首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study focuses on the relationships of watershed runoff with historical land use/land cover (LULC) and climate trends. Over the 20th Century, LULC in the Southeast United States, particularly the North Carolina Piedmont, has evolved from an agriculture dominated to an extensively forested landscape with more recent localized urbanization. The regrowth of forest has an important influence on the hydrology of the region as it enhances ecosystem interaction with recent climate change. During 1920‐2009, the amount of precipitation in some parts of the North Carolina Piedmont forest regrowth area showed increasing trends without corresponding increments in runoff. We employed the Soil and Water Assessment Tool (SWAT) to backcast long‐term hydrologic behavior of watersheds in North Carolina with different LULC conditions: (1) LULC conversion from agricultural to forested area and (2) long‐term stable forested area. Comparing U.S. Geological Survey‐measured stream discharge with SWAT‐simulated stream discharge under the assumption of constant 2006 LULC, we found significant stream discharge underprediction by SWAT in two LULC conversion watersheds during the early simulation period (1920s) with differences gradually decreasing by the mid‐1970s. This model bias suggests that forest regrowth on abandoned agricultural land was a key factor contributing to mitigate the impact of increased precipitation on runoff due to increasing water consumption driven by changes in vegetation.  相似文献   

2.
We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.  相似文献   

3.
The United States has a highly varied landscape because of wide-ranging differences in combinations of climatic, geologic, edaphic, hydrologic, vegetative, and human management (land use) factors. Land uses are dynamic, with the types and rates of change dependent on a host of variables, including land accessibility, economic considerations, and the internal increase and movement of the human population. There is a convergence of evidence that ecoregions are very useful for organizing, interpreting, and reporting information about land-use dynamics. Ecoregion boundaries correspond well with patterns of land cover, urban settlement, agricultural variables, and resource-based industries. We implemented an ecoregion framework to document trends in contemporary land-cover and land-use dynamics over the conterminous United States from 1973 to 2000. Examples of results from six eastern ecoregions show that the relative abundance, grain of pattern, and human alteration of land-cover types organize well by ecoregion and that these characteristics of change, themselves, change through time.  相似文献   

4.
The impacts of land use and land cover (LULC) change in buffer zones surrounding protected ecological reserves have important implications for the management and conservation of these protected areas. This study examines the spatial and temporal patterns of LULC change along the boundary of Rio Abiseo National Park in the Northern Peruvian Andes. Landscape change within four ecological zones was evaluated based on trends expected to occur between 1987 and 2001. Landsat TM and ETM imagery were used to produce LULC classification maps for both years using a hybrid supervised/unsupervised approach. LULC changes were measured using landscape metrics and from-to change maps created by post-classification change detection. Contrary to expectations, tropical upper wet montane forest increased despite being threatened by human-induced fires and cattle grazing of the highland grasslands inside the park. Within the park’s buffer zone, tropical moist forest remnants were fragmented into more numerous and smaller patches between 1987 and 2001; this was in part due to conversion into agricultural land. The methods used in this study provide an effective way to monitor LULC change detection and support the management of protected areas and their surrounding environments.  相似文献   

5.
Scientists have aimed at exploring land use and land cover change (LUCC) and modeling future landscape pattern in order to improve our understanding of the causes and consequences of these phenomena. This study addresses LUCC in the upper reaches of Minjiang River, China, from 1974 to 2000. Based on remotely sensed images, LUCC and landscape pattern change were assessed using cross-tabulation and landscape metrics. Then, using the CLUE-S model, changes in area of four types of land cover were predicted for two scenarios considering forest polices over the next 20 years. Results showed that forestland decreased from 1974 to 2000 due to continuous deforestation, while grassland and shrubland increased correspondingly. At the same time, the farmland and settlement land increased dramatically. Landscape fragmentation in the study area accompanied these changes. Forestland, grassland, and farmland take opposite trajectories in the two scenarios, as does landscape fragmentation. LUCC has led to ecological consequences, such as biodiversity loss and lowering of ecological carrying capacity.  相似文献   

