首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
The estimation of nitrous oxide emissions is complicated by the high degree of uncertainty on the emission factors involved and by the limited acquaintance with all significant nitrous oxide sources. A potentially important source for which emission data are lacking is the sewage system transporting waste water from human activities. For this study an experimental measurement campaign has been carried out on waste water sampled at different sewage treatment plants. The nitrous oxide developing from the water samples was monitored by means of gas chromatography. The methodological analysis was based on the concentration/time curves obtained. Our results indicate that the formation of nitrous oxide from the waste water matrices results from microbiological denitrification. We deduced tentative emission factors for the waste water types studied.  相似文献   

2.
Non-CO2 greenhouse gases, such as methane and nitrous oxide, can make a relevant contribution to the enhanced greenhouse effect, and hence emission reduction is desirable. In emission reduction inventories, both the magnitude of the emission reduction as well as the specific emission reduction costs should be determined. The current knowledge of the potential for and costs of reducing these emissions is still limited. Taking this into account, the following results can be obtained. Methane emissions can be considerably reduced from underground coal mining, oil production, natural gas operations, landfilling of waste, and wastewater treatment. Also emissions from enteric fermentation and animal manure can be reduced substantially. The total technical potential for methane emission reduction (given the present activity level) is estimated to be about one third. The economic potential, having net negative emission reduction costs, is estimated to be about half of this value. These reductions can be attained over a period of 10 – 20 years. The technical potential for the reduction of nitrous oxide emissions is currently estimated to be less than 10% Apart from the possibility of implementing existing techniques, there seems to be considerable room for developing techniques for more far-reaching emission reductions both for methane and nitrous oxide.  相似文献   

3.
Conventional blanket application of nitrogen (N) fertilizer results in more loss of N from soil system and emission of nitrous oxide, a greenhouse gas (GHG). The leaf color chart (LCC) can be used for real-time N management and synchronizing N application with crop demand to reduce GHG emission. A 1-year study was carried out to evaluate the impact of conventional and LCC-based urea application on emission of nitrous oxide, methane, and carbon dioxide in a rice–wheat system of the Indo-Gangetic Plains of India. Treatments consisted of LCC scores of ≤4 and 5 for rice and wheat and were compared with conventional fixed-time N splitting schedule. The LCC-based urea application reduced nitrous oxide emission in rice and wheat. Application of 120 kg N per hectare at LCC ≤ 4 decreased nitrous oxide emission by 16% and methane by 11% over the conventional split application of urea in rice. However, application of N at LCC ≤ 5 increased nitrous oxide emission by 11% over the LCC ≤ 4 treatment in rice. Wheat reduction of nitrous oxide at LCC ≤ 4 was 18% as compared to the conventional method. Application of LCC-based N did not affect carbon dioxide emission from soil in rice and wheat. The global warming potential (GWP) were 12,395 and 13,692 kg CO2 ha−1 in LCC ≤ 4 and conventional urea application, respectively. Total carbon fixed in conventional urea application in rice–wheat system was 4.89 Mg C ha−1 and it increased to 5.54 Mg C ha−1 in LCC-based urea application (LCC ≤ 4). The study showed that LCC-based urea application can reduce GWP of a rice–wheat system by 10.5%.  相似文献   

4.
Greenhouse gases are more sampled than ever because of environmental interests. Gas samples are often inserted into vials with gas tight butyl rubber septa before concentration analysis. Little is known on the global transfer property of butyl rubber septa for CO2, N2O and CH4. Sorption kinetics were measured by injecting CO2, N2O or CH4 into glass vials with either one of four butyl rubber septa types and stored during 90 days. CO2 and N2O concentrations decreased during storage depending upon septa type and initial concentration, with the highest linear rate being 0.023 for CO2 and 0.0015 mg L(-3) day(-1) for N2O. When a low concentration was injected, CH4 concentration changes over time were small and did not differ between septa types. Sorption isotherms were measured using nine concentrations and stored during 45 days. CO2 sorption isotherms ranged from 0 to 3.7 x 10(-3) m(3) m(-2) and N2O from 0.3 to 1.4 x 10(-3) m(3) m(-2). Examples of errors associated with the use of these butyl rubber septa are given.  相似文献   

