首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wigington, Parker J., Jr., Scott G. Leibowitz, Randy L. Comeleo, and Joseph L. Ebersole, 2012. Oregon Hydrologic Landscapes: A Classification Framework. Journal of the American Water Resources Association (JAWRA) 1‐20. DOI: 10.1111/jawr.12009 Abstract: There is a growing need for hydrologic classification systems that can provide a basis for broad‐scale assessments of the hydrologic functions of landscapes and watersheds and their responses to stressors such as climate change. We developed a hydrologic landscape (HL) classification approach that describes factors of climate‐watershed systems that control the hydrologic characteristics of watersheds. Our assessment units are incremental watersheds (i.e., headwater watersheds or areas draining directly into stream reaches). Major components of the classification include indices of annual climate, climate seasonality, aquifer permeability, terrain, and soil permeability. To evaluate the usefulness of our approach, we identified 30 rivers with long‐term streamflow‐gauging records and without major diversions and impoundments. We used statistical clustering to group the streams based on the shapes of their annual hydrographs. Comparison of the streamflow clusters and HL distributions within river basin clusters shows that the Oregon HL approach has the ability to provide insights about the expected hydrologic behavior of HLs and larger river basins. The Oregon HL approach has potential to be a useful framework for comparing hydrologic attributes of streams and rivers in the Pacific Northwest.  相似文献   

2.
ABSTRACT: To adequately manage impacts of ongoing or future land use changes in a watershed, the magnitude of their hydrologic impacts needs to be assessed. A grid based daily streamflow model was calibrated with two years of observed streamflow data, using time periods when land use data are available and verified by comparison of model predictions with observed streamflow data. Streamflow data were separated into direct runoff and baseflow to estimate the impacts of urbanization on each hydrologic component. Analysis of the ratio between direct runoff and total runoff from 30 years of simulation results and the change in these ratios with urbanization shows that estimated annual direct runoff increased from 49.2 percent (1973) to 63.1 percent (1984) and 65.0 percent (1991), indicating the effects of urbanization are greater on direct runoff than on total runoff. The direct runoff ratio also varies with annual rainfall, with dry year ratios larger than those for wet years. This suggests that the impact of urbanization on areas that are sensitive to runoff ratios, such as stream ecosystems, might be more serious during drier years than in wetter years in terms of water quality and water yield. This indicates that sustainable base‐flow is important to maintaining sound stream ecosystems.  相似文献   

3.
Meierdiercks, Katherine L., James A. Smith, Mary Lynn Baeck, and Andrew J. Miller, 2010. Heterogeneity of Hydrologic Response in Urban Watersheds. Journal of the American Water Resources Association (JAWRA) 46(6):1221–1237. DOI: 10.1111/j.1752-1688.2010.00487.x Abstract: The changing patterns of streamflow associated with urbanization are examined through analyses of discharge and rainfall records for the study watersheds of the Baltimore Ecosystem Study (BES). Analyses utilize a decade (1999-2008) of observations from a dense U.S. Geological Survey stream gaging network and Hydro-NEXRAD radar rainfall fields. The principal study watershed of the BES is Gwynns Falls (171 km2). Focus is given to two Gwynns Falls basins with contrasting patterns and histories of development, Dead Run and Upper Gwynns Falls. The sharp contrasts in streamflow properties between the basins reflect the differences in urban development prior to implementation of stormwater management regulations (much of Dead Run) and development for which stormwater management is an integral part of the hydrologic system (Upper Gwynns Falls). The mean annual runoff in Dead Run (558 mm) is 35% larger than that of Upper Gwynns Falls; larger contrasts in runoff properties typify the “warm season” and are linked to storm event hydrologic response. Spatial heterogeneities in storm event response are reflected in seasonal and diurnal properties of streamflow. Analyses of storm event response are presented for June 2006, during which monthly rainfall over the BES region ranged from less than 150 to more than 500 mm. Baisman Run, the BES forest reference watershed, and Moores Run, a highly urbanized watershed in Baltimore City, provide “end-member” representations of urban impacts on streamflow.  相似文献   