6.
Restoration efforts to increase wildlife habitat quality in agricultural landscapes have limited funding and are typically done on a first come, first serve basis. In order to increase the efficiency of these restoration efforts, a prioritized ranking system is needed to obtain the greatest increase in habitat quality possible for the fewest amount of hectares restored. This project examines the use of a GIS based multi-criteria approach to prioritize lands for reforestation along the Kaskaskia River in Illinois. Loss of forested area and corresponding increase in forest fragmentation has decreased songbird habitat quality across the Midwestern United States. We prioritized areas for reforestation based on nine landscape metrics: available agricultural land, forest cover gaps, edge density, proximity to river, 200 m corridor area, total forest core area, fringe core area, distance to primary core value, and primary core area. The multi-criteria analysis revealed that high priority areas for reforestation were most likely to be close to the riparian corridor and existing large blocks of forest. Analysis of simulated reforestation (0, 0.5, 1.0, 5.0 10.0, 25.0, and 50.0% of highest priority parcels reforested) revealed different responses for multiple landscape metrics used to quantify forest fragmentation following reforestation, but indicated that the study area would get the greatest rate of return on reforestation efforts by reforesting 10.0% of the highest priority areas. This project demonstrates how GIS and a multi-criteria analysis approach can be used to increase the efficiency of restoration projects. This approach should be considered by land managers when attempting to identify the location and quantity of area for restoration within a landscape.  相似文献   

7.
Human alteration of the landscape has an extensive influence on the biogeochemical processes that drive oxygen cycling in streams. We estimated trends from the mid-1990s to 2003, using the seasonal Mann-Kendall's test, for percent saturation dissolved oxygen (DO), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and ammonia-nitrogen (NH(3)-N) for 12 sites in the Rock Creek watershed, northwest Oregon, USA. In order to understand the influence of landscape change, scale, and stormwater runoff management on dissolved oxygen trends, we calculated land cover change through aerial photo interpretation at full-basin, local (near sample point) basin, and 100m stream buffer scales, for the years 1994 and 2000. Significant (p < or = 0.05) trends occurred in DO (increasing at five sites), COD (decreasing at seven sites), TKN (decreasing at five sites, increasing at one site), and NH(3)-N (decreasing at one site, increasing at one site). Significant land cover change occurred in agricultural land cover (-8% for the entire basin area) and residential land cover (+10% for the entire basin area) (p < or = 0.05). Correlation results indicated that: (1) forest cover negatively influenced COD at the full basin scale and positively influences NH(3)-N at local scales, (2) residential land cover influenced oxygen demand variables at local scales, (3) agricultural land cover did not influence oxygen demand, (4) local topography negatively influenced TKN and NH(3)-N, and (5) stormwater runoff management infrastructure correlated positively with COD at the local scale. This study indicates that landscape factors influencing DO conditions for the study streams act at multiple scales, suggesting that better knowledge of scale-process interactions can guide watershed managers' decision making in order to maintain improving water quality conditions.  相似文献   

8.
During April 2007, forest land per capita in the United States dropped below 1 ha. This is the result of a rather static area of forest land in the United States for the past 100 years combined with population growth. The US now joins the ranks of most countries (77%) having forest land per capita below 1 ha. The combination of an increasing human population with stable or increasing per capita natural resource utilization may place even more demand on resources derived from forest land in the future. The forest land per capita should be expected to continue its downward trend unless substantive demographic, resource utilization, and land-use changes occur.  相似文献   

9.
To facilitate forest planning and management on National Wildlife Refuges, we synthesized multiple data sources to describe land ownership patterns, land cover, landscape pattern, and changes in forest composition for four ecoregions and their associated refuges of the Upper Midwest. We related observed patterns to ecological processes important for forest conservation and restoration, with specific attention to refuge patterns of importance for forest landbirds of conservation priority. The large amount of public land within the ecoregions (31–80%) suggests that opportunities exist for coarse and meso-scale approaches to conserving and restoring ecological processes affecting the refuges, particularly historical fire regimes. Forests dominate both ecoregions and refuges, but refuge forest patches are generally larger and more aggregated than in associated ecoregions. Broadleaf taxa have increased in dominance in the ecoregions and displaced fire-dependent taxa such as pine (Pinus spp.) and other coniferous species; these changes in forest composition have likely also affected refuge forests. Despite compositional changes, larger forest patches on refuges suggests that they may provide better habitat for area-sensitive forest landbirds of mature, compositionally diverse forests than surrounding lands if management continues to promote increased patch size. We reason that although fine-scale research and monitoring for species of conservation priority is important, broad scale (ecoregional) assessments provide crucial context for effective forest and wildlife management in protected areas.  相似文献   