5.
This study investigated the effects of supplementing 40 g lauric acid (C12) kg-1 dry matter (DM) in feed on methane emissions from early-lactating dairy cows and the associated effects on methane, nitrous oxide and ammonia release from the manure during storage. Stearic acid (C18), a fatty acid without assumed methane-suppressing potential in the digestive tract of ruminants, was added at 40 g kg-1 DM to a control diet. The complete feed consisted of forage and concentrate in a ratio of 1.5:1 (DM basis). The manure was stored for 14 weeks either as complete slurry or, separately, as urine-rich slurry and farmyard manure representing two common storage systems. Methane release of the cows, as measured in respiratory chambers, was lower with C12 by about 20%, but this was mostly resulting from a reduced feed intake and, partly, from a lower rate of fibre digestion. As milk yield declined less than feed intake, methane emission per kg of milk was significantly lower with C12 (11.4 g) than with C18 (14.0 g). Faeces of C12-fed cows had a higher proportion of undigested fibre and accordingly methane release from their manure was higher compared with the manure obtained from the C18-fed cows. Overall, manure-derived methane accounted for8.2% and 15.4% of total methane after 7 and 14 weeks of storage, respectively. The evolution of methane widely differed between manure types and dietary treatments, with a retarded onset of release in complete slurry particularly in the C12 treatment. Emissions of nitrous oxide were lower in the manures from the C12 treatment. This partially compensated for the higher methane release from the C12 manure with respect to the greenhouse gas potential. The total greenhouse gas potential (cow and manure together) accounted for 8.7 and 10.5 kg equivalents of CO2 cow-1 d-1with C12 and C18, respectively. At unaffected urine-N proportion ammonia and total nitrogen losses from stored manure were lower with C12 than with C18 corresponding to the differences in feed and nitrogen intake. The present results suggest that manure storage significantly contributes to total methane emission from dairy husbandry, and that the identification of effective dietary mitigation strategies has to consider both the digestive tract of the animals and the corresponding manure.  相似文献   

6.
To estimate the greenhouse gas emissions from paddy fields of Cambodia, the methodology of the Intergovernmental Panel on Climate Change (IPCC) guidelines, IPCC coefficients, and emission factors from the experiment in Thailand and another country were used. Total area under rice cultivation during the years 2005–2006 was 2,048,360 ha in the first crop season and 298,529 ha in the second crop season. The emission of methane from stubble incorporation with manure plus fertilizer application areas in the first crop season was estimated to be 192,783.74 ton higher than stubble with manure, stubble with fertilizer, and stubble without fertilizer areas. The fields with stubble burning emitted the highest emission of methane (75,771.29 ton) followed by stubble burning with manure (22,251.08 ton), stubble burning with fertilizer (13,213.27 ton), and stubble burning with fertilizer application areas (3,222.22 ton). The total emission of methane from rice field in Cambodia for the years 2005–2006 was approximately 342,649.26 ton (342.65 Gg) in the first crop season and 36,838.88 ton (36.84 Gg) in the second crop season. During the first crop season in the years 2005–2006, Battambang province emitted the highest amount of CH4 (38,764.48 ton) and, in the second crop season during the years 2005–2006, the highest emission (8,262.34 ton) was found in Takeo province (8,262.34 ton). Nitrous oxide emission was between 2.70 and 1,047.92 ton in the first crop season and it ranged from 0 to 244.90 ton in the second crop season. Total nitrous oxide emission from paddy rice field was estimated to be 9,026.28 ton in the first crop season and 1,091.93 ton in the second crop season. Larger area under cultivation is responsible for higher emission of methane and nitrous oxide. Total emission of nitrous oxide by using IPCC default emission coefficient was approximately 2,328.85 ton. The total global warming potential of Cambodian paddy rice soil is 11,723,217.03 ton (11,723 Gg) equivalents of CO2.  相似文献   

