首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为有效评价装配式地铁车站施工安全风险,减少施工安全事故发生,保障施工安全,提出基于组合赋权和云模型的风险评价方法。首先,根据国家规范和项目资料,初步识别装配式地铁车站施工安全风险因素;再利用德尔菲法优化风险因素,建立包括6个一级指标和25个二级指标的装配式地铁车站施工安全风险评价指标体系;然后,采用熵权法和组合数有序加权(C-OWA)算子确定指标的组合权重,进而结合云模型确定风险评价等级;最后,基于某装配式地铁车站项目验证上述评价方法。结果表明:该项目评价等级为较低风险,与施工现场实际情况基本一致,但人员和施工技术的风险等级为中等,在采取安全防控措施时应重点考虑。  相似文献   

2.
为提高地铁车站深基坑施工危险性测度的准确性,考虑多风险因素耦合作用和危险性测度主观性对传统风险评测结果的影响,提出基于结构方程(SEM)与蒙特卡洛模拟(MC)相结合的地铁车站深基坑施工危险性测度方法。首先,从基坑支护、基坑开挖、降水排水以及周边环境4个维度建立危险性测度指标体系,利用SEM确定指标权重,并确定关键因素;然后,根据指标的数据分布特征,利用MC法模拟出潜变量值并与风险损失程度、指标权重相结合得出危险度;最后,将该危险性测度方法运用于南昌地铁双港站。研究结果表明:该地铁车站深基坑风险等级为4级,基坑开挖为该地铁车站深基坑施工主要风险影响因素,其直接影响因素为开挖技术参数设置。项目实施结果表明该方法对地铁车站深基坑施工危险性评测适用可信。  相似文献   

3.
针对地铁车站深基坑施工工艺复杂、不确定因素多、施工阶段风险概率高、风险损失后果严重等问题,采用层次分析法构建评价指标体系,利用可拓学理论建立可拓评价模型,通过定量化、模型化的方式使矛盾问题转化为相容问题。得到相应的评价指标体系和评价模型后,结合工程实际和专家打分确定安全评价指标权重,进而通过计算评价指标和对象之间的关联函数和关联度,最终得出目标层所属的安全等级。工程实例结果表明,基于可拓学的安全评价结果基本符合实际施工安全等级,该方法有效可行。  相似文献   

4.
为解决地铁车站火灾安全评价中指标量化的模糊问题和边界的不确定性问题,将物元可拓理论和云模型理论结合,提出基于可拓云理论的地铁车站火灾安全评价模型。基于"物理-事理-人理"(WSR)理论,从管理因素、设备因素、设计因素和人员因素4个维度出发,构建地铁车站火灾安全评价指标体系;基于博弈论修正G1法及熵权法算得的指标权重,得到各指标的组合权重;利用可拓云理论,最终确定地铁车站的火灾安全等级。以沈阳地铁十号线淮河街沈医二院车站为例进行评价,结果表明:该车站火灾安全等级为Ⅰ级,安全状态为安全,并为地铁车站未来的消防管理工作提出了有针对性的建议。  相似文献   

5.
针对地铁车站火灾触发因素繁多复杂等特点,为有效预防和减少火灾事故的发生,提出了基于D-S证据理论的评价方法。首先依托WSR(物理-事理-人理)理论思想,结合PDCA循环程序及地铁车站火灾特点,建立了基于"人、机、环、管"四方面因素的火灾安全评价指标体系;其次引入C-OWA算子实现评价指标赋权,削弱专家主观偏好的不利影响,并建立了基于D-S证据理论的地铁车站火灾安全评价模型,借助证据融合算法评判火灾安全等级;最后将模型应用到青岛地铁车站实际案例中,结果表明,该车站火灾安全状况良好,评价模型具有可行性与合理性。  相似文献   

