首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Layer of protection analysis (LOPA) is a widely used semi-quantitative risk assessment method. It provides a simplified and less precise method to assess the effectiveness of protection layers and the residual risk of an incident scenario. The outcome failure frequency and consequence of that residual risk are intended to be conservative by prudently selecting input data, given that design specification and component manufacturer's data are often overly optimistic. There are many influencing factors, including design deficiencies, lack of layer independence, availability, human factors, wear by testing and maintenance shortcomings, which are not quantified and are dependent on type of process and location. This makes the risk in LOPA usually overestimated. Therefore, to make decisions for a cost-effective system, different sources and types of uncertainty in the LOPA model need to be identified and quantified. In this study, a fuzzy logic and probabilistic hybrid approach was developed to determine the mean and to quantify the uncertainty of frequency of an initiating event and the probabilities of failure on demand (PFD) of independent protection layers (IPLs). It is based on the available data and expert judgment. The method was applied to a distillation system with a capacity to distill 40 tons of flammable n-hexane. The outcome risk of the new method has been proven to be more precise compared to results from the conventional LOPA approach.  相似文献   

2.
为计算引发池火灾事故的风险值,提高事故风险的量化水平,判断现有风险控制措施是否满足风险容忍度的要求,为制定减缓风险措施提供依据,给出了新的池火灾风险评估模型。基于传统的保护层分析模型(LOPA),结合模糊集合理论,引入模糊风险矩阵进行风险评估,构建适用于引发池火灾事故的模糊保护层(fL OPA)风险分析模型。该模型的特点是将模糊逻辑和保护层分析结合,减少了传统保护层分析方法计算过程中的不确定性因素,引入严重度减少指数(SRI)概念,使严重度计算、风险评估更加准确。运用该模型对原油储罐泄漏池火灾事故风险进行分析,给出风险决策方案,判断现有保护措施是否能控制风险在可容忍范围内,实例验证了模型的可行性。  相似文献   

3.
Uncertainties of input data as well as of simulation models used in process safety analysis (PSA) are key issues in the application of risk analysis results. Mostly, it is connected with an incomplete and uncertain identification of representative accident scenario (RAS) and other vague and ambiguous information required for the assessment of particular elements of risk, especially for determination of frequency as well as severity of the consequences of RAS. The authors discuss and present the sources and types of uncertainties encountered in PSA and also methods to deal with them. There are different approaches to improve such analysis including sensitivity analysis, expert method, statistics and fuzzy logic. Statistical approach uses probability distribution of the input data and fuzzy logic approach uses fuzzy sets. This paper undertakes the fuzzy approach and presents a proposal for fuzzy risk assessment. It consists of a combination of traditional part, where methods within the process hazard analysis (PHA) are used, and “fuzzy part”, applied quantitatively, where fuzzy logic system (FLS) is involved. It concerns frequency, severity of the consequences of RAS and risk evaluation. In addition, a new element called risk correction index (RCI) is introduced to take into account uncertainty concerned with the identification of RAS. The preliminary tests confirmed that the final results on risk index are more precisely and realistically determined.  相似文献   

4.
为了更好地降低化工企业罐区事故造成多米诺效应的风险,提出1种基于保护层分析(LOPA)的定量风险评估程序。首先,阐述基于保护层分析(LOPA)逻辑的多米诺定量风险评估流程,即引入包括可用性、有效性及3种逻辑门定义及量化的安全屏障定量评估;然后,利用LOPA的分析逻辑将安全屏障融入多米诺定量风险评估框架中;最后,选取2×2 000 m3苯乙烯罐区为对象,识别防火层与喷淋冷却系统2种安全屏障并开展基于LOPA逻辑的罐区多米诺效应定量风险评估,得出安全屏障能有效地降低多米诺事故发生频率及罐区个人风险的结论。研究结果表明:该分析方法可为化工企业开展多米诺效应定量风险评估提供参考。  相似文献   