10.
ABSTRACT Irrigated land outproduces dryland agriculture, especially in the western United States. Many valuable crops could not be grown without irrigation. A paucity of yield data does not allow direct measurement of the contribution from irrigated crop agriculture, nor does it allow evaluation of the contributions from livestock which are dependent upon irrigated feed. Regression results indicate that 80 percent of Idaho farm income is associated with irrigation, and that 75 percent of the farm income in the 17 western states is associated with irrigation. For the United States as a whole, results indicate that 13.7 percent of the total cropland (irrigated land) produced 41.3 percent of all cash receipts from farming in 1978. If 14 percent of the land can produce 40 percent of the value of production, can 35 percent of our land produce all our food and fiber needs? Such an allegation has several implications in terms of the adequacy of our land and water resources. It also emphasizes the role of technology in future resource use and production.  相似文献   

11.
Forest loss and fragmentation are of major concern to the international community, in large part because they impact so many important environmental processes. The main objective of this study was to assess the differences in forest fragmentation patterns and drivers between China and the conterminous United States (USA). Using the latest 300-m resolution global land cover product, Globcover v2.2, a comparative analysis of forest fragmentation patterns and drivers was made. The fragmentation patterns were characterized by using a forest fragmentation model built on the sliding window analysis technique in association with landscape indices. Results showed that China’s forests were substantially more fragmented than those of the USA. This was evidenced by a large difference in the amount of interior forest area share, with China having 48% interior forest versus the 66% for the USA. China’s forest fragmentation was primarily attributed to anthropogenic disturbances, driven particularly by agricultural expansion from an increasing and large population, as well as poor forest management practices. In contrast, USA forests were principally fragmented by natural land cover types. However, USA urban sprawl contributed more to forest fragmentation than in China. This is closely tied to the USA’s economy, lifestyle and institutional processes. Fragmentation maps were generated from this study, which provide valuable insights and implications regarding habitat planning for rare and endangered species. Such maps enable development of strategic plans for sustainable forest management by identifying areas with high amounts of human-induced fragmentation, which improve risk assessments and enable better targeting for protection and remediation efforts. Because forest fragmentation is a long-term, complex process that is highly related to political, institutional, economic and philosophical arenas, both nations need to take effective and comprehensive measures to mitigate the negative effects of forest loss and fragmentation on the existing forest ecosystems.  相似文献   

12.
It is usually inappropriate to define rectangular land areas or administrative units as the extent for quantifying landscapes that possess hierarchical structure. As a functional unit established by geophysical relationships, the watershed is one of many natural scales in the hierarchical landscape. We examined the dynamics of the Yashiro watershed of Japan at the landscape level using pattern metrics based on Landsat thematic mapper (TM) imagery from 1985 to 1998. This watershed provides important habitats for the hooded crane (Grus monachus), a vulnerable species. While its world population has remained stable, the number wintering at Yashiro has declined in recent years. Changes in landscape metrics reveal that the spatial pattern within the watershed underwent homogenization due to depopulation of local people and shifts in local energy requirements and forest management policy at Yashiro. Specific changes include: a decrease in bare land area from 6.2% to 1.0% of the landscape, increased forest cover from 69.2% to 76.1%, reduction in patch number from 1194 to 616 and enlarged mean patch size, and a decrease in total edge from 223,740 m to 158,040 m. The rate of change in landscape metrics indicates a rapid change towards homogeneity in the landscape since 1990. The temporal changes in hooded crane populations corresponded to the changes in landscape. An alternative explanation has been proposed that decline of the species is influenced by landscape dynamics affecting both habitat selection and food resources. Conservation at the watershed scale is suggested to be complementary to the current conservation measures of the species.  相似文献   

13.
Regionalization, or the grouping of objects in space, is a useful tool for organizing, visualizing, and synthesizing the information contained in multivariate spatial data. Landscape pattern indices can be used to quantify the spatial pattern (composition and configuration) of land cover features. Observable patterns can be linked to underlying processes affecting the generation of landscape patterns (e.g., forest harvesting). The objective of this research is to develop an approach for investigating the spatial distribution of forest pattern across a study area where forest harvesting, other anthropogenic activities, and topography, are all influencing forest pattern. We generate spatial pattern regions (SPR) that describe forest pattern with a regionalization approach. Analysis is performed using a 2006 land cover dataset covering the Prince George and Quesnel Forest Districts, 5.5 million ha of primarily forested land base situated within the interior plateau of British Columbia, Canada. Multivariate cluster analysis (with the CLARA algorithm) is used to group landscape objects containing forest pattern information into SPR. Of the six generated SPR, the second cluster (SPR2) is the most prevalent covering 22% of the study area. On average, landscapes in SPR2 are comprised of 55.5% forest cover, and contain the highest number of patches, and forest/non-forest joins, indicating highly fragmented landscapes. Regionalization of landscape pattern metrics provides a useful approach for examining the spatial distribution of forest pattern. Where forest patterns are associated with positive or negative environmental conditions, SPR can be used to identify similar regions for conservation or management activities.  相似文献   