4.
Rapid land development is raising concern regarding the ability of urbanizing watersheds to sustain adequate base flow during periods of drought. Long term streamflow records from unregulated watersheds of the lower to middle Delaware River basin are examined to evaluate the impact of urbanization and imperviousness on base flow. Trends in annual base flow volumes, seven‐day low flows, and runoff ratios are determined for six urbanizing watersheds and four reference watersheds across three distinct physiographic regions. Hydrograph separation is used to determine annual base flow and stormflow volumes, and nonparametric trend tests are conducted on the resulting time series. Of the watersheds examined, the expected effects of declining base flow volumes and seven‐day low flows and increasing stormflows are seen in only one watershed that is approximately 20 percent impervious and has been subject to a net water export over the past 15 years. Both interbasin transfers and hydrologic mechanisms are invoked to explain these results. The results show that increases in impervious area may not result in measurable reductions in base flow at the watershed scale.  相似文献   

5.
Abstract: This article describes the development of a calibrated hydrologic model for the Blue River watershed (867 km2) in Summit County, Colorado. This watershed provides drinking water to over a third of Colorado’s population. However, more research on model calibration and development for small mountain watersheds is needed. This work required integration of subsurface and surface hydrology using GIS data, and included aspects unique to mountain watersheds such as snow hydrology, high ground‐water gradients, and large differences in climate between the headwaters and outlet. Given the importance of this particular watershed as a major urban drinking‐water source, the rapid development occurring in small mountain watersheds, and the importance of Rocky Mountain water in the arid and semiarid West, it is useful to describe calibrated watershed modeling efforts in this watershed. The model used was Soil and Water Assessment Tool (SWAT). An accurate model of the hydrologic cycle required incorporation of mountain hydrology‐specific processes. Snowmelt and snow formation parameters, as well as several ground‐water parameters, were the most important calibration factors. Comparison of simulated and observed streamflow hydrographs at two U.S. Geological Survey gaging stations resulted in good fits to average monthly values (0.71 Nash‐Sutcliffe coefficient). With this capability, future assessments of point‐source and nonpoint‐source pollutant transport are possible.  相似文献   

6.
ABSTRACT: Competition for water, concerns for maintaining ground water quality, and compliance with legislative action require quantification of the water resource for high elevation watersheds in the Sierra Nevada. However, meager hydroclimatic data frequently hinder runoff assessments needed for formulating water development policies, and the selection of watershed models for estimating the water resource is limited to those requiring a minimum of observational data. A climatic water budget model and an energy slope and aspect model are employed to estimate the water resource for a small watershed in Sierra Valley north of Lake Tahoe. The models employ different assumptions and computational procedures, but the total water available estimated by both models is very similar. Measured runoff is estimated satisfactorily by the models, but streamflow is not representative of the total water resource because a substantial portion of the available water enters the regional ground water system. This conclusion is supported by hydrologic and geochemical evidence, and ground water recharge is estimated to be at least as great as measured runoff during dry years and nearly twice as large during wet years.  相似文献   

7.
Alterations to flow regimes for water management objectives have degraded river ecosystems worldwide. These alterations are particularly profound in Mediterranean climate regions such as California with strong climatic variability and riverine species highly adapted to the resulting flooding and drought disturbances. However, defining environmental flow targets for Mediterranean rivers is complicated by extreme hydrologic variability and often intensive water management legacies. Improved understanding of the diversity of natural streamflow patterns and their spatial arrangement across Mediterranean regions is needed to support the future development of effective flow targets at appropriate scales for management applications with minimal resource and data requirements. Our study addresses this need through the development of a spatially explicit reach‐scale hydrologic classification for California. Dominant hydrologic regimes and their physio‐climatic controls are revealed, using available unimpaired and naturalized streamflow time‐series and generally publicly available geospatial datasets. This methodology identifies eight natural flow classes representing distinct flow sources, hydrologic characteristics, and catchment controls over rainfall‐runoff response. The study provides a broad‐scale hydrologic framework upon which flow‐ecology relationships could subsequently be established towards reach‐scale environmental flows applications in a complex, highly altered Mediterranean region.  相似文献   