5.
Safety and health of workers potentially being at risk from explosive atmospheres are regulated by separate regulations (ANSI/AIHA in USA and ATEX in the European Union). The ANSI/AIHA does not require risk assessment whereas it is compulsory for ATEX. There is no standard method to do that assessment. For that purpose we have applied the explosion Layer of Protection Analysis (ExLOPA), which enables semi-quantitative risk assessment for process plants where explosive atmospheres occur. The ExLOPA is based on the original work of CCPS for LOPA taking into account an explosion accident scenario at workplace. That includes typical variables appropriate for workplace explosion like occurrence of the explosive atmosphere, the presence of effective ignition sources, activity of the explosion prevention and mitigation independent protection layers as well as the severity of consequences. All those variables are expressed in the form of qualitative linguistic categories and relations between them are presented using expert based engineering knowledge, expressed in the form of appropriate set of rules. In this way the category of explosion risk may be estimated by the semi-quantitative analysis. However, this simplified method is connected with essential uncertainties providing over or under estimation of the explosion risk and may not provide real output data.In order to overcome this problem and receive more detailed quantitative results, the fuzzy logic system was applied. In the first stage called fuzzification, all linguistic categories of the variables are mapped by fuzzy sets. In the second stage, the number of relation between all variables of analysis are determined by the enumerative combinatorics and the set of the 810 fuzzy rules “IF-THEN” is received. Each rule enables determination of the fuzzy risk level for a particular accident scenario. In the last stage, called defuzzification, the crisp value of final risk is obtained using a centroid method. The final result of the risk presents a contribution of each risk category represented by the fuzzy sets (A, TA, TNA and NA) and is therefore more precise and readable than the traditional approach producing one category of risk only. Fuzzy logic gives a possibility of better insights into hazards and safety phenomena for each explosion risk scenario. It is not possible to receive such conclusions from the traditional ExLOPA calculation results. However it requires the application of computer-aided analyses which may be partially in conflict with a simplicity of ExLOPA.The practical example provides a comparison between the traditional results obtained by ExLOPA and by fuzzy ExLOPA methods.  相似文献   

6.
The problem of less and/or even lack of information and uncertainty in modeling and decision making plays a key role in many engineering problems; so that, it results in designers and engineers could not reach to sure solutions for the problems under consideration. In this paper, an application of the fuzzy logic for modeling the uncertainty involved in the problem of pipeline risk assessment is developed. For achieving the aim, relative risk score (RRS) methodology, one of the most popular techniques in pipeline risk assessment, is integrated with fuzzy logic. The proposed model is performed on fuzzy logic toolbox of MATLAB® using Mamdani algorithm based on experts' knowledge. A typical case study is implemented and a comparison between the classical risk assessment approach and the proposed model is made. The results demonstrate that the proposed model provides more accurate, precise, sure results; so that, it can be taken into account as an intelligent risk assessment tool in different engineering problems.  相似文献   

7.
Zhang Li 《Safety Science》2010,48(7):902-913
In the system reliability and safety assessment, the focuses are not only the risks caused by hardware or software, but also the risks caused by “human error”. There are uncertainties in the traditional human error risk assessment (e.g. HECA) due to the uncertainties and imprecisions in Human Error Probability (HEP), Error-Effect Probability (EEP) and Error Consequence Severity (ECS). While fuzzy logic can deal with uncertainty and imprecision. It is an efficient tool for solving problems where knowledge uncertainty may occur. The purpose of this paper is to develop a new Fuzzy Human Error Risk Assessment Methodology (FHERAM) for determining Human Error Risk Importance (HERI) as a function of HEP, EEP and ECS. The modeling technique is based on the concept of fuzzy logic, which offers a convenient way of representing the relationships between the inputs (i.e. HEP, EEP, and ECS) and outputs (i.e. HERI) of a risk assessment system in the form of IF–THEN rules. It is implemented on fuzzy logic toolbox of MATLAB using Mamdani techniques. A case example is presented to demonstrate the proposed approach. Results show that the method is more realistic than the traditional ones, and it is practicable and valuable.  相似文献   

8.
油气储运设施事故风险指数模糊逻辑评估方法   总被引:2,自引:0,他引:2  
油气储运设施风险是其事故发生概率和事故后果的综合度量,而事故概率和后果的定量评估结果往往是具有不确定性的数据,以确定性风险评估准则为基础的传统风险矩阵法和风险值法显然难以评估油气储运设施风险。为此提出开展油气储运设施事故风险的模糊逻辑推理法,首先,对风险矩阵的概率语言等级和损失语言等级的边界进行定量划分;然后,建立油气储运设施风险矩阵模糊集和模糊逻辑推理规则;最后,通过风险模糊推理运算和模糊风险解模糊化以确定油气储运设施的风险水平。实例应用与分析表明,利用推荐方法可得到较为详尽的风险数据信息,不但风险指数更加清晰,而且其所属风险等级类别也更加明确,评估结果能更好地指导油气储运设施的风险管理。  相似文献   

