首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Volatile organic compounds (VOCs) were measured at six sites in Beijing in August, 2004. Up to 148 VOC species, including C3 to C12 alkanes, C3 to C11 alkenes, C6 to C12 aromatics, and halogenated hydrocarbons, were quantified. Although the concentrations differed at the sites, the chemical compositions were similar, except for the Tongzhou site where aromatics were significantly high in the air. Based on the source profiles measured from previous studies, the source apportionment of ambient VOCs was preformed by deploying the chemical mass balance (CMB) model. The results show that urban VOCs are predominant from mobile source emissions, which contribute more than 50% of the VOCs (in mass concentrations) to ambient air at most sites. Other important sources are gasoline evaporation, painting, and solvents. The exception is at the Tongzhou site where vehicle exhaust, painting, and solvents have about equal contribution, around 35% of the ambient VOC concentration. As the receptor model is not valid for deriving the sources of reactive species, such as isoprene and 1,3-butadiene, other methodologies need to be further explored.  相似文献   

2.
Indoor air quality in elementary schools of Lisbon in spring   总被引:1,自引:0,他引:1  
Analysis of indoor air quality (IAQ) in schools usually reveals higher levels of pollutants than in outdoor environments. The aims of this study are to measure indoor and outdoor concentrations of NO2, speciated volatile organic compounds (VOCs) and carbonyls at 14 elementary schools in Lisbon, Portugal. The investigation was carried out in May–June 2009. Three of the schools were selected to also measure comfort parameters, such as temperature and relative humidity, carbon dioxide (CO2), carbon monoxide (CO), total VOCs, and bacterial and fungal colony-forming units per cubic metre. Indoor concentrations of CO2 in the three main schools indicated inadequate classroom air exchange rates. The indoor/outdoor (I/O) NO2 ratio ranged between 0.36 and 0.95. At the three main schools, the total bacterial and fungal colony-forming units (CFU) in both indoor and outdoor air were above the advised maximum value of 500 CFU/m3 defined by Portuguese legislation. The aromatic compounds benzene, toluene, ethylbenzene and xylenes, followed by ethers, alcohols and terpenes, were usually the most abundant classes of VOCs. In general, the indoor total VOC concentrations were markedly higher than those observed outdoors. At all locations, indoor aldehyde levels were higher than those observed outdoors, particularly for formaldehyde. The inadequate ventilation observed likely favours accumulation of pollutants with additional indoor sources.  相似文献   

3.
There is diverse phosphorus (P) in eutrophicated waters, but it is considered as a crucial nutrient for cyanobacteria growth due to its easy precipitation as insoluble salts. To uncover the effects of complex P nutrients on the emission of volatile organic compounds (VOCs) from cyanobacteria and their toxic effects on other algae, the VOCs from Microcystis flos-aquae supplied with different types and amount of P nutrients were analyzed, and the effects of VOCs and their two main compounds on Chlamydomonas reinhardtii growth were investigated. When M. flos-aquae cells were supplied with K2HPO4, sodium pyrophosphate and sodium hexametaphosphate as the sole P source, 27, 23 and 29 compounds were found, respectively, including furans, sulfocompounds, terpenoids, benzenes, aldehydes, hydrocarbons and esters. With K2HPO4 as the sole P source, the VOC emission increased with reducing P amount, and the maximum emission was found under Non-P condition. In the treatments of M. flos-aquae VOCs under Non-P condition and two main terpenoids (eucalyptol and limonene) in the VOCs, remarkable decreases were found in C. reinhardtii cell growth, photosynthetic pigment content and photosynthetic abilities. Therefore, we deduce that multiple P nutrients in eutrophicated waters induce different VOC emissions from cyanobacteria, and P amount reduction caused by natural precipitation and algal massive growth results in more VOC emissions. These VOCs play toxic roles in cyanobacteria becoming dominant species, and eucalyptol and limonene are two toxic agents.  相似文献   