6.
火灾风险评估是为了有效预防和减少火灾的发生.在对地铁车站火灾风险定量描述的基础上,从火灾发生概率和火灾危害性2个一级指标出发,建立地铁车站火灾风险概率模糊评估模型,并以某地铁车站为实例论述该模型的应用.评估得出,该地铁车站火灾风险隶属矩阵为(0.11,0.27,0.41,0.21),依据最大隶属度原则,该地铁车站的火灾风险等级为“一般风险”;依据“赋值法”,该地铁车站安全评价得分为82.19,对应安全等级为“一般”.二者结论一致,也与该地铁车站的实际安全状况相符.  相似文献   

7.
为保障地铁车站深基坑在多种因素侵扰下的施工安全,首先提出地铁车站深基坑韧性理论概念,指出系统韧性的时间属性和功能属性,综合考虑这2大主要属性,选择内部应力、风化程度、坑外水位、地表沉降、周边房屋沉降、立柱隆沉、支撑轴力和墙体倾斜等参数作为地铁车站深基坑韧性的评估指标;其次选用欧氏距离法综合评估地铁车站深基坑韧性,利用变异系数法减少主观因素的影响,赋权评估指标;最后选取南宁市某地铁车站深基坑实例,评估得到最终欧氏距离为0. 357 5,对应韧性等级为4. 028级。结果表明:利用欧氏距离法能够评估出在多种因素的影响下,地铁车站深基坑结构安全工程属性的优劣程度,评估结果与实际工程相符。  相似文献   

8.
为了解决由于地铁深基坑施工风险因素不确定性和基坑工程事故资料缺失导致传统风险分析方法不再满足实际需要的问题。探讨模糊集理论(FST)和贝叶斯网络(BN)的结合,介绍1种专家置信度指标,建立地铁深基坑渗漏风险评估指标体系,得到基于模糊贝叶斯网络(FBN)地铁深基坑施工渗漏风险评估模型。研究结果表明:将该方法应用于广州地铁十三号线某车站深基坑施工渗漏风险评估中,结果符合施工实际,接缝密封质量差等风险因素需加以措施控制,该方法可为后续施工风险评估提供实时支持。  相似文献   

9.
为解决深基坑施工风险评价中存在多维监测指标融合的客观性不足、用断面风险信息代替基坑整体风险的问题,建立基于投影寻踪及信息扩散的深基坑施工风险动态评价方法。对深基坑施工的风险等级标准体系进行数据挖掘,得到能够反映各指标权重的最佳投影方向向量,从而将多维监测数据投影成一维风险值。运用信息扩散理论,将多个断面风险信息扩散到整个基坑工程上,以实现深基坑工程风险的综合评价。并将该方法应用于长沙一个地铁车站深基坑项目。结果表明,多维监测指标对同一监测断面风险值的贡献度不同,不同监测断面携带的风险信息亦不相同,对基坑整体风险的动态评价既应考虑不同监测指标的贡献度,还应兼顾不同断面风险值的影响。  相似文献   

10.
为确保地铁车站深基坑施工期间邻近建筑物的安全性和正常使用的要求,根据既有建筑物基础类型、结构形式、建造时期和使用情况,确定既有建筑物基础的剩余变位能力,基于地铁车站的设计文件及施工方案,采用数值计算方法评判既有建筑物基础在车站深基坑施工期间的变形是否超过剩余变位值,可通过不断调整设计方案及施工方案直至满足其安全性为止,以保证建筑物在地铁车站施工期间建筑物的正常使用。工程实践表明,车站主体结构施工结束后地表沉降及邻近地面建筑物的变形值均在规定范围以内,有效降低了施工期间邻近建筑物面临的倾斜、沉降过大等风险。研究成果能为地铁车站深基坑建设前对邻近建筑物结构安全评估具有重要的指导意义和实用价值,为风险工程在设计及施工阶段进行安全性评估与评价提供有力指导。  相似文献   