9.
The chemical process industries are characterized by the use, processing, and storage of large amounts of dangerous chemical substances and/or energy. Among different missions of chemical plants there are two very important ones, which: 1. provide a safe work environment, 2. fully protect the environment. These important missions can be achieved only by design of adequate safeguards for identified process hazards. Layer of Protection Analysis (LOPA) can successfully answer this question. This technique is a simplified process of quantitative risk assessment, using the order of magnitude categories for initiating cause frequency, consequence severity, and the likelihood of failure of independent protection layers to analyze and assess the risk of particular accident scenarios. LOPA requires application of qualitative hazard evaluation methods to identify accident scenarios, including initiating causes and appropriate safeguards. This can be well fulfilled, e.g., by HAZOP Studies or What-If Analysis. However, those techniques require extensive experience, efforts by teams of experts as well as significant time commitments, especially for complex chemical process units. In order to simplify that process, this paper presents another strategy that is a combination of an expert system for accident scenario identification with subsequent application of LOPA. The concept is called ExSys-LOPA, which employs, prepared in advance, values from engineering databases for identification of loss events specific to the selected target process and subsequently a accident scenario barrier model developed as an input for LOPA. Such consistent rules for the identification of accident scenarios to be analyzed can facilitate and expedite the analysis and thereby incorporate many more scenarios and analyze those for adequacy of the safeguards. An associated computer program is under development. The proposed technique supports and extends the Layer of Protection Analysis application, especially for safety assurance assessment of risk-based determination for the process industries. A case study concerning HF alkylation plant illustrates the proposed method.  相似文献   

10.
HAZOP分析中LOPA的应用研究   总被引:6,自引:1,他引:5  
通过分析危险与可操作性研究(HAZOP)方法的不足和保护层分析(LOPA)方法的功能,提出将LOPA融入HAZOP分析中,能进一步提高HAZOP的事故预防能力和丰富HAZOP的分析结果。介绍LOPA基本方法,阐述LOPA融入HAZOP的机理、衔接关系及分析步骤,并通过一个化工工艺流程危险性分析实例说明LOPA的作用及如何将LOPA融入HAZOP分析中。结果表明:在HAZOP分析中融入LOPA方法,能实现对现有保护措施的可靠性进行量化评估,确定其消除或降低风险的能力,从而寻求是否需要附加减少风险的安全保护措施。  相似文献   

11.
This paper discusses the framework methodology behind the proposed simulation-based HAZOP tool. Simulation-based approach is one of the many ways to support conventional HAZOP by its automation. Compared to knowledge-based and other approaches, a HAZOP software tool based on deviations simulation is able to examine the investigated process more into detail and so find root causes of hazardous consequences. Another advantage is the ability to identify also potential hazards which did not occur in the past and might be overlooked. The presented framework methodology uses a layer of protection analysis (LOPA) concept of independent protection layers (IPLs) testing. Control system integrated into the raw process design represents the first of various protection layers of the LOPA concept. As a case study, a CSTR chemical production with nonlinear behavior under Proportional-Integral-Derivative (PID) actions as the predominant type of classical feedback control strategy is used. The presented tool identifies hazardous regimes under conditions when control loop introduces hazardous consequences or even acts synergically with existing hazardous events. Risk derived from different consequences is ranked by the risk assessment matrix (RAM) as a part of the conventional quantitative HAZOP study.  相似文献   

12.
Failure Mode and Effect Analysis (FMEA) is an effective risk analysis and failure avoidance approach in the design, process, services, and system. With all its benefits, FMEA has three limitations: failure mode risk assessment and prioritization, complex FMEA worksheets, and difficult application of FMEA tables. This paper seeks to overcome the shortcomings of FMEA using an integrated approach based on a developed Pythagorean fuzzy (PF) k-means clustering algorithm and a popular MCDM method called PF-VIKOR. In the first step, Pythagorean fuzzy numbers (PFNs) were used to collect Severity (S), Occurrence (O), and Detection (D) factors for failure modes to incorporate uncertainty and fuzziness into subjective judgments. Afterward, failure modes were clustered by developing a novel k-means clustering algorithm that accepts PFNs as input. Finally, the PF-VIKOR approach was used to analyze the ordering of cluster risks. The proposed approach was implemented in the dehydration unit of an Iranian gas refinery and the results were compared with the traditional FMEA. The findings showed the flexibility and applicability of the proposed approach in addressing real-world problems. This research provides two key contributions: (1) designing a PFN-based k-means clustering algorithm that tackles FMEA limitations and (2) using the PF-VIKOR method for prioritizing and evaluating failure mode clusters.  相似文献   