8.
Abstract: Impact of watershed subdivision and soil data resolution on Soil Water Assessment Tool (SWAT) model calibration and parameter uncertainty is investigated by creating 24 different watershed model configurations for two study areas in northern Indiana. SWAT autocalibration tool is used to calibrate 14 parameters for simulating seven years of daily streamflow records. Calibrated parameter sets are found to be different for all 24 watershed configurations, however in terms of calibrated model output, their effect is minimal. In some cases, autocalibration is followed by manual calibration to correct for low flows, which were underestimated during autocalibration. In addition to normal validation using four years of streamflow data for each calibrated parameter set, cross‐validation (using a calibrated parameter set from one model configuration to validate observations using another configuration) is performed to investigate the effect of different model configurations on streamflow prediction. Results show that streamflow output during cross‐validation is not affected, thus highlighting the non‐unique nature of calibrated parameters in hydrologic modeling. Finally, parameter uncertainty is investigated by extracting good parameter sets during the autocalibration process. Parameter uncertainty analysis suggests that significant parameters show very narrow range of uncertainty across different watershed configurations compared with nonsignificant parameters. Results from recalibration of some configurations using only six significant parameters were comparable to that from calibration using 14 parameters, suggesting that including fewer significant parameters could reduce the uncertainty arising from model parameters, and also expedite the calibration process.  相似文献   

9.
ABSTRACT: Hydrologic landscapes are multiples or variations of fundamental hydrologic landscape units. A fundamental hydrologic landscape unit is defined on the basis of land‐surface form, geology, and climate. The basic land‐surface form of a fundamental hydrologic landscape unit is an upland separated from a lowland by an intervening steeper slope. Fundamental hydrologic landscape units have a complete hydrologic system consisting of surface runoff, ground‐water flow, and interaction with atmospheric water. By describing actual landscapes in terms of land‐surface slope, hydraulic properties of soils and geologic framework, and the difference between precipitation and evapotranspiration, the hydrologic system of actual landscapes can be conceptualized in a uniform way. This conceptual framework can then be the foundation for design of studies and data networks, syntheses of information on local to national scales, and comparison of process research across small study units in a variety of settings. The Crow Wing River watershed in central Minnesota is used as an example of evaluating stream discharge in the context of hydrologic landscapes. Lake‐research watersheds in Wisconsin, Minnesota, North Dakota, and Nebraska are used as an example of using the hydrologic‐land‐scapes concept to evaluate the effect of ground water on the degree of mineralization and major‐ion chemistry of lakes that lie within ground‐water flow systems.  相似文献   

10.
A thorough understanding of past and present hydrologic responses to changes in precipitation patterns is crucial for predicting future conditions. The main objectives of this study were to determine temporal changes in rainfall‐runoff relationship and to identify significant trends and abrupt shifts in rainfall and runoff time series. Ninety‐year rainfall and runoff time series datasets from the Gasconade and Meramec watersheds in east‐central Missouri were used to develop data screening procedure to assess changes in the rainfall and runoff temporal patterns. A statistically significant change in mean and variance was detected in 1980 in the rainfall and runoff time series within both watersheds. In addition, both the rainfall and runoff time series indicated the presence of nonstationary attributes such as statistically significant monotonic trends and/or change in mean and variance, which should be taken into consideration when using the time series to predict future scenarios. The annual peak runoff and the annual low flow in the Meramec watershed showed significant temporal changes compared to that in the Gasconade watershed. Water loss in both watersheds was found to be significantly increasing which is potentially due to the increase in groundwater pumping for water supply purposes.  相似文献   

11.
Previous historic trends analyses on 21st Century hydrologic data in the United States generally focus on annual flow statistics and have continued to use USGS hydro‐climatic data network (HCDN) stations, although post‐1988 diversions and runoff regulations are not reflected in the HCDN. Using a more recent dataset, Geospatial Attributes of Gages for Evaluating Streamflow, version II (GAGES II), compiled by Falcone (2012), which includes more watersheds with reference conditions, a comprehensive analysis of changes in seasonal, and annual streamflow in Wisconsin watersheds is demonstrated. Given the pronounced influence of seasonal hydrology in Wisconsin watersheds, the objective of this study is to elucidate the nature of temporal (annual, seasonal, and monthly) changes in runoff. Considerable temporal and regional variability was found in annual and seasonal streamflow changes between the two historic periods 1951‐1980 and 1981‐2010 considered in the study. For example, the northern watersheds show relatively small changes in streamflow discharge ranging from ?6.0 to 4.2%, while the southern watersheds show relatively large increases in streamflow discharge ranging from 13.1 to 18.2%. To apportion streamflow changes to climate and nonclimatic factors, a method based on potential evapotranspiration changes is demonstrated. Results show that nonclimatic factors account for more than 60% of changes in annual runoff in Wisconsin watersheds considered in the study.  相似文献   