4.
In this study, post plasma-catalysis degradation of mixed volatile organic compounds (benzene, toluene, and xylene) has been performed in a hybrid surface/packed-bed discharge plasma reactor with Ag-Ce/g-Al2O3 catalyst at room temperature. The effect of relative air humidity on mixed VOCs degradation has also been investigated in both plasma-only and PPC systems. In comparison to the plasma-only system, a significant improvement can be observed in the degradation performance of mixed VOCs in PPC system with Ag-Ce/γ-Al2O3 catalyst. In PPC system, 68% benzene, 89% toluene, and 94% xylene were degraded at 800 J·L–1, respectively, which were 25%, 11%, and 9% higher than those in plasma-only system. This result can be attributed to the high catalytic activity of Ag-Ce/γ-Al2O3 catalyst to effectively decompose O3 and lead to generating more reactive species which are capable of destructing the VOCs molecules completely. Moreover, the presence of Ag-Ce/γ-Al2O3 catalyst in plasma significantly decreased the emission of discharge byproducts (NOx and O3) and promoted the mineralization of mixed VOCs towards CO2. Adding a small amount of water vapor into PPC system enhanced the degradation efficiencies of mixed VOCs, however, further increasing water vapor had a negative impact on the degradation efficiencies, which was primarily attributed to the quenching of energetic electrons by water vapor in plasma and the competitive adsorption of water vapor on the catalyst surface. Meanwhile, the catalysts before and after discharge were characterized by the Brunauer-Emment-Teller and X-ray photoelectron spectroscopy.
  相似文献   

5.
刘明  孙成  苗欣  薛光璞 《环境化学》2003,22(3):227-231
1 IntroductionVolatileorganiccompounds (VOCs)areimportantairpollutantsintheurbanatmosphere .SomeVOCsaretoxicandpotentiallycarcinogenic.ExposuretoVOCsisofconcernasitmayresultinsignificantrisktohumanhealth .AmbientVOCsareemittedfromvariousurban ,industrial…  相似文献   

6.
对广州大坦沙污水处理厂各工艺阶段污水中挥发性有机物(VOCs)的测试表明,进水中主要有害VOCs为苯系物和卤代烃;进水和出水比较,苯 甲苯、乙苯、二甲苯(合称BTEX) 的去除率接近100%,污水中几种主要卤代烃的去除效率范围为79%—89%.VOCs主要的去除作用发生在生物反应池,特别是厌氧阶段,本研究还对污水处理厂几种典型挥发有机物排放到周围空气中的量进行了理论估计,计算表明卤代烃进入空气中的比例高于BTEX.  相似文献   

7.
易挥发有机化合物在Pt/Al_2O_3-Si纤维催化剂上的低温氧化   总被引:4,自引:0,他引:4  
本文合成了一种新型的Pt负载在Al_2O_3涂膜强力富硅纤维载体的催化剂,研究低温下催化易挥发有机化合物的行为.用四种有机化合物检验实验参数对催化剂分解有机化合物分解率的影响.讨论了流速、浓度、有机物的本性、预热温度、反应热等参数的影响,并给出了催化剂对苯、甲苯在特定实验条件下的活化能、反应级数和指前因子的数值.  相似文献   

8.
In the present study, we focus on the analysis of the volatile organic compound (VOC) contents in the grain of a representative set of winter wheat cultivars grown in Central Europe. The cultivars were grown in control conditions or were inoculated with the fungus Fusarium culmorum. In the analysed samples, hydrocarbons, alcohols, aldehydes and ketones, aromatics, terpenes and others were found. Among them, results for terpenes seem particularly important. The discriminant analysis allowed complete separation of the quality groups of wheat based on VOCs. Simultaneously, a genetic matrix was created based on the genetic distance between the wheat cultivars and the Mantel test was used to compare it with the VOC matrix. The analysis revealed relationships between the genetic matrix and the overall VOCs, as well as terpenes. The obtained results indicate a significant relationship between microorganisms that exist in the environment, genetic features of plants and VOCs formed in the grain.  相似文献   