13.
This paper presents a mixed integer nonlinear programming (MINLP) model to improve the computational use of the layer of protection analysis (LOPA). For a given set of independent protection layers to be implemented in a process, the proposed optimization model is solved to: a) Include costs associated with the different prevention, protection and mitigation devices, and b) Satisfy the risk level typically specified in the LOPA analysis through the occurrence probability. The underline purpose focuses on improving the analysis process and decision making to obtain the optimal solution in the safeguards selection that satisfies the requirements to be considered as IPL’s. The optimization is based on economic and risk tolerance criteria. As a first stage of this proposal, the safety instrumented system (SIS) design is optimized so that the selection of SIS components minimizes the risk and satisfies the safety integrity level (SIL) requirements. A case study is presented to validate the whole proposed approach.  相似文献   

14.
For monitoring and control of major hazard installations storing flammable gas, the risk based warning/early-warning is very important. A set-pair analysis (SPA) based fuzzy assessment method (SPA–fuzzy) is proposed for the real-time risk assessment in this paper. Based on principle of SPA and fuzzy logic theory, the likelihood of accident occurrence and the consequence of the accident can be assessed, and the risk value or risk degree can be evaluated. The method takes advantage of the data acquired from the real-time safety monitoring system, so that the varying of the risk can be revealed during an accident developing. The risk assessment simulation of VCE accident caused by gas leaked from LPG tank is performed. It is shown that SPA–fuzzy method has the same risk value as that assessed by normal fuzzy method.  相似文献   

15.
In 2006, an unprecedented atmospheric confined space accident took place in a sampling shed at the Sullivan Mine in Kimberley, British Columbia. This accident suggests that a risk assessment should be carried out on a regular basis at mine reclamation sites for many years after closure. In this paper, an Atmospheric Fuzzy Risk Assessment (AFRA) tool is described that can assess atmospheric risk given heuristic and measured data at such sites. It can also serve to transfer knowledge about atmospheric hazards in an enclosed structure. The system uses fuzzy logic to input and output information and to perform weighted inferencing. The paper describes the developmental process as well as system verification and validation based on a number of known test and reference waste dumps. AFRA is a heuristic expert system based on fuzzy logic and the first tool that was developed to assess the atmospheric risk of mine waste dumps. The atmospheric risk is estimated by fuzzy Mamdani system given the values of four major elements of risk comprising of: gas generation, gas emission, gas confinement, and human exposure. The ability of AFRA to adapt its risk assessment to different climate conditions is explained. There are many physical, chemical, and environmental factors which fluctuate over time affecting oxygen-depletion in waste dumps. AFRA can help mining engineers and mine managers recognize this type of danger when conducting a confined space inventory at a reclamation site.  相似文献   

16.
Vast amounts of oil & gas (O&G) are consumed around the world everyday that are mainly transported and distributed through pipelines. Only in Canada, the total length of O&G pipelines is approximately 100,000 km, which is the third largest in the world. Integrity of these pipelines is of primary interest to O&G companies, consultants, governmental agencies, consumers and other stakeholder due to adverse consequences and heavy financial losses in case of system failure. Fault tree analysis (FTA) and event tree analysis (ETA) are two graphical techniques used to perform risk analysis, where FTA represents causes (likelihood) and ETA represents consequences of a failure event. ‘Bow-tie’ is an approach that integrates a fault tree (on the left side) and an event tree (on the right side) to represent causes, threat (hazards) and consequences in a common platform. Traditional ‘bow-tie’ approach is not able to characterize model uncertainty that arises due to assumption of independence among different risk events. In this paper, in order to deal with vagueness of the data, the fuzzy logic is employed to derive fuzzy probabilities (likelihood) of basic events in fault tree and to estimate fuzzy probabilities (likelihood) of output event consequences. The study also explores how interdependencies among various factors might influence analysis results and introduces fuzzy utility value (FUV) to perform risk assessment for natural gas pipelines using triple bottom line (TBL) sustainability criteria, namely, social, environmental and economical consequences. The present study aims to help owners of transmission and distribution pipeline companies in risk management and decision-making to consider multi-dimensional consequences that may arise from pipeline failures. The research results can help professionals to decide whether and where to take preventive or corrective actions and help informed decision-making in the risk management process. A simple example is used to demonstrate the proposed approach.  相似文献   