12.
The Watershed Flow and Allocation model (WaterFALL®) provides segment‐specific, daily streamflow at both gaged and ungaged locations to generate the hydrologic foundation for a variety of water resources management applications. The model is designed to apply across the spatially explicit and enhanced National Hydrography Dataset (NHDPlus) stream and catchment network. To facilitate modeling at the NHDPlus catchment scale, we use an intermediate‐level rainfall‐runoff model rather than a complex process‐based model. The hydrologic model within WaterFALL simulates rainfall‐runoff processes for each catchment within a watershed and routes streamflow between catchments, while accounting for withdrawals, discharges, and onstream reservoirs within the network. The model is therefore distributed among each NHDPlus catchment within the larger selected watershed. Input parameters including climate, land use, soils, and water withdrawals and discharges are georeferenced to each catchment. The WaterFALL system includes a centralized database and server‐based environment for storing all model code, input parameters, and results in a single instance for all simulations allowing for rapid comparison between multiple scenarios. We demonstrate and validate WaterFALL within North Carolina at a variety of scales using observed streamflows to inform quantitative and qualitative measures, including hydrologic flow metrics relevant to the study of ecological flow management decisions.  相似文献   

13.
ABSTRACT: SWMHMS is a conceptual computer modeling program developed to simulate monthly runoff from a small nonurban watershed. The input needed to run model simulations include daily precipitation, monthly data for evapotranspiration determination (average temperature, crop consumptive coefficients, and percent daylight hours), and six watershed parameter values. Evapotranspiration was calculated with the Blaney-Criddle equation while surface runoff was determined using the Soil Conservation Service curve number procedure. For watershed parameter evaluation, SWMHMS provides options for both optimization and sensitivity analysis. Observed runoff data are required along with the model input previously mentioned in order to conduct parameter optimization. SWMEIMS was tested with data from six watersheds located in different regions of the United States. Model accuracy was generally found to be very good except on watersheds having substantial snowfall accumulation. In having only six watershed parameters, SWMHMS is less complex to use than many other computer programs that calculate monthly runoff. Consequently, SWMHMS may find its greatest application as an educational tool for students learning principles of hydrologic modeling, such as parameter evaluation procedures and the impacts of input data uncertainty on model results.  相似文献   

14.
Abstract: The transport of water, sediment, dissolved and particulate chemicals, and bacteria from coastal watersheds affects the nearshore marine and estuarine waters. In southern California, coastal watersheds deliver water and associated constituents to the nearshore system in discrete pulses. To better understand the pulsed nature of these watersheds, frequency distributions of simulated runoff events are presented for: (1) three land use conditions (1929, 1998, 2050); (2) three time periods (all water years 1989‐2002), only El Nino years (1992, 1993, 1995, 1998); and only non‐El Nino years; and (3) three regions (watershed, uplands, and lowlands). At the watershed scale, there was a significant increase (>200%) in mean event runoff from 1929 to 2050 (0.4‐1.3 cm) due to localized urbanization, which shifted the dominant sources of runoff from the mountains in 1929 (78% of watershed runoff) to the coastal plane for 2050 conditions (51% of watershed runoff). Inter‐annual climate variability was strong in the rainfall and runoff frequency distributions, with mean event rainfall and runoff 66 and 60% larger in El Nino relative to non‐El Nino years. Combining urbanization and climate variability, 2050 land conditions resulted in El Nino years being five times more likely to produce large (>3.0 cm) runoff events relative to non‐El Nino years. Combining frequency distributions of event runoff with regional nutrient export relationships, we show that in El Nino years, one in five events produced runoff ≥2.5 cm and temporary nearshore nitrate and phosphate concentrations of 12 and 1.4 μM, respectively, or approximately 5‐10 times above ambient conditions.  相似文献   