7.
A model to simulate gas, heat, and moisture transport through a sanitary landfill has been developed. The model not only considers the different processes that go on in a landfill but also the oxidation of methane in the final cover. The model was calibrated using published results and field data from a pilot scale landfill in Calgary. The model captures the physics of the different processes quite well. Simulations from the model show that waste permeability had a significant impact on the temperature, pressure distribution, and flux from a landfill. The presence of the final and intermediate covers enhanced the gas storage capacity of the landfill. Biodegradation of the waste was enhanced as the final cover minimized the atmospheric influences. In addition, the composition of landfill gas emitted to the atmosphere was significantly different from the composition of gas generated in landfill due to the presence of covers as some of the methane is oxidized to carbon dioxide. There was no significant benefit of using a final cover of higher depth. The presence and number of intermediate covers had an impact on gas flux and temperature distribution within a landfill.  相似文献   

8.
Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 × 103 ha (kilohectare, or kha) and 200 × kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125 561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain.  相似文献   

9.
An experiment was conducted to assess the role of different concentrations of dicyandiamide (DCD), a potent nitrification inhibitor, on temporal changes in nitrous oxide emission from sandy loam agricultural soil. It was found that with increasing concentration of DCD i.e. from 6 to 12% of nitrogen applied in the form of urea, there was a decrease in the both average and peak N2O emissions. However, from 14% DCD treated soil, there was a non-significant alteration in the N2O emission. Maximum average N2O efflux of 217.55 μg m−2 h−1 was noted from control plots. As compared to control, there was an attenuation of 50, 58, 65, and 91% average N2O efflux from 6, 8, 10 and 12% DCD applied pots, respectively, whereas, there was a negative average of N2O efflux from the soil with 14% DCD treatment. The soil N content also showed a significant correlation with N2O emission. Therefore, 12% DCD treatment has been found to be the best with regard to attenuation of nitrous oxide from sandy loam agricultural soils.  相似文献   

10.
In this work assays involving chlorinated water samples, which were previous spiked with humic substances or algae blue green and following the production of the THMs for 30 days is described. To implement the assays, five portions of 1,000 ml of water were stored in glass bottles. The water samples were treated with solutions containing 2, 3, 4 and 5 mg l−1 chlorine. The samples aliquots (60 ml) were transferred into the glass vials, 10 ml were removed to have a headspace and 100 μl of the 10 mg l−1 pentafluortoluene bromide solution was added to each vial. The extraction step was performed by adding 10 g of Na2SO4 followed by 5 ml of n-pentane. The vials were stopped with a TFE-faced septum and sealed with aluminum caps. The generated THMs were determined by gas chromatography with electron capture detector using reference solutions with concentration ranging from 8 to 120 μg l−1 THMs. Three assays were monitored during 30 days and chloroform was the predominant compound found in the water samples, while other species of THMs were not detected. The results showed that when the chlorine concentration was increased in water samples containing algae the concentration of THM varied randomly. Nevertheless, in water samples containing humic substances the increase of the THM concentration presented a relationship with the chlorine concentration. It was also observed that chloroform concentration increased with the elapsed time up to one and six days to water samples spiked with humic substances and algae blue green, respectively and decreased along 30 days. By other hand, assays performed using water samples containing decanted algae material showed that THM was not generated by the chlorine addition.  相似文献   

11.
对南通市区2022年4月初因疫情防控采取全区域静态管理期间的空气质量进行分析,以气象参数、臭氧前体物VOCs和NOx作为分析对象。结果表明:此次污染过程的主导因素是高温、强辐射、低湿和偏南风的气象条件。南通市区处于VOCs控制区,高温、强辐射使得VOCs挥发性增强,浓度升高。偏南方向的苏通园区和能达公园VOCs浓度较高且升幅较大,源解析结果表明这2个点位涂料溶剂使用占比升幅更高,既容易受附近石化和储油库影响,也容易受偏南风向的污染输送影响。据初步统计,静态管理期间南通市区停工数量为80%左右,污染期间NO2浓度高值区主要分布在沿江一带,长江南岸的张家港和常熟地区存在多家高排放企业,在偏南风下,张家港和常熟的污染物极易输送至南通市区。基于空气质量模型WRF-CAMx的O3和PM2.5来源解析结果显示,静态管理期间外来输送明显,占比为68.7%~84.7%。污染期间的船舶排放和二次转化贡献也不容忽视。建议南通市应重点加强工业、油气挥发和涂料溶剂源减排,同时加强区域联防联控,以便进一步改善空气质量。  相似文献   