14.
Abstract: In 2003, we compared two benthic macroinvertebrate sampling methods that are used for rapid biological assessment of wadeable streams. A single habitat method using kick sampling in riffles and runs was compared to a multiple habitat method that sampled all available habitats in proportion of occurrence. Both methods were performed side‐by‐side at 41 sites in lower gradient streams of the Piedmont and Northern Piedmont ecoregions of the United States, where riffle habitat is less abundant. Differences in sampling methods were examined using similarity indices, two multimetric indices [the family‐level Virginia Stream Condition Index (VSCI) and the species‐level Macroinvertebrate Biotic Integrity Index (MBII)], their component metrics, and bioassessment endpoints based on each index. Index scores were highly correlated between single and multiple habitat field methods, and sampling method comparability, based on comparison of similarities between and within sampling methods, was particularly high for species level data. The VSCI scores and values of most of its component metrics were not significantly higher for one particular method, but relationships between single and multiple habitat values were highly variable for percent Ephemeroptera, percent chironomids, and percent Plecoptera and Trichoptera (Hydropsychidae excluded). A similar level of variability in the relationship was observed for the MBII and most of its metrics, but Ephemeroptera richness, percent individuals in the dominant five taxa, and Hilsenhoff Biotic Index scores all exhibited differences in values between single and multiple habitat field methods. When applied to multiple habitat samples, the MBII exhibited greater precision, higher index scores, and higher assessment categories than when applied to single habitat samples at the same sites. In streams with limited or no riffle habitats, the multiple habitat method should provide an adequate sample for biological assessment, and at sites with abundant riffle habitat, little difference would be expected between the single and multiple habitat field methods. Thus, in geographic areas with a wide variety of stream types, the multiple habitat method may be more desirable. Even so, the variability in the relationship between single and multiple habitat methods indicates that the data are not interchangeable, and we suggest that any change in sampling method should be accompanied by a recalibration of any existing assessment tool (e.g., multimetric index) with data collected using the new method, regardless of taxonomic level.  相似文献   

15.
Changes in forested landscapes may have important consequences for ecosystem services and biodiversity conservation. In northern Spain, major changes in land use occurred during the second half of the 20th century, but their impacts on forests have not been quantified. We evaluated the dynamics of landscape and forest distribution patterns between 1957 and 2003 in Fragas do Eume Natural Park (northwestern Spain). We used orthoimages and a set of standard landscape metrics to determine transitions between land cover classes and to examine forest distribution patterns. Eucalypt plantations showed the greatest increase in area (197%) over time. Furthermore, transitions to eucalypt plantations were found in all major land cover classes. Forest showed a net decline of 20% in total area and represented 30% of the landscape area in 2003. Forest losses were mainly due to eucalypt plantations and the building of a water reservoir, while forest gains were due to increases in shrubland, meadows and cultivated fields which had been recolonised. Forest patch size and core area decreased, and edge length increased over time. In turn, increases were obtained in mean distance between forest patches, and in adjacency to eucalypt plantations and to a water reservoir. These results suggest an increase in forest fragmentation from 1957 to 2003, as well as a change in the nature of the habitat surrounding forest patches. This study shows that land use changes, mostly from eucalypt plantation intensification, negatively affected forested habitats, although some regeneration was ongoing through ecological succession from land abandonment.  相似文献   

16.
Hydrologic-landscape regions in the United States were delineated by using geographic information system (GIS) tools combined with principal components and cluster analyses. The GIS and statistical analyses were applied to land-surface form, geologic texture (permeability of the soil and bedrock), and climate variables that describe the physical and climatic setting of 43,931 small (approximately 200 km2) watersheds in the United States. (The term "watersheds" is defined in this paper as the drainage areas of tributary streams, headwater streams, and stream segments lying between two confluences.) The analyses grouped the watersheds into 20 noncontiguous regions based on similarities in land-surface form, geologic texture, and climate characteristics. The percentage of explained variance (R-squared value) in an analysis of variance was used to compare the hydrologic-landscape regions to 19 square geometric regions and the 21 U.S. Environmental Protection Agency level-II ecoregions. Hydrologic-landscape regions generally were better than ecoregions at delineating regions of distinct land-surface form and geologic texture. Hydrologic-landscape regions and ecoregions were equally effective at defining regions in terms of climate, land cover, and water-quality characteristics. For about half of the landscape, climate, and water-quality characteristics, the R-squared values of square geometric regions were as high as hydrologic-landscape regions or ecoregions.  相似文献   

17.
不同生态区域油气田开发对土地覆盖变化的影响   总被引:1,自引:0,他引:1  
利用RS-GIS技术,分析了四川合兴场气田周围1988年和2000年TM影像和新疆艾桑油气田周围1992年和2000年TM影像土地变化情况。分析结果表明:生态发达的四川合兴场气田周围在油田田开发前后主要为耕地,而建设用地在1988年占区域面积的12.6%,到2000年增加到17.8%。位于生态脆弱区的艾桑油气田,兴建前后主要土地利用类型均为戈壁荒漠、盐碱地,建设用地面积则明显增加,从1992年占总面积的0.02%增加到2000年的0.24%。由此可见,大面积分布式的油气田开发改变了油气田周围土地利用类型的分布。景观格局分析指数表明,四川合兴场周围多样性指数及均匀度指数均呈增加趋势,而艾桑油气田周围多样性指数及均匀度指数均呈现下降趋势。四川合兴场气田周围空间景观呈多样化发展,而新疆艾桑油气田周围空间景观多样性下降,荒漠土地呈扩大化发展趋势。  相似文献   

18.
The conversion of landscapes by human activities results in widespread changes in landscape spatial structure. Regardless of the type of land conversion, there appears to be a limited number of common spatial configurations that result from such land transformation processes. Some of these configurations are considered optimal or more desirable than others. Based on pattern geometry, we define ten processes responsible for pattern change: aggregation, attrition, creation, deformation, dissection, enlargement, fragmentation, perforation, shift, and shrinkage. A novelty in this contribution is the inclusion of transformation processes causing expansion of the land cover of interest. Consequently, we propose a decision tree algorithm that enables detection of these processes, based on three parameters that have to be determined before and after the transformation of the landscape: area, perimeter length, and number of patches of the focal landscape class. As an example, the decision tree algorithm is applied to determine the transformation processes of three divergent land cover change scenarios: deciduous woodland degradation in Cadiz Township (Wisconsin, USA) 1831–1950, canopy gap formation in a terra firme rain forest at the Tiputini Biodiversity Station (Amazonian Ecuador) 1997–1998, and forest regrowth in Petersham Township (Massachusetts, USA) 1830–1985. The examples signal the importance of the temporal resolution of the data, since long-term pattern conversions can be subdivided in stadia in which particular pattern components are altered by specific transformation processes.  相似文献   

19.
Major coastal flooding events over the last decade have led decision makers in the United States to favor structural engineering solutions as a means to protect vulnerable coastal communities from the adverse impacts of future storms. While a resistance‐based approach to flood mitigation involving large‐scale construction works may be a central component of a regional flood risk reduction strategy, it is equally important to consider the role of land use and land cover (LULC) patterns in protecting communities from floods. To date, little observational research has been conducted to quantify the effects of various LULC configurations on the amount of property damage occurring across coastal regions over time. In response, we statistically examine the impacts of LULC on observed flood damage across 2,692 watersheds bordering the Gulf of Mexico. Specifically, we analyze statistical linear regression models to isolate the influence of multiple LULC categories on over 372,000 insured flood losses claimed under the National Flood Insurance Program per year from 2001 to 2008. Results indicate that percent increase in palustrine wetlands is the equivalent to, on average, a $13,975 reduction in insured flood losses per year, per watershed. These and other results provide important insights to policy makers on how protecting specific types of LULC can help reduce adverse impacts to local communities.  相似文献   

20.
Geographically explicit analysis tools are needed to assess forest health indicators that are measured over large regions. Spatial scan statistics can be used to detect spatial or spatiotemporal clusters of forests representing hotspots of extreme indicator values. This paper demonstrates the approach through analyses of forest fragmentation indicators in the southeastern United States and insect and pathogen indicators in the Pacific Northwest United States. The scan statistic detected four spatial clusters of fragmented forest including a hotspot in the Piedmont and Coastal Plain region. Three recurring clusters of insect and pathogen occurrence were found in the Pacific Northwest. Spatial scan statistics are a powerful new tool that can be used to identify potential forest health problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号