9.
自2013年6月以来,利用Airmo VOC在线分析仪在北京市典型城区开展了环境空气中挥发性有机物(VOCs)的连续观测,选取2014年4个季节中各1个月的苯系物在线数据,分析了其浓度水平、变化特征、光化学反应活性,利用美国环保署(US EPA)提出的健康风险评价方法开展了有毒有害苯系物物种的健康风险评价,结合来源分析结果,明确北京市应重点控制的苯系物污染来源。研究区观测期间环境空气中16种苯系物的质量浓度为(22.64±16.83)μg·m-3,且具有秋季冬季春季夏季的特点,其中BTEX(苯、甲苯、乙苯和二甲苯)的质量浓度为(19.27±14.46)μg·m-3,占苯系物浓度水平的41.09%~95.16%。研究区观测期间苯系物质量浓度夜间高于日间,日变化呈V字形,在13:00—15:00时质量浓度低。16种苯系物的臭氧生成潜势(OFP)的范围为66.62~170.67μg·m-3,其中间+对二甲苯、甲苯和邻二甲苯的OFP值相对较大;二次有机气溶胶生成潜势(SOAFP)的范围为0.71~1.86μg·m-3,其中甲苯、间+对二甲苯和乙苯的SOAFP值相对较大。研究区观测期间6种苯系物(BTEX和苯乙烯)的危害指数在8.19E-03~5.01E-02之间,在4个季节中对暴露人群尚不存在非致癌性风险;而Ⅰ类致癌物质苯的风险值处于7.13E-08~8.13E-06之间,在夏、秋和冬季对研究区暴露人群的人体健康均存在潜在的致癌性风险。来源分析结果表明,研究区春、秋季苯系物主要来源于机动车尾气的排放,其中春季还受到溶剂等挥发的影响,夏、冬季苯系物则主要来自于燃煤源。  相似文献   

10.
We develop a multi-effect evaluation method to assess integrated impact of VOCs. Enable policy-makers to identify important emission sources, regions, and key species. Solvent usage and industrial process are the most important anthropogenic sources. Styrene, toluene, ethylene, benzene, and m/p-xylene are key species to be cut. Volatile organic compounds (VOCs) play important roles in the atmosphere via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Few studies have integrated these effects to prioritize control measures for VOCs sources. In this study, we developed a multi-effects evaluation methodology based on updated emission inventories and source profiles, by combining the ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were estimated, the contribution and sharing of source to each of these adverse effects were calculated. Weightings were given to the three adverse effects by expert scoring, and then the integrated effect was determined. Taking 2012 as the base year, solvent use and industrial process were found to be the most important anthropogenic sources, accounting for 24.2% and 23.1% of the integrated effect, respectively, followed by biomass burning, transportation, and fossil fuel combustion, each had a similar contribution ranging from 16.7% to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiber products, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five provinces contributing the largest integrated effects. For the VOC species from emissions showed the largest contributions were styrene, toluene, ethylene, benzene, and m/p-xylene.  相似文献   

11.
UV photodegradation of 27 typical VOCs was systematically investigated. Contribution of photolysis and photooxidation to VOCs removal was identified. Gaseous VOC could be partially converted to particles by 185/254 nm UV irradiation. The mineralization and conversion of 27 VOCs by UV irradiation were reported. Photodegradation by ultraviolet irradiation (UV) is increasingly applied in volatile organic compound (VOC) and odor gas treatments. In this study, 27 typical VOCs, including 11 hydrocarbons and 16 hydrocarbon derivatives, at 150–200 ppm in air and nitrogen gas were treated by a laboratory-scale UV reactor with 185/254 nm irradiation to systematically investigate their removal and conversion by UV irradiation. For the tested 27 VOCs, the VOC removal efficiencies in air were within the range of 13%–97% (with an average of 80%) at a retention time of 53 s, which showed a moderate positive correlation with the molecular weight of the VOCs (R = 0.53). The respective contributions of photolysis and photooxidation to VOC removal were identified for each VOC. According to the CO2 results, the mineralization rate of the tested VOCs was within the range of 9%–90%, with an average of 41% and were negatively correlated to the molecular weight (R = -0.63). Many of the tested VOCs exhibited high concentration particulate matters in the off-gases with a 3–283 mg/m3 PM10 range and a 2–40 mg/m3 PM2.5 range. The carbon balance of each VOC during UV irradiation was analyzed based on the VOC, CO2 and PM10 concentrations. Certain organic intermediates and 23–218 ppm ozone were also identified in the off-gases. Although the UV technique exhibited a high VOC removal efficiency, its drawbacks, specifically low mineralization, particulate matters production, and ozone emission, must be considered prior to its application in VOC gas treatments.  相似文献   