15.
Surface coal mining operations alter landscapes of the Appalachian Mountains, United States, by replacing bedrock with mine spoil, altering topography, removing native vegetation, and constructing mine soils with hydrologic properties that differ from those of native soils. Research has demonstrated hydrologic effects of mining and reclamation on Appalachian landscapes include increased peakflows at newly mined and reclaimed watersheds in response to strong storm events, increased subsurface void space, and increased base flows. We review these investigations with a focus on identifying changes to hydrologic flow paths caused by surface mining for coal in the Appalachian Mountains. We introduce two conceptual control points that govern hydrologic flow paths on mined lands, including the soil surface that partitions infiltration vs. surface runoff and a potential subsurface zone that partitions subsurface storm flow vs. deeper percolation. Investigations to improve knowledge of hydrologic pathways on reclaimed Appalachian mine sites are needed to identify effects of mining on hydrologic processes, aid development of reclamation methods to reduce hydrologic impacts, and direct environmental mitigation and public policy.  相似文献   

16.
Sanford, Ward E. and David L. Selnick, 2012. Estimation of Evapotranspiration Across the Conterminous United States Using a Regression with Climate and Land‐Cover Data. Journal of the American Water Resources Association (JAWRA) 1‐14. DOI: 10.1111/jawr.12010 Abstract: Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water‐balance method was combined with a climate and land‐cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971‐2000 across the U.S. to obtain long‐term estimates of actual ET. A regression equation was developed that related the ratio ET/P to climate and land‐cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land‐cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land‐cover data can also improve those predictions. Using the climate and land‐cover data at an 800‐m scale and then averaging to the county scale, maps were produced showing estimates of ET and ET/P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land‐cover data are plentiful.  相似文献   

17.
The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001‐2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.  相似文献   

18.
Hydrologic response, defined as the annual direct runoff divided by the annual precipitation, was computed for twenty-one watersheds in or near western Massachusetts, using a total of 232 years of hydrologic records. Variability of the results over the period of analysis was greater than is desirable to inspire confidence in the usefulness of the hydrologic response function; however, the results do suggest that the hydrologic response concept, with appropriate refinements, could be applied successfully to the problem of delineating hydrologic provinces and determination of drainage and storage in unregulated watersheds.  相似文献   

19.
ABSTRACT: The application of hydrologic models to small watersheds of mild topography is not well documented. This study evaluates the applicability of hydrologic models described by Huggins and the Soil Conservation Service to small watersheds by comparing the simulated and actual hydrograph for both gaged and ungaged situations. The annual maximum rainfall events plus storms exceeding 2.5 inches from 25 years of rainfall and runoff data for two small watersheds were selected for the model evaluations. These storms had a variety of patterns and occurred on many different watershed conditions. Simulated and actual hydrographs were compared using a parameter which contained volume, peak, and shape factors. One-half of the selected storms were used to calibrate the models. For both models, there were no significant differences between the simulated and actual runoff volumes and peak runoff rates. Parameters obtained during the calibration process and relationships developed to estimate antecedent moisture and to modify tabulated runoff curve numbers were used to simulate the runoff hydrograph from the remaining storms. These remaining storms or test storms were simulated only once in order to imitate an ungaged situation. In general, both the Huggins and SCS model performed similarly on the test storms, but the level of model performance was lower than that for the calibration storms. For both models, the two-day antecedent rainfall was more important than the five-day in determining antecedent moisture and modifying tabulated curve numbers. The time of concentration which resulted in good hydrograph simulations was about three times larger than that estimated using published empirical relationships.  相似文献   

20.
This study focuses on the relationships of watershed runoff with historical land use/land cover (LULC) and climate trends. Over the 20th Century, LULC in the Southeast United States, particularly the North Carolina Piedmont, has evolved from an agriculture dominated to an extensively forested landscape with more recent localized urbanization. The regrowth of forest has an important influence on the hydrology of the region as it enhances ecosystem interaction with recent climate change. During 1920‐2009, the amount of precipitation in some parts of the North Carolina Piedmont forest regrowth area showed increasing trends without corresponding increments in runoff. We employed the Soil and Water Assessment Tool (SWAT) to backcast long‐term hydrologic behavior of watersheds in North Carolina with different LULC conditions: (1) LULC conversion from agricultural to forested area and (2) long‐term stable forested area. Comparing U.S. Geological Survey‐measured stream discharge with SWAT‐simulated stream discharge under the assumption of constant 2006 LULC, we found significant stream discharge underprediction by SWAT in two LULC conversion watersheds during the early simulation period (1920s) with differences gradually decreasing by the mid‐1970s. This model bias suggests that forest regrowth on abandoned agricultural land was a key factor contributing to mitigate the impact of increased precipitation on runoff due to increasing water consumption driven by changes in vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号