestrogens and ≈1.3 μg/L for industrial/household chemicals. In contrast, the global average levels of phytoestrogens (≈140 ng/L) and of SITO (≈295 ng/L) were lower than those reported worldwide. The EDC concentrations were normalised for ethynylestradiol equivalents (EE2eq). In view of these, the oestrogenic load of the Mira River attained ≈47 ng/L EE2eq. In addition, phosphates were above legal limits at both spring and summer (>1 mg/L). Overall, data show EDCs at toxicant relevant levels in the Mira and stress the need to monitor rivers that are allegedly less polluted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号