12.
为探讨甲醛、苯、甲苯及二甲苯混合气体急性暴露对小鼠肺脏的氧化损伤作用,选用雄性健康昆明种小鼠50只,随机分为对照组和4个染毒组。染毒组1到4中甲醛、苯、甲苯和二甲苯浓度依次为:1.0+1.1+2.0+2.0μg·L-1、3.0+3.3+6.0+6.0μg·L-1、5.0+5.5+10.0+10.0μg·L-1、10.0+11.0+20.0+20.0μg·L-1,各染毒组混合气体的浓度分别是我国室内空气质量标准(GB/T18883-2002)的10、30、50和100倍。用静式吸入染毒方式,每天染毒2h,共染毒10d,实验结束后,测定小鼠肺脏中的氧化损伤指标。结果表明:染毒组小鼠的体重增加幅度均低于对照组,肝脏和脾脏系数显著低于对照组,肺脏ROS、MDA含量随染毒剂量的增加而增加,T-AOC、GSH、CAT、GSH-Px及SOD活力随染毒剂量的增加而降低,并且ROS、MDA含量与混合气体的浓度呈显著的正相关关系,GSH含量与混合气体的浓度呈显著的负相关关系。研究结果显示,甲醛、苯、甲苯及二甲苯混合气体急性暴露对小鼠肺脏具有氧化损伤作用,混合气体的联合毒性效应强于单一组分,ROS、MDA和GSH可以作为评价VOCs急性暴露对机体氧化损伤作用的敏感生物学标志。  相似文献   

13.
为探讨挥发性有机物混合急性暴露对小鼠脑组织氧化损伤及学习记忆能力的影响,选用雄性昆明种小鼠50只,随机分为对照组和4个染毒组。1到4号染毒组中甲醛、苯、甲苯和二甲苯浓度依次为:(1.0+1.1+2.0+2.0)、(3.0+3.3+6.0+6.0)、(5.0+5.5+10.0+10.0)、(10.0+11.0+20.0+20.0)mg·m~(-3)。各染毒组混合气体组分的浓度分别是我国室内空气质量标准(GB/T18883—2002)的10、30、50和100倍。结果显示,在Morris水迷宫实验第4天,2、3和4号染毒组小鼠的逃避潜伏期分别为(68.9±10.3)、(72.2±4.0)和(71.5±5.1)s,比对照组(48.5±10.1)s显著延长(P<0.05或P<0.01),但小鼠的脑体比和抓力在染毒期间没有明显变化。同时,随着染毒剂量的增加,小鼠脑组织中GSH含量显著降低,ROS和MDA含量显著升高。研究表明,挥发性有机物混合暴露可导致小鼠学习记忆能力降低,而脑组织氧化损伤可能是引起神经毒性,导致学习记忆能力降低的原因之一。  相似文献   

14.
The concentrations and characteristics of volatile organic hazardous air pollutants (HAPs) in the urban city of Kaohsiung from motor vehicles and dense pollutant sources has become a national concern. To continuously monitor volatile organic HAPs, sampling sites were selected near the four air-quality monitoring stations established by Ethe nvironmental Protection Administration of Taiwan ROC, namely Nan-tz, Tso-ying, San-min and Hsiao-kang, from north to south. An on-site automated online monitor of volatile organic compounds (VOCs) was used for continuous monitoring. This study performed two consecutive days of 24-h monitoring of five volatile organic HAPs form August to October 2005 at the four monitoring sites, which cover the northern, central, and southern areas of Kaohsiung city. The average monitored concentration was 2.78–4.84 ppb for benzene, 5.90–9.66 ppb for toluene, 3.62–5.90 ppb for ethylbenzene, 3.73–5.34 ppb for m,p-xylene, 3.38–4.22 ppb for o-xylene, and 4.48–7.00 ppb for styrene. The average monitored concentrations of the major volatile organic HAPs tended to follow the pattern San-min > Nan-tz > Hsiao-kang > Tso-ying. Among all the species monitored in this study, toluene had the highest ambient concentration, followed by styrene, m,p-xylene, ethylbenzene, o-xylene, and benzene. The results showed that the concentration at night was higher than that in the day for toluene at Nan-tz, San-min, Hsiao-kang, and for benzene at Nan-tz and Hsiao-kang.  相似文献   