11.
为评价城市供水管网的安全性,保障其正常运行,笔者基于多元分类最小二乘支持向量机(LS-SVM)的方法,在对城市供水管网安全运行影响因素总结与分析的基础上,构建供水管网安全性评价的指标因素集与评价模型,通过对有限的经验数据的学习,建立供水管网安全性与其影响因素之间的非线性关系。运用该模型进行实例仿真模拟,通过与实际安全等级及BP神经网络模型预测安全等级之间的对比表明:基于LS-SVM的供水管网安全性评价方法具有较高的精度,正确分类率可以达到83.33%。  相似文献   

12.
为解决高层建筑火灾因素复杂、多元耦合性、模糊性等特征导致难以选择合适方法对其安全进行评价的难题,提出基于DEA(Data Envelopment Analysis)和灰色聚类的高层建筑火灾安全评价模型。首先从防火能力、灭火能力、疏散能力、管理能力4个方面构建高层建筑火灾安全评价指标体系。然后运用数据包络从更加客观的角度计算指标权重值,提高赋权的科学性。最后考虑指标信息不完整性,基于灰色聚类实现对高层建筑火灾安全因素的聚类分析,得出安全等级。运用该模型对郑州正弘高新数码港一期高层建筑火灾安全等级进行评价,认为该建筑安全等级高,应加强对装修材料耐火性、消防水源、疏散宽度、组织能力4个指标的管理,以期提高该建筑火灾安全水平,同时为高层建筑火灾安全评价提供一种新的方法。  相似文献   

13.
基于灰色聚类法的地铁运营安全趋势分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为评估地铁运营安全水平,掌握地铁运营风险变化趋势,采用灰色聚类法对某地铁线路运营一年以来每个月份的安全水平进行了分级评价。选取对地铁日常运营具有重要影响的设备设施故障作为评价指标,评价方法挖掘地铁运营以来的历史数据信息,体现了设备设施故障变化的时间特性,减少了安全评价中的主观性。将地铁运营安全水平分为五个安全等级,选取15%、35%、50%、65%、85%作为各安全等级的累积百分频率特征点,建立白化权函数得到各评价指标的灰类白化值。结合各设备设施的指标权重,得到了地铁线路运营一年来每个月份的安全等级情况。该方法为分析地铁运营安全趋势提供了参考。  相似文献   

14.
为了解决当前我国地铁施工过程的安全预警问题,构建因子分析与BP神经网络相结合的地铁施工安全预警模型。在分析地铁施工安全预警指标的基础上,采用SPSS因子分析法对调查数据进行降维,采用Visual Basic 6.0软件编写BP网络程序,并通过工程实际数据实现模型的训练及检测。研究结果表明,通过因子分析能使BP网络的输入数据从37个减少至7个,经因子分析降维后的收敛速度和计算精度均高于未经因子分析的神经网络,且误差均在10%以内。通过因子分析与BP神经网络相结合构建的耦合模型识别地铁施工过程中的不安全因素,进而有针对性地完善地铁施工的相关预警技术。  相似文献   

15.
基于BP网络的建筑安装施工现场安全综合评价的研究   总被引:2,自引:0,他引:2  
针对目前我国建筑安装施工现场安全评价技术的不成熟和欠科学性的现状 ,笔者分析和综合了目前安全评价技术 ,结合建筑业特点 ,提出了基于BP神经网络的建筑安装施工现场安全评价方法 ,并对该评价模型的原理、方法及算法进行了研究。首先 ,结合建筑安装施工现场安全生产的特点建立评价指标体系 ,随后 ,运用层次分析法确定指标及准则层的权重 ,并运用模糊综合评价法生成评价样本集 ,最后 ,利用样本集训练BP网络 ,待误差满足要求后 ,即可运用训练成功的BP神经网络进行安全评价。  相似文献   

16.
为评价深基坑开挖过程中紧邻地铁隧道的安全状态,提出一种基于粗糙集与Mamdani模糊推理的隧道安全评价方法。首先,综合考虑紧邻地铁隧道状况、工程地质条件与深基坑支护条件等一级指标,以及隧道沉降、隧道收敛、隧道紧邻距离、岩土体抗剪指标、地下水位、支护结构厚度和围护结构插挖比等二级指标,归纳出指标的各级评价标准;其次,运用粗糙集理论进行离散化、约简、等价类划分处理,得到相对客观的权重向量;最后,将权重向量代入Mamdani模糊推理,通过映射得出精确的评价得分。研究结果表明:在多指标因素影响下,基于粗糙集理论与Mamdani模糊推理的安全评价方法能够得出深基坑紧邻地铁隧道的安全状态精确得分。  相似文献   