12.
With rapid economic development, the Pearl River Delta (PRD) of China has experienced a series of serious heavy metal pollution events. Considering complex hydrodynamic and pollutants transport process, one-dimensional hydrodynamic model and heavy metal transport model were developed for tidal river network of the PRD. Then, several pollution emergency scenarios were designed by combining with the upper inflow, water quality and the lower tide level boundary conditions. Using this set of models, the temporal and spatial change process of cadmium (Cd) concentration was simulated. The influence of change in hydrodynamic conditions on Cd transport in tidal river network was assessed, and its transport laws were summarized. The result showed the following: Flow changes in the tidal river network were influenced remarkably by tidal backwater action, which further influenced the transport process of heavy metals; Cd concentrations in most sections while encountering high tide were far greater than those while encountering middle or low tides; and increased inflows from upper reaches could intensify water pollution in the West River (while encountering high tide) or the North River (while encountering middle or low tides).  相似文献   

13.
Agriculture is a significant source of anthropogenic greenhouse gas (GHG) emissions, and beef cattle are particularly emissions intensive. GHG emissions are typically expressed as a carbon dioxide equivalent (CO2e) ‘carbon footprint’ per unit output. The 100-year Global Warming Potential (GWP100) is the most commonly used CO2e metric, but others have also been proposed, and there is no universal reason to prefer GWP100 over alternative metrics. The weightings assigned to non-CO2 GHGs can differ significantly depending on the metric used, and relying upon a single metric can obscure important differences in the climate impacts of different GHGs. This loss of detail is especially relevant to beef production systems, as the majority of GHG emissions (as conventionally reported) are in the form of methane (CH4) and nitrous oxide (N2O), rather than CO2. This paper presents a systematic literature review of harmonised cradle to farm-gate beef carbon footprints from bottom-up studies on individual or representative systems, collecting the emissions data for each separate GHG, rather than a single CO2e value. Disaggregated GHG emissions could not be obtained for the majority of studies, highlighting the loss of information resulting from the standard reporting of total GWP100 CO2e alone. Where individual GHG compositions were available, significant variation was found for all gases. A comparison of grass fed and non-grass fed beef production systems was used to illustrate dynamics that are not sufficiently captured through a single CO2e footprint. Few clear trends emerged between the two dietary groups, but there was a non-significant indication that under GWP100 non-grass fed systems generally appear more emissions efficient, but under an alternative metric, the 100-year global temperature potential (GTP100), grass-fed beef had lower footprints. Despite recent focus on agricultural emissions, this review concludes there are insufficient data available to fully address important questions regarding the climate impacts of agricultural production, and calls for researchers to include separate GHG emissions in addition to aggregated CO2e footprints.  相似文献   

14.
By using a dynamic dilution system, the atmospheric measurement of 11 selected toxics VOCs (ethylene, acetylene, propene, 1-butene, 1,3-butadiene, 1-pentene, 1-hexene, benzene, toluene, ethylbenzene, m+p-xylene) from the list WHO of 1996 and TO-14 method of US EPA by preconcentration by thermal desorption (TD), analysis by gas chromatography (GC), identification and quantification with a flame ionisation detector (FID) was developed and validated in term of metrology, especially the techniques of sampling of these VOCs with adsorbents cartridges "Air Toxics" when used with an "UMEG sampler" equipped in the inlet with a nafion membrane. In particular the influence of climatic conditions (temperature and relative humidity) and the influence of chemical factors like ozone, on the representativity of sampling were studied. Experiments made with various humidities showed that the addition of a nafion membrane in the inlet of the sampling system was required. Without this membrane, losses of compounds were observed for RH >50%. With this membrane, storage for 2 weeks in a refrigerator, as for canisters, did not induce a loss of compounds. No significative decrease of concentrations of the studied VOCs after 14 days storage, which are known to react with ozone, were observed with an ozone concentrations of 55 ppb. One explanation is that nafion membrane, placed in the inlet of the sampler, will neutralize ozone before entering the sampling tubes. This observation is in accordance with literature which states that the sampling of VOCs on Carbotrap cartridges without ozone scrubber induce a loss of compounds.  相似文献   