15.
香港大气中有毒挥发性有机物研究   总被引:22,自引:0,他引:22  
用吸附/热脱除-GC=/MS方法研究了香港不同功能区大气中挥发笥有机物的组成。分析结果表明,香港大气中存在60多种VOCS,其主要成分是苯系物,烷烃和卤代烃。在检出物中有17种是有毒挥发性有机物,其主要成分是苯系物和氯代烃。其中氯仿,苯,甲苯,四氯乙烯,三氯乙烯和1,2-二氯乙烷是含量最高的组分。  相似文献   

16.
In this work, xylene removal from waste gas streams was investigated via catalytic oxidation over Pd/carbon-zeolite and Pd/carbon-CeO2 nanocatalysts. Activated carbon was obtained from pine cone chemically activated using ZnCl2 and modified by H3PO4. Natural zeolite of clinoptilolite was modified by acid treatment with HCl, while nano-ceria was synthesized via redox method. Mixed supports of carbon-zeolite and carbonceria were prepared and palladium was dispersed over them via impregnation method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller surface area (BET), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric (TG) techniques. Characterization of nanocatalysts revealed a good morphology with an average particle size in a nano range, and confirmed the formation of nano-ceria with an average crystallite size below 60 nm. BET analysis indicated a considerable surface area for catalysts (~1000 m2·g?1). FTIR patterns demonstrated that the surface groups of synthesized catalysts are in good agreement with the patterns of materials applied in catalyst synthesis. The performance of catalysts was assessed in a low-pressure catalytic oxidation pilot in the temperature range of 100° C-250°C. According to the reaction data, the synthesized catalysts have been shown to be so advantageous in the removal of volatile organic compounds (VOCs), representing high catalytic performance of 98% for the abatement of xylene at 250°C. Furthermore, a reaction network is proposed for catalytic oxidation of xylene over nanocatalysts.  相似文献   

17.
Volatile organic chemicals (VOCs) are used by female moths to find host plants for oviposition and specialist moths can be highly tuned to the volatile signature of their host plant. The ash leaf-coneroller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillariidae) specializes on ash (Fraxinus spp.) (Oleaceae). Its introduction to urban forests in the Canadian Prairie Provinces on both green, F. pennsylvanica, and black ash, F. nigra, offers the opportunity to test odor-mediated host location to two host-plant species. In laboratory and field experiments, C. fraxinella adults oriented to volatiles released from ash seedlings. The antennae of mated female C. fraxinella consistently detected five VOCs released from black and green ash, four of which were common to both species. Blends of natural and synthetic VOCs found to elicit an antennal response were tested in wind tunnel and field bioassays. Synthetic and natural VOCs elicited as much oriented flight from mated female C. fraxinella as ash seedlings, but did not elicit contact with the VOC lure in the wind tunnel. In the field, traps baited with blends of synthetic copies of black and green ash VOCs did not attract more female C. fraxinella than unbaited control traps. These experiments lay the foundation for further research to develop semiochemical lures to attract female C. fraxinella.  相似文献   

18.
Two wild subspecies of snapdragon, Antirrhinum majus, subspecies pseudomajus and striatum, differ in floral color and can be visually discriminated by insect visitors. The extent to which olfactory cues derived from floral scents contribute to discrimination between snapdragon subspecies is however unknown. We tested whether these two subspecies differ in floral scent and whether these olfactory differences are used by bumblebees (Bombus terrestris) to discriminate between them. We grew individuals of both subspecies, collected from a total of seven wild populations, under controlled conditions. We quantified the volatile organic compounds (VOCs) emitted by the flowers using gas-chromatography/mass-spectrometry/flame-ionization-detection. We studied antennal detection of VOCs by bumblebees, by means of electroantennogram study (EAG). We also performed behavioral experiments in a Y-maze to determine the innate response of bumblebees to the main floral VOCs emitted by our snapdragon subspecies. The floral scent of Antirrhinum majus pseudomajus contained three volatile benzenoids absent in the floral scent of Antirrhinum majus striatum. One of them, acetophenone, contributed over 69% of the absolute emissions of A. majus pseudomajus. These benzenoids elicited a significantly higher EAG response compared with other VOCs. In the Y-maze, bumblebees were significantly less attracted by acetophenone, suggesting an aversive effect of this VOC. Our findings indicate that bumblebees are able to discriminate between the two Antirrhinum majus subspecies. Differences in flower scent between these subspecies and olfactory bumblebee preferences are discussed in the light of biochemical constraints on VOCs synthesis and of the role of flower scent in the evolutionary ecology of A. majus.  相似文献   