17.
西安地铁车站深基坑变形规律FLAC模拟研究   总被引:2,自引:0,他引:2  
开展西安地铁深基坑变形规律理论与监测的研究对指导西北地区深基坑信息化施工具有重要价值。本文以西安地铁2号线某车站深基坑工程为背景,完成了车站深基坑施工监测方案设计,对深基坑施工过程进行了FLAC计算模拟,重点研究了桩体变形、钢支撑轴力、基坑周边地表变形规律。结果表明,复杂环境下城市地铁车站站深基坑明挖施工时,现场监测是信息化安全施工的保证,采用钻孔灌注桩和钢支撑的复合围护方案作为车站深基坑的围护结构是合理的,土方分层开挖方式和钢支撑预应力施加是减少空间效应保证安全施工的重要措施。桩身水平位移特别是桩顶水平位移是围护结构变形特性的直接反映,围护桩变形最大的地方为基坑中部到三分之二基坑深度处。基坑围护结构附近的地面隆起量明显小于基坑中部的隆起量,随着开挖深度增大,隆起量逐渐由基坑中部最大转变为两边大中间小的型式。  相似文献   

18.
为进一步提升地铁车站火灾安全管理水平,基于韧性理论,提出了地铁车站火灾安全韧性概念。以随着火灾发展阶段依次涌现的韧性吸收能力、抵抗能力、恢复能力和适应能力表征为核心,从“人、机、环、管”4个方面识别影响因素,建立地铁车站火灾安全韧性评价指标体系;运用变权理论对评价指标进行赋权,将贴近度原则和物元可拓模型相结合确定地铁车站火灾安全韧性等级,构建基于改进变权物元可拓的地铁车站火灾安全韧性评价模型,解决了以往韧性评价过程中未考虑模糊性和随机性的问题;最后应用该模型对青岛某地铁车站进行实例分析,结果表明,该地铁车站火灾安全韧性等级为Ⅱ级“较高韧性”,但略有偏向Ⅲ级“一般韧性”的趋势,与实际情况基本相符,并通过对比改进模型与传统物元可拓模型的评价结果,验证了改进模型的有效性。所提出的模型可以为提升地铁运营管理水平提供一定的参考依据。  相似文献   

19.
为提高地铁深基坑施工安全预警的准确性和高效性,针对传统预警信息分析处理过程中存在的单指标评判、人为随意决策、不同指向的信息错误组合等问题,提出基于T-S模糊神经网络的多信息融合模型。以黄浦新城站深基坑工程为背景,从空间区位和事故警情2个方面识别与筛选安全预警信息源;运用T-S模糊神经网络构建多信息融合模型,选取大量样本对模型进行训练与检测,以提高模型的有效性和泛化能力;融合预警信息并对融合结果进行分析。结果表明:空间区位和事故警情的融合结果与现场的警情位置和警情类型相吻合,证明该融合模型在深基坑施工安全预警中具有可行性与适用性。  相似文献   

20.
为解决高层建筑构造复杂、人员密度大、火灾触发因素繁多而造成高层建筑火灾安全评价困难的问题,本文提出基于PCA-FPP-BP神经网络的高层建筑火灾安全评价模型。首先运用主成分分析(PCA)对构建的高层建筑火灾安全评价指标降维处理,筛选主要信息;接着基于三角模糊数构建模糊评判矩阵,利用模糊优先规划(FPP)求解指标的权重值,减少主观的影响;最后考虑到指标间关系错综复杂彼此交叉和反馈的特性,选择BP神经网络对高层建筑火灾安全进行评价。通过工程案例证明该评价模型的实用性以及可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号