17.
Operating several assets has resulted in more complexity and so occurrence of some major accidents in the refining industries. The process operations risk factors including failure frequency and the consequence components like employees' safety and environment impacts, operation downtime, direct and indirect cost of operations and maintenance, and mean time to repair should be considered in the analysis of these major accidents in any refinery. Considering all of these factors, the risk based maintenance (RBM) as a proper risk assessment methodology minimizes the risk resulting from asset failures. But, one of the main engineering problems in risk modeling of the complex industries like refineries is uncertainty due to the lack of information. This paper proposes a model for the risk of the process operations in the oil and gas refineries. The fuzzy logic system (FLS) was proposed for risk modeling. The merit of using fuzzy model is to overcome the uncertainty of the RBM components. This approach also can be accounted as a benchmark for future failures. A unified risk number would be obtained to show how the criticality of units is. The case study of a gas plant in an oil refinery is performed to illustrate the application of the proposed model and a comparison between the results of both traditional RBM and fuzzy method is made.For the case study, 26 asset failures were identified. The fuzzy risk results show that 3 failures have semi-critical level and other 23 failures are non-critical. In both traditional and fuzzy RBM methods, some condenser failures had the highest risk number and some pumps were prioritized to have the lowest risk level. The unit with unified risk number less than 40 is in the non-critical conditions. Proposed methodology is also applicable to other industries dealing with process operations risks.  相似文献   

18.
《Safety Science》2006,44(1):37-54
Design for safety in the chemical industry is becoming a more explicit and well-organised process. However, it requires additional support tools to enable designers to pay attention to safety from the earliest conceptual design stage and through the subsequent detailing and to design more cost-effectively. This paper presents a more explicit approach called design for safety (DfS), which links with approaches already in use, such as layers of protection approach (LOPA). The method consists of two elements, a technology management environment (TME) aimed at supporting the interaction between the many contributors to safe design and a safety modelling language (SML). This provides a rigorous object-oriented language for conceptualising the requirements for risk control (barriers) and analysing their vulnerability to degradation or attack by other system elements or conditions. The method provides a focus for organising and applying existing knowledge about risk control and systematically learning from new knowledge to be gathered and supplied in supporting databases.  相似文献   

19.
Introduced by IEC-61508 standard, safety integrity levels (SIL) have been used for assessing the reliability of safety instrumented functions (SIF) for protection of the system under control in abnormal conditions. Different qualitative, semi-qualitative and quantitative methods have been proposed by the standard for establishing target safety integrity levels amongst which “Risk Graph” has gained wide attention due to its simplicity and easy-to-apply characteristics. However, this method is subject to many deficiencies that have forced industry men and experts to modify it to fit their demands. In this paper, a new modification to risk graph parameters has been proposed that adds more flexibility to them and reduces their subjective uncertainties but keeps the method as simple as before. Three parameters, namely severity (S), hazard avoidance probability (P), and demand rate (W) are used instead of former four parameters. Hence, the method is named SPW. The outcome results of this method can be directly converted to probability of failure on demand (PFD) or risk reduction factor (RRF). The proposed method has been tested on an example case that has been studied before with conventional risk graph and LOPA techniques. The results show that new method agrees well with LOPA and reduces costs imposed by conservative approximations assumed during application of conventional risk graph.  相似文献   

20.
Introduction: Underground mining is considered one of the most hazardous industries and is often associated with serious work-related fatalities; this paper addresses job-related hazards and associated risks. Method: A risk assessment approach is proposed (Pythagorean fuzzy environment) and a case study is carried out in an underground copper and zinc mine. Results: Results of the study demonstrate that hazards can be categorized into different risk levels via compromised solutions of the fuzzy approach. Conclusion: The study provides a theoretical contribution by suggesting a Pythagorean fuzzy numbers-based VlseKriterijumska Optimizacija I Kompromisno Resenje (PFVIKOR) approach. Moreover, it contributes to improving overall safety levels of underground mining by considering and advising on the potential hazards of risk management. Practical applications: The proposed approach will improve the existing safety risk assessment mechanism in underground copper and zinc mining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号