19.
Most crop pests find a suitable host through chemical cues released from plants, but little is known about the odorscape encountered by host-seeking gravid females under natural, outdoor conditions. In this field study, the volatile organic compound (VOC) composition of maize (Zea mays, L.), a host for the European corn borer (ECB) (Ostrinia nubilalis Hüb.) was characterized during the oviposition flight and compared with a forest odorscape. VOCs from maize fields and the forest atmosphere were collected by solid phase microextraction and characterized by gas chromatography-mass spectrometry. The electroantennographic (EAG) response of female ECB antennae to candidate VOCs was tested. Analyses revealed clear differences between the maize field and the forest odorscapes, mainly composed of ubiquitous VOCs but in specific ratios. The maize field odorscape is more complex than the forest odorscape for maize found 18 VOCs but only eight in the forest. Both biotopes shared seven VOCs—green leaf volatiles (GLV), monoterpènes (MT) and homoterpenes. In addition, we found in the forest a distinctive sesquiterpene (SQT) identified as isoledene. The highest EAG responses were elicited by two GLVs and a MT shared by the two biotopes. SQT elicited weak EAG responses, except β-farnesene, only found in the maize field odorscape. Our results suggest that the two biotopes produce specific chemical signatures that insects may use as host cues. To the best of our knowledge this paper is the first report on the maize odorscapes under field conditions. The putative role of the VOCs in host plant detection and selection is discussed.  相似文献   

20.
Intertidal macroalgae may spend a significant part of their lives in air. During photosynthesis in air, they encounter much lower concentrations of inorganic carbon than in seawater. Because they accumulate inorganic carbon from seawater, we investigated whether they similarly accumulate it from air. We measured photosynthesis in the intertidal species Fucus vesiculosus L. during 1990 and 1991 with a gas-phase O2 electrode or CO2-exchange apparatus in air and with a liquid-phase O2 electrode in seawater. Maximum rates were rapid and similar in air and seawater regardless of the method. Tissue from seawater could carry on photosynthesis in CO2-free air, indicating that carbon was stored in the tissue. After 2 h, this store was depleted and photosynthesis ceased. Supplying CO2 in air replenished the store. Under identical conditions, terrestrial C3 and C4 species showed no evidence of this store, but a CAM (crassulacean acid metabolism) species did. However, in contrast to the CAM behavior, F. vesiculosus did not store CO2 significantly in the dark. We found a small acid-releasable pool of carbon in the tissue that disappeared as photosynthesis depleted the carbon store. However, the pool was too small to account for the total carbon stored. While CO2 was being acquired or released from the store in the light, photosynthesis was not inhibited by 21% O2. These results indicate that there are two parallel paths for the supply of CO2 to photosynthesis. The first depends on inorganic carbon in seawater or in air and supports rapid photosynthesis. The second involves CO2 slowly released from an organic intermediate. The release protects CO2 fixation from the inhibitory effects of 21% O2. Photosynthesis in F. vesiculosus thus appears to be C3-like in its rapid fixation of CO2 from a small inorganic pool into phosphoglycerate. However, it is C4-like in its pre-fixation of carbon in an organic pool in the light, and is CAM-like in its ability to slowly use this pool as a sole source of CO2. The organic pool may serve to protect photosynthetic CO2 fixation against the inhibitory effects of O2 in air and in the boundary layer in seawater. Received: 6 March 1998 / Accepted: 16 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号