15.
A method for determination of the climate gases CH4, CO2 and N2O in air samples and soil atmosphere was developed using GC-MS. The method uses straightforward gas chromatography (separation of the gases) with a mass spectrometric detector in single ion mode (specific determination). The gases were determined with high sensitivity and high sample throughput (18 samples h(-1)). The LOD (3sigma) for the gases were 0.10 micro L L(-1) for CH4, 20 microL L(-1) for CO2 and 0.02 microL L(-1) for N2O. The linear range (R2 = 0.999) was up to 500 microL L(-1) for CH4, 4000 microL L(-1) for CO2 and 80 microL L(-1) for N2O. The samples were collected in 10 mL vials and a 5 microL aliquot was injected on column. The method was tested against certified gas references, the analytical data gave an accuracy within +/-5% and a precision of +/-3%. The presence of < or = 10% by volume of C2H2 (often used experimentally to prevent N2 formation from N2O) did not interfere with detection for the targeted trace gases.  相似文献   

16.
王铮  霍昱 《中国环境监测》2013,29(5):135-137
根据目前定电位电解法出现的问题,对扩散电化学法测定固定污染源高湿度烟气中低浓度二氧化硫的能力展开研究。结果显示,扩散电化学法测定值与参比值保持较好的一致性,说明该方法不受固定污染源烟气浓度、湿度以及负压等因素的影响,对高湿烟气中低浓度二氧化硫具备较强测定能力,非常适合该状况下SO2的现场测定。但是方法也受传感器制约,适用范围受到限制。  相似文献   

17.
利用2010年3-5月北京市市区以及北京西北部、西部和东部3个不同方位边界的空气质量自动监测站监测数据,结合气象资料和激光雷达观测数据,分析了春季外来沙尘对北京市空气质量的影响。研究结果表明:2010年春季北京市出现15次外来沙尘天气,外来沙尘输送对北京市空气质量的影响天数为21 d,直接造成15 d空气质量超标,最严重的一次API指数达到最大值500。沙尘的天气形势特征以及输送路径的不同,对北京市空气质量的影响有明显差异。当低压中心过境时,沙尘天气影响最重,颗粒物浓度显著上升,气态污染物迅速下降,沙尘呈现自西北向东南输送的特征;低压底部过境与低压中心过境类似,但是沙尘强度略弱;除此之外,沙尘回流也可以直接造成北京市空气质量超标,颗粒物浓度和气态污染物浓度均表现出上升的变化趋势。  相似文献   

18.
采用一氧化氮、二氧化氮标准物质对化学发光法的氮氧化物分析仪进行校准,并分析校准系统中零气源、连接管路、动态气体校准仪和标准物质对二氧化氮校准的影响,发现一氧化氮标准物质中的二氧化氮杂质会影响氮氧化物的校准结果,得出氮氧化物分析仪校准需要进行二氧化氮补偿的结论;同时,通过比较国产二氧化氮和进口二氧化氮标准物质产生的校准结果,得出进口二氧化氮标准物质较国产二氧化氮标准物质的稀释结果具有更好的稳定性和一致性。  相似文献   

19.
采用大气浓缩仪-气相色谱法测定超低沸点挥发性有机物乙烷、乙烯、丙烷、丙烯、乙炔,选用PLOT-Q柱分析,控制真空罐内相对湿度约50%,通过优化测定条件使方法线性良好,5种低沸点化合物的检出限为0.08 nmol/mol~0.2 nmol/mol,样品保存时间不超过10 d。用该方法测定某地区环境空气中VOCs,结果检出率均为100%。  相似文献   

20.
Though the principles of the Earth's greenhouse effect have been known for well over a century, it is only recently that advances in climate research have indicated that significant and possibly costly climate change, due to growing emissions of greenhouse gases and their precursors by human activity, is a real possibility. Current estimates of the global human-related emissions of carbon dioxide, methane and nitrous oxide are presented, though many sources remain poorly known or understood. The compilation of national greenhouse inventories as required by the United Nations Framework Convention on Climate Change is likely in the longer term to help improve such global estimates, as long as comparable methodologies are used. The development of the IPCC Guidelines for National Greenhouse Gas Inventories is described, emphasizing the strategies employed to gain wide